直线型倒立摆实验
- 格式:pdf
- 大小:318.94 KB
- 文档页数:8
一、直线一级倒立摆的仿真(一)直线一级倒立摆的数学建模对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用其中的牛顿-欧拉方法和拉格朗日方法分别建立直线型一级倒立摆系统的数学模型.图2 直线一级倒立摆模型φ摆杆与垂直向上方向的夹角;θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。
图3 小车及摆杆受力分析分析小车水平方向所受的合力,可以得到以下方程:由摆杆水平方向的受力进行分析可以得到下面等式:把这个等式代入式1中,就得到系统的第一个运动方程:为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:力矩平衡方程如下:注意:此方程中力矩的方向,由于θ=π+φ,cosφ= −cosθ,sinφ= −sin θ,故等式前面有负号。
合并这两个方程,约去P 和N,得到第二个运动方程:设θ=π+φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ<〈1,则可以进行近似处理:。
用u 来代表被控对象的输入力F,线性化后两个运动方程如下:对式9进行拉普拉斯变换,得到注意:推导传递函数时假设初始条件为0。
由于输出为角度φ,求解方程组的第一个方程,可以得到:或如果令v = x,则有:把上式代入方程组的第二个方程,得到:整理后得到传递函数:其中设系统状态空间方程为:方程组对解代数方程,得到解如下:整理后得到系统状态空间方程:设则有:实际系统的模型参数如下:M 小车质量1。
096 Kgm 摆杆质量0.109 Kgb 小车摩擦系数0 。
1N/m/secl 摆杆转动轴心到杆质心的长度0。
2 5mI 摆杆惯量0。
0034 kg*m*m把上述参数代入,可以得到系统的实际模型。
摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数为:摆杆角度和小车所受外界作用力的传递函数:以外界作用力作为输入的系统状态方程:(二)倒立摆的PID调节:经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型。
直线一级倒立摆系统试验汇报西北工业大学姓名: 张云虎探测制导与控制技术学号: 3009251.试验参数介绍g 重力加速度9.8m/s2.依据试验指导书给受力分析结合newton定律得出动力学方程: 分析水平方向协力有:M=F-f-N (1)分析摆杆水平方向受力得;N-Fs=m(x+lsinθ) ps: Fs=0即N=m+ml cosθ-ml sinθ(2)把(2)带入(1)得到:(M+m)+f+ ml cosθ-ml sinθ=F(3)对垂直方向协力进行分析得到:-P+mg+Fh=m(l-lcosθ) ps:Fh=0即P-mg= ml sinθ+ml cosθ(4)力矩平衡方程:Plsinθ+Nlcosθ+I=0 (5)把公式(2)(4)带进(5)得到:(I+m)θ+mglsinθ=-ml(6)近似化处理得到:(I+m )-mglф=ml(M+m)+f -ml=u写出状态空间模型:=Ax+Buy=Cx+Du==+ф+ u== +ф+ u 写成矩阵形式, 带入参数化简以下:= = uy= = + u3.MATLAB分析:>> A=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0]A =0 1.0000 0 0 0 0 0 0 0 0 0 1.0000 0 0 29.4000 0>> B=[0;1;0;3]B =13>> C1=[1 0 0 0]C1 =1 0 0 0>> C2=[0 0 1 0]C2 =0 0 1 0>> C=[C1;C2]C =1 0 0 00 0 1 0>> D=[0;0]D =D1 =>> D2=[0]D2 =状态空间模型以下:>> sys1=ss(A,B,C,D)sys1 =a =x1 x2 x3 x4x1 0 1 0 0x2 0 0 0 0x3 0 0 0 1x4 0 0 29.4 0b =u1x1 0x2 1x3 0x4 3c =x1 x2 x3 x4y1 1 0 0 0y2 0 0 1 0d =u1y1 0y2 0Continuous-time state-space model.4.利用MATLAB判定系统能控性与观性: >> Qc=ctrb(A,B);>> Qo1=obsv(A,C1);>> Qo2=obsv(A,C2);>> rank(Qc)ans =4>> rank(Qo1)ans =2>> rank(Qo2)ans =2>> rank(obsv(A,C))ans =4因为rank(ctrb(A.B))=4,所以系统可控;因为rank(obsv(A,C1))=2,所以输出1不可观察;因为rank(obsv(A,C2))=2,所以输出2不可观察;因为rank(obsv(A, C)=4, 所以由全部输出是可观察。
倒立摆的力学应用一、综述、杂技表演中,艺人用手托起一根立起的竹竿时,他会通过手臂的不断移动来保持平衡,使竹竿不倒,人和竹竿组成的这个系统就叫做一级倒立摆系统。
假如两根竹竿上下立在一起(自由连接),下面一根杆和作直线运动的小车自由连接,这个就叫做二级倒立摆系统。
倒立摆是常用的进行控制理论教学及开展各种控制实验的理想实验平台,是检验各种控制理论的重要工具。
同时,倒立摆在实际应用中也有着广泛的应用。
如:机器人的站立于行走问题类似于双倒立摆系统;在火箭飞行器的飞行过程中保持正确姿态;通信卫星保持稳定姿态以使卫星天线一直指向地球,并使太阳能电池板指向太阳;多极火箭发射的垂直度问题也可以简化为一个多级倒立摆模型。
作为控制课的一部分,我们于本学期开始进行在直线型倒立摆上开展控制实验,为了解决状态空间法设计控制算法的基本问题,对倒立摆进行力学建模是必要的。
用于倒立摆系统建模的主要方法有两种:一种是采用牛顿力学的分析方法,分别对小车和倒立摆进行动力学分析,列出其动力学方程,联立采用小角度线性化得到倒立摆系统的近似线性模型。
另一种是拉格朗日方法,将倒立摆系统作为一个整体分析,建立系统的动态微分方程,再采用小角度线性化的方法得到倒立摆系统的近似模型。
下面将先后用这两种方法分别对一级和二级倒立摆进行建模。
二、力学分析1、用动力学方程求解一级倒立摆的运动微分方程直线型电机一级倒立摆由直线运动的摆杆底座和一级摆杆组成。
如图1:其中,为了简化模型,可以认为摆杆和底座为刚体,忽略空气阻力和摆杆与底座轴承的摩擦力。
图中,m 为摆杆质量,M 为摆杆底座的质量,L 为摆杆转动轴心到摆杆质心的长度,I 为摆杆惯量,F 为加在小车上的力,x 为小车在x 轴上的的位移,Φ为摆杆与y 轴正方向的夹角。
小车与摆杆的受力分析如图2所示。
其中N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量,b 为小车的阻尼系数。
θ为摆杆与y 轴负方向的夹角。
(创新管理)倒立摆创新实验指导书倒立摆创新实验指导书--线性二次最优LQR控制实验壹、实验目的让实验者了解且掌握线性二次最优控制LQR控制的原理和方法,学习如何使用最优控制算法对直线壹级倒立摆系统进行设计控制实验。
二、设计要求用最优控制算法设计控制器,使得当于小车上施加0.1m的阶跃信号时,闭环系统的响应指标为:1.杆的上升时间小于2秒2.动态误差小于2%3.的超调量小于5%三、线性二次最优控制LQR基本原理及分析线性二次最优控制LQR基本原理为,由系统方程:确定下列最佳控制向量的矩阵K:u(t)=-K*x(t)使得性能指标达到最小值:式中Q——正定(或正半定)厄米特或实对称阵R——为正定厄米特或实对称阵图2-1最优控制LQR控制原理图方程右端第二项是考虑到控制能量的损耗而引进的,矩阵Q和R确定了误差和能量损耗的相对重要性。
且且假设控制向量u(t)是无约束的。
对线性系统:.根据期望性能指标选取Q和R,利用MATLAB命令lqr就能够得到反馈矩阵K的值。
K=lqr(A,B,Q,R)改变矩阵Q的值,能够得到不同的响应效果,Q的值越大(于壹定的范围之内),系统抵抗干扰的能力越强,调整时间越短。
可是Q不能过大,其影响将于实验结果分析中阐述。
关于线性二次最优控制LQR的详细原理请参见现代控制理论的关联书籍。
四、实验步骤1)打开直线壹级倒立摆LQR实时控制模块,(进入MATLABSimulink实时控制工具箱“GoogolEducationProducts”打开“InvertedPendulum\LinearInvertedPendulum\Linear1-StageIPExperiment\LQRExp eriments”中的“LQRControlDemo”)图2-5直线壹级倒立摆LQR控制实时控制程序其中“LQRController”为LQR控制器模块,“RealControl”为实时控制模块,双击“LQRController”模块打开LQR控制器参数设置窗口如下:于“LQRController”模块上点击鼠标右键选择“Lookundermask”打开模型如下:双击“RealControl”模块打开实时控制模块如下图:其中“Pendulum”模块为倒立摆系统输入输出模块,输入为小车的速度“Vel”和“Acc”,输出为小车的位置“Pos”和摆杆的角度“Angle”。
实验七直线一级倒立摆系统根轨迹校正和仿真一、实验目的(1)了解直线倒立摆系统的组成以及系统建模的过程;(2)学习根轨迹法设计控制器的原理和方法;(3)学习用MA TLAB&SIMULINK对倒立摆系统建立模型的方法,并仿真实现;(4)学习用MA TLAB实现倒立摆控制器的设计,并仿真实现;(5)了解根轨迹校正实时控制方法和过程。
二、实验设备(1)直线倒立摆实验装置(2)电控箱(3)GT-400-SV-PCI运动控制卡(4)计算机(5)软件要求:Matlab6.5以上版本软件,VC++6.0软件,板卡自带Device Manager,倒立摆实时控制软件。
三、实验原理3.1 倒立摆系统组成(见附录4)3.2 倒立摆系统模型(见附录4)3.3 根轨迹分析闭环系统瞬态响应的基本特性与闭环极点的位置紧密相关,如果系统具有可变的环路增益,则闭环极点的位置取决于所选择的环路增益,从设计的观点来看,对于有些系统,通过简单的增益调节就可以将闭环极点移到需要的位置,如果只调节增益不能满足所需要的性能时,就需要设计校正器,常见的校正器有超前校正、滞后校正以及超前滞后校正等。
根据附录中公式(15)得到倒立舞者开环传递函数,输入为小车的加速度,输出为倒立摆系统摆杆的角度,被控对象的传递函数为:给系统施加脉冲扰动,输出量为摆杆的角度时,系统框图如下:图7-1 直线一级倒立摆闭环系统图(脉动干扰)考虑到输入r(s) = 0,结构图变换成:图7-2 直线一级倒立摆闭环系统简化图(脉动干扰)该系统的输出为:其中num ——被控对象传递函数的分子项;den ——被控对象传递函数的分母项;numlead 、denlead ——控制器超前环节传递函数的分子项;numlag 、denlag ——控制器滞后环节传递函数的分子项和分母项;k ——控制器增益实际系统的开环传递函数为:可以看出,系统有两个零点,有两个极点,并且有一个极点为正。
专 业 实 验 报 告 实验名称倒立摆实验 实验时间 姓名 学号一、实验内容1、直线一级倒立摆建模1.1 受力分析针对直线一级倒立摆,在实际的模型建立过程中,可忽略空气流动阻力和其它次要的摩擦阻力,则倒立摆系统抽象成小车和匀质刚性杆组成的系统,如图所示。
图1 小车系统各参数定义:M :小车质量m :摆杆质量β:小车摩擦系数l: 摆杆转动轴心到杆质心的长度I :摆杆惯量F :加在小车上的力X :小车位置Ф:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角摆杆受力和力矩分析图2 摆杆系统摆杆水平方向受力为:H摆杆竖直方向受力为:V由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩&&&&&& (1) 代入V 、H ,得到摆杆运动方程。
当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG sml I s mgl=+-(2)倒立摆系统参数值:M=1.096 % 小车质量,kgm=0.109 % 摆杆质量,kg0.1β=% 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,mI= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G ss=-(3)1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x xθθ=&&(4)由2()I ml mgl mlxθθ+-=&&&&得出状态空间模型01001000000013300044xxxxxgglμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦&&&&&&&&(5)μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11&&xxxy(6)由倒立摆的参数计算出其状态空间模型表达式:(7)111()()n n n n f s sI A BK s a s a s a --=--=++++L (11)设期望特征根为***12,,,n λλλL ,则期望特征多项式为:***1111()()()n n n n n f x s s s b s b s b λλ--=--=++++L L (12)由*()()f s f s =求得矩阵K 。
直线一级倒立摆系统实验报告1. 实验目的:通过对直线一级倒立摆系统进行分析,掌握系统的基本原理、参数设置和控制策略;提高学生实际动手能力和科学实验能力。
2. 实验内容:(1)搭建直线一级倒立摆系统实验平台;(2)设置系统的动力学模型,采集系统的状态变量;(3)根据系统的特性设计控制策略,实现系统的稳定控制;(4)记录实验数据,并进行数据处理和分析。
3. 实验原理:直线一级倒立摆系统是一种经典的非线性控制系统,其原理和稳定性分析可以使用动力学建模方法来描述。
系统由直线弹簧、质量块、直线导轨和质量块的摆杆组成。
当摆杆处于垂直状态时,系统处于平衡状态;当摆杆被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
在实验中,我们选取了单摆系统作为直线一级倒立摆系统的原形。
单摆系统由一个质点和一个线性弹簧组成,其状态变量为质点的位置和速度。
当质点处于平衡位置时,系统拥有稳定状态;当质点被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
因此,我们可以使用单摆系统来研究直线一级倒立摆系统的控制策略。
4. 实验步骤:(1)搭建实验平台:搭建直线一级倒立摆系统实验平台,包括直线导轨、摆杆、质点、力传感器、位移传感器和控制电路等。
将质点放置在导轨上,并用摆杆将其固定在弹簧上。
使用力传感器和位移传感器来测量系统的状态变量。
(2)设置系统模型:对实验平台的动力学模型进行建模,将系统的状态变量与控制策略联系起来。
(3)设计控制策略:根据系统的特性设计相应的控制策略,使系统保持稳定状态。
常用的控制策略包括模型预测控制、PID控制、滑模控制等。
(4)记录实验数据:实验过程中需要记录系统的状态变量和控制参数,并进行数据处理和分析,得到实验结论。
5. 实验结果分析:通过对直线一级倒立摆系统的实验研究,我们发现系统的稳定控制需要根据其特性和实际情况来确定相应的控制策略。
在实验中,我们采用了模型预测控制策略,通过对系统的状态变量进行预测和调节,成功实现了系统的稳定控制。
直线二级倒立摆实验
2011.12.24
查看系统参数
利用lqr命令丆计算K
观察系统稳定时间丆若时间过长丆改变Q中非零参数丆重新设计K•C直至满意为止
注意丗实验前先把模块“另存为”丆在备份文件上操作丆不要修改原文件的参数両両両
注意参数对应両両両
Angle2 Ref Angle1 Ref
编译丆待matlab command window 中提示:Successfully……
连接目标
仿真方式为External
注意事项
•安全:人和摆不要在一个竖直平面内!!不要站在倒立摆两侧!
空间有限,起摆前注意相邻两组(前后左右)间注意安全!•实验前在桌面上自己建一个文件夹,打开SIMULINK模块后,首先“另存为(save as)”,将模块及自己的数据、仿真图像保存至该文件夹,在该备份模块上修改数据,不要修改原模块中的数据。
•编译前,小车推到导轨中央,两杆处于自由下垂静止状态,杆不要晃动,然后再编译
•摆有触发角,与平衡位置夹角为5°或10°时,控制器开始起作用,此时放开双手;所以当手扶至摆与平衡位置夹角小于10°时,扶摆要慢
•下面为摆杆1(短),上面为摆杆2(长),夹角为与竖直向下方向夹角。
倒立摆仿真实验报告倒立摆是一个非线性、不稳定的系统,是经常作为研究比较不同控制方法的典型例子。
有许多抽象的控制概念,如控制系统的稳定性、可控性、系统抗干扰能力等,都可以通过倒立摆系统直观地表现出来,倒立摆系统的高阶次,不稳定,多变量,非线性和强耦合等特性,使得许多现代控制理论的研究人员一直将它视为研究对象。
倒立摆系统具有3个特性,即:不确定性,耦合性,开环不稳定性。
直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统,小车可以通过传动装置由交流伺服电机驱动,小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。
一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示M :小车质量;x :小车位置;m :摆杆质量J :摆杆惯量;F :加在小车上的力;l :摆杆转动轴心到杆质心的长度;θ:摆杆与垂直向上方向的夹角。
图1 倒立摆示意图倒立摆的数学模型为πθθπθθθθ180cos )3/4(]sin )180/([cos sin 22⨯-+-=l m ml l m f mg p p 我们可以实时量测角度θ(◦),并计算出角速度θ (◦/s ),控制的任务是产生合适的作用力f,以使倒立摆保持直立状态。
一 连续模糊控制器1、论域的正规化首先设定 15=m θ,s m/60 =θ,N F m 10=,将θ,θ ,f 的实际值分别除以m θ,mθ ,m F ,并加以1±限幅后,得到正规化的输入输出变量:其中]1,1[,,-∈z y x 2、定义模糊几何及其隶属函数对正规化的输入输出变量x,y,z 各定义五个模糊集合:NL ,NS ,Z ,PS ,PL ,分别用51~A A ,21~B B ,21~C C 来代表,x,y,z 三个变量的模糊集合的隶属函数均是对称,均匀分布,全交迭的三角形,如图2所示。
图2 变量的隶属函数 3、设计模糊控制规则集x 和y 各有五个模糊集合,所以最多有2552=条规则,根据经验只用11条规则即可,如表1所示。
倒立摆实验报告引言倒立摆是一种经典的控制系统实验装置,利用倒立摆可以研究和理解控制系统的稳定性及其根轨迹的特性。
本实验通过测定倒立摆的根轨迹,并对实验结果进行分析,探索倒立摆的稳定性和控制系统的性能。
实验目的1.了解倒立摆的结构和工作原理;2.掌握倒立摆控制系统的根轨迹特性;3.利用倒立摆进行根轨迹实验,并分析实验结果。
实验原理倒立摆是由一根铁质杆和一个轻质圆盘构成的。
在平衡状态下,倒立摆处于竖直位置,当对其施加一定的扰动时可以观察到摆的动态行为。
实验中我们使用了一个光电编码器来测量倒立摆的角度,并通过控制系统来调整倒立摆的位置。
倒立摆控制系统的根轨迹特性是指当系统输入为单位阶跃函数时,系统输出的波形特性。
通过绘制系统的根轨迹可以揭示系统的稳定性和性能。
在本实验中,我们会通过改变控制系统的参数来绘制根轨迹,并对根轨迹进行分析。
实验装置实验中所使用的装置包括:倒立摆、光电编码器、电机驱动装置、计算机。
实验步骤1.将倒立摆放置在水平台上,并连接光电编码器,调整光电编码器使其与倒立摆的铁质杆垂直。
2.连接电机驱动装置到倒立摆,用电机驱动装置施加控制信号。
3.打开计算机,并通过专业软件控制电机驱动装置。
4.开始实验前,需要设定合适的实验参数,如比例增益、积分时间等。
5.通过调整参数,观察倒立摆的根轨迹变化,并记录数据。
6.针对不同参数设定,重复步骤5,并记录根轨迹数据。
实验结果和分析在实验中,我们根据不同的参数设定,绘制了多个根轨迹曲线,并分析了其特性。
根据根轨迹的绘制结果,我们可以得出以下结论:1.当比例增益过大时,根轨迹会发生振荡,并可能导致系统不稳定。
2.当积分时间过大时,根轨迹的形状趋于椭圆,系统的响应速度会降低。
3.当积分时间过小时,根轨迹的形状趋于双曲线,系统很难控制。
4.当比例增益和积分时间适当时,系统的根轨迹呈现较好的稳定性和响应速度。
结论通过本实验,我们了解到了倒立摆控制系统的根轨迹特性,并对其进行了分析。
最优控制实验报告二零一五年一月目录第1章一级倒立摆实验 (3)1.1 一级倒立摆动力学建模 (3)1.1.1 一级倒立摆非线性模型建立 (3)1.1.2 一级倒立摆线性模型建立 (5)1.2 一级倒立摆t∞状态调节器仿真 (5)1.3 一级倒立摆t∞状态调节器实验 (9)1.4 一级倒立摆t∞输出调节器仿真 (11)1.5 一级倒立摆t∞输出调节器实验 (13)1.6 一级倒立摆非零给定调节器仿真 (14)1.7 一级倒立摆非零给定调节器实验 (16)第2章二级倒立摆实验 (16)2.1 二级倒立摆动力学模型 (16)2.1.1 二级倒立摆非线性模型建立 (17)2.1.2 二级倒立摆线性模型建立 (18)2.2 二级倒立摆t∞状态调节器仿真 (19)2.3 二级倒立摆t∞状态调节器实验 (21)2.4 二级倒立摆t∞输出调节器仿真 (22)2.5 二级倒立摆t∞输出调节器实验 (22)2.6 二级倒立摆非零给定调节器仿真 (23)2.7 二级倒立摆非零给定调节器实验 (24)第1章一级倒立摆实验1.1一级倒立摆动力学建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示图1-1 直线一级倒立摆模型M小车质量1.096 kg;m 摆杆质量0.109 kg;b 小车摩擦系数0 .1N/m/sec;l 摆杆转动轴心到杆质心的长度0.25m;I 摆杆惯量0.0034 kg·m2;φ摆杆与垂直向上方向的夹角,规定角度逆时针方向为正;x 小车运动位移,规定向右为正。
1.1.1一级倒立摆非线性模型建立采用拉格朗日方法,系统的拉格朗日方程为:()()()=-(1.1)L q q T q q V q q,,,其中,L为拉格朗日算子,q为系统的广义坐标,T为系统的动能,V为系q和L表示为:统的势能。
拉格朗日方程由广义坐标ii i id L Lf dt q q ∂∂-=∂∂ (1.2)i f 为系统沿该广义坐标方向上的外力,在本系统中,系统的两个广义坐标分别为φ和x 。
一、实验介绍:1、背景介绍 (3)2、倒立摆简介 (3)3、实验目的 (5)4.预备知识 (5)二、实验内容:1.自学掌握MATLAB软件的基本使用方法 (6)2.自学掌握倒立摆的基本知识 (6)3.在MATLAB编程环境下完成以下实验操作 (6)4.在proteus环境下,完成倒立摆电机控制算法的仿真 (6)三、实验步骤:1.直线一阶倒立摆数学模型的推导‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.一阶倒立摆的微分方程模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 3.一阶倒立摆的传递函数模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 4.一阶倒立摆的状态空间模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10 5.实际系统的传递函数与状态方程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 6.用MATLAB的Simulink进行仿真‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥13四、实验总结:1、实验结论 (18)2、实验收获 (19)五、参考文献:一、实验介绍:1、背景介绍倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中不可多得的典型物理模型。
它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。
2、直线一阶倒立摆简介:倒立摆是进行控制理论研究的典型实验平台,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
专业实验报告3. 实验装置直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。
图1 一级倒立摆实验硬件结构图对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。
摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。
计算机从I/O设备中实时读取数据,确定控制策略(实际上是电机的输出力矩),并发送给I/O设备,I/O设备产生相应的控制量,交与伺服驱动器处理,然后使电机转动,带动小车运动,保持摆杆平衡。
图2是一个典型的倒立摆装置。
铝制小车由6V的直流电机通过齿轮和齿条机构来驱动。
小车可以沿不锈钢导轨做往复运动。
小车位移通过一个额外的与电机齿轮啮合的齿轮测得。
小车上面通过轴关节安装一个摆杆,摆杆可以绕轴做旋转运动。
系统的参数可以改变以使用户能够研究运动特性变化的影响,同时结合系统详尽的参数说明和建模过程,我们能够方便地设计自己的控制系统。
图2 一级倒立摆实验装置图上面的倒立摆控制系统的主体包括摆杆、小车、便携支架、导轨、直流伺服电机等。
主图7 直线一级倒立摆PD控制仿真结果图从上图可以看出,系统在1.5秒后达到平衡,但是存在一定的稳态误差。
为消除稳态误差,我们增加积分参数Ki,令Kp=40,Ki=60,Kd=2,得到以下仿真结果:图8 直线一级倒立摆PID控制仿真结果图从上面仿真结果可以看出,系统可以较好的稳定,但由于积分因素的影响,稳定时间明显增大。
双击“Scope1”,得到小车的位置输出曲线为:图9 施加PID控制器后小车位置输出曲线图由于PID 控制器为单输入单输出系统,所以只能控制摆杆的角度,并不能控制小车的位置,所以小车会往一个方向运动,PID控制分析中的最后一段,若是想控制电机的位置,使得倒立摆系统稳定在固定位置附近,那么还需要设计位置PID闭环。
倒立摆实验报告1倒立摆实验报告1倒立摆(Inverted Pendulum)是一种经典的控制系统实验对象,由于其简洁和直观的物理模型,被广泛用于控制理论和控制实验的研究中。
本文主要介绍了倒立摆实验的基本原理、实验装置和实验步骤,并通过实验结果分析了不同控制策略对倒立摆系统动态响应的影响。
一、实验原理倒立摆是一个由一个竖直的杆和一个可以沿杆轴方向移动的小车组成。
杆的一端固定在小车上,通过一个旋转关节连接,在倒立摆的平衡位置时,杆竖直向上。
小车上安装有一个电机,可以通过控制电机的转速来实现小车在杆轴方向的移动。
在倒立摆的运动过程中,需通过控制小车运动的速度和方向,使得摆杆保持竖直,并能够在摆杆偏离竖直位置时及时做出修正,以实现摆杆的倒立运动。
为了实现这一控制目标,需要设计合适的控制系统,并通过不同的控制策略来改变系统的动态响应。
二、实验装置倒立摆机械装置由一个竖直的杆和一个可以沿杆轴方向移动的小车组成。
杆的一端固定在小车上,通过一个旋转关节连接。
小车上安装有一个电机,可以通过控制电机的转速来实现小车在杆轴方向的移动。
电机驱动系统包括电机和驱动电路,通过改变电机的转速和方向来控制小车的运动。
传感器用于检测倒立摆系统的状态,包括杆的角度和小车的位置。
控制器通过接收传感器的反馈信号,并根据预定义的控制策略来控制电机的转速和方向。
三、实验步骤1.搭建实验装置。
按照实验装置说明书的要求,搭建倒立摆实验装置,并连接电机驱动系统、传感器和控制器。
2.系统校准。
通过控制小车运动,使摆杆保持竖直。
根据传感器的反馈信号,对系统进行校准,使传感器可以准确测量杆的角度和小车的位置。
3.设计控制策略。
根据倒立摆系统的特性和控制目标,设计合适的控制策略。
可以使用PID控制器、模糊控制器或神经网络控制器等方法。
4.实施控制策略。
将控制策略编码到控制器中,并启动控制器。
控制器将根据传感器的反馈信号和预定义的控制策略,控制电机的转速和方向,实现小车的运动和摆杆的倒立。
直线型倒立摆一、微分方程的建立倒立摆系统是直立双足机器人、火箭垂直姿态控制的研究基础,它涉及各个领域包括控制理论、机器人理论等,其被控系统本身有一个绝对不稳定、高阶次、多变量、强耦合的非线性系统。
本次实验分析一阶直线型倒立摆直线型倒立摆装置如下图所示系统受力分析示意图如下所示M 小车质量 1.096 Kg m 摆杆质量0.111 Kg b 小车摩擦系数0 .1N/m/secl 摆杆转动轴心到杆质心的长度 0.2 5m J 摆杆惯量0.0034 kg*m*x 小车位置θ 摆杆与垂直方向的夹角 应用牛顿定律剪力方程如下:水平方向:N bx F x --='''M由摆杆水平方向的受力情况得:22dt )θsin (N l x d m +=对摆杆垂直方向上的合力进行分析,可以得到如下方程22)cos (m mg -P dtl d θ= 综合可得力矩平衡方程为''cos sin θθθJ Nl Pl =--设θ=π+β,β远小于1,所以得线性化后的两个运动方程''lg ''m l J 2mlx m =-+ϕϕ)(F ml bx x m M =-++'''''ϕ)( 二、传递函数模型由上式化简得,以小车加速度为控制量,摆件角度为被控对象,不考虑其他因素得传递函数为G (s )=lg s 4343l2-,化简得G (s )=29.4-s 32三、采用PID 控制对于倒立摆系统输出量为摆杆的角度和小车的位移,它的平衡位置为垂直向上的情况。
PID 系统控制结构框图如下图所示其包括比例环节·积分环节·微分环节,其中Gc(s)是控制器的传递函数,G(s)是被控对象的传递函数其中sK K s K s G IP D c ++=)(,需要调节PID 控制器的参数,得到满意的控制效果。
本次实验中系统的控制量仅为摆杆的角度,不考虑小车的位移。
第5章 直线一级倒立摆自动摆起控制实验 对于直线一级倒立摆,其初始状态为静止下垂状态,为使其转化到竖直向上的状态,需要给摆杆施加力的作用。
上面的实验,我们都是采用手动的方法将摆杆提起,下面我们采用自动摆起的方法对其进行控制。
5.1 摆起的能量控制策略单个不受约束的倒立摆系统的能量为:)1(cos 212−+=⋅φφmgl J E 有:φφφφφφCos mul Sin mgl J dtdE ...−=−=⋅⋅ 其中 u ——为水平向右的控制量。
应用李亚普诺夫方法,令:2)(21ref E E V −= 则:φφCos mul E E dtdV ref .)(−−= 因此,令:φφCos E E k u ref .)(−=注意当00.=或=φφCos 时,0=u 。
另外,由于实际物理系统的限制,控制量不能太大,因此采用:⎪⎩⎪⎨⎧≤⋅−=02])[(.πθφφng Cos E E sign v ref其中,()sign 为取符号函数,g v n /max =为常数。
5.2 直线一级倒立摆摆起控制实验实时控制实验在MATALB Simulink 环境下进行,用户在实验前请仔细阅读使用手册。
z在进行MATLAB实时控制实验时,请用户检查倒立摆系统机械结构和电气接线有无危险因素存在,在保障实验安全的情况下进行实验。
实验步骤:1)在MATLAB Simulink中打开直线一级倒立摆起摆控制程序:(进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo)图 5-1直线一级倒立摆摆起实时控制程序2)其中“Swing-up Controller”为起摆控制模块。
机械综合设计与创新实验(实验项目一)二自由度平面机械臂三级倒立摆班级:姓名:学号:指导教师:时间:综述倒立摆装置是机器人技术、控制理论、计算机控制等多个领域、多种技术的有结合,被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中不可多得的典型物理模型。
倒立摆的典型性在于:作为实验装置,它本身具有成本低廉、结构简单、便于模拟、形象直观的特点;作为被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的复杂被控系统,可以有效地反映出控制中的许多问题;作为检测模型,该系统的特点与机器人、飞行器、起重机稳钩装置等的控制有很大的相似性[1]。
倒立摆系统深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科,即力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁[2]。
因此对倒立摆的研究具有重要的工程背景和实际意义。
从驱动方式上看,倒立摆模型大致可分为直线倒立摆模型、旋转倒立摆模型和平面倒立摆模型。
对于每种模型,从摆杆的级数上又可细分为一级倒立摆、二级倒立摆和多级倒立摆[3]。
目前,国内针对倒立摆的研究主要集中在运用倒立摆系统进行控制方法的研究与验证,特别是针对利用倒立摆系统进行针对于非线性系统的控制方法及理论的研究。
而倒立摆系统与工程实践的结合主要体现在欠驱动机构控制方法的验证之中。
此外,倒立摆作为一个典型的非线性动力系统,也被用于研究各类非线性动力学问题。
在倒立摆系统中成功运用的控制方法主要有线性控制方法,预测控制方法及智能控制方法三大类。
其中,线性控制方法包括PID控制、状态反馈控和LQR 控制等;预测控制方法包括预测控制、分阶段起摆、变结构控制和自适应神经模糊推理系统等,也有文献将这些控制方法归类为非线性控制方法;智能控制方法主要包括神经网络控制、模糊控制、遗传算法、拟人智能控制、云模型控制和泛逻辑控制法等。
实验一直线倒立摆建模、仿真及实验实验目的:本实验的目的是让学生掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,对实验结果进行观察和分析,直观的感受系统模型的数学意义。
实验内容:1.建立一级倒立摆的数学模型;2.分析一级倒立摆的可控性;3.分析一级倒立摆模型的阶跃响应实验器材(装置):实验要求:建立一级倒立摆的数学模型,分别计算摆杆角度和小车位移的传递函数,摆杆角度和小车加速度的传递函数,并建立相应的状态空间方程;利用状态空间方程分析一级倒立摆的可控性;利用传递函数分析一级倒立摆模型的阶跃响应;记录实验中的数据和图。
实验步骤(方法):实验记录与数据处理:注意事项:1.1 直线一级倒立摆的物理模型系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。
1.1.1微分方程的推导牛顿力学方法在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图 1-1 所示。
我们不妨做以下假设:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x小车位置φ 摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图 1-1 直线一级倒立摆模型图是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图 1-2 小车及摆杆受力分析分析小车水平方向所受的合力,可以得到以下方程:N x b F xM −−=&&& (1-1) 由摆杆水平方向的受力进行分析可以得到下面等式:)sin (22θl x dtd m N += (1-2) 即: (1-3) F ml ml xm N =−+=θθθθsin cos 2&&&&&把这个等式带入式(1-1)中,就得到系统的第一个运动方程:F ml ml x b xm M =−+++θθθθsin cos )(2&&&&&& (1-4) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:)cos (22θl dtd m mg P =− (1-5) θθθθcos sin 2&&&ml ml mg P −−=− (1-6) 力矩平衡方程如下:θθθ&&I Nl Pl =−−cos sin (1-7) 注意:此方程中力矩的方向,由于θ=π+φ,cos φ=−cos θ,sin φ=−sin θ,故等式前面有负号。
合并这两个方程,约去P 和N ,得到第二个运动方程:θθθcos sin )(2xml mgl ml I &&&&−=++ (1-8) 设θ=π+φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ<<1,则可以进行近似处理:cos θ=−1,sin θ=−φ,02=⎟⎠⎞⎜⎝⎛dt d θ 。
用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:⎪⎩⎪⎨⎧=−++=−+u ml x b x m M x ml mgl ml I φφφ&&&&&&&&&)()(2 (1-9) 对式(1-9)进行拉普拉斯变换,得到⎪⎩⎪⎨⎧=Φ−++=Φ−Φ+)()()()()()()()()(22222s U s s ml s s bX s s X m M s s mlX s mgl s s ml I (1-10) 注意:推导传递函数时假设初始条件为0。
由于输出为角度φ,求解方程组的第一个方程,可以得到:)(])([)(22s sg ml ml I s X Φ−+= (1-11) 或mgls ml I mls s X s −+=Φ222)()()( (1-12) 如果令v =x ,则有:mgls ml I ml s V s −+=Φ22)()()( (1-13) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(222222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ−Φ+++Φ−++ (1-14) 整理后得到传递函数:s qbmgl s q mgl m M s q ml I b s s q ml s U s −+−++=Φ23242)()()()( (1-15) 设系统状态空间方程为:DuCX y Bu AX X +=+=& (1-16) 方程组对解代数方程,得到解如下: φ&&&&,x⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++−==++++++++++−==u Mml m M I ml Mml m M I m M mgl x Mml m M I mlb u Mml m M I ml I Mml m M I gl m x Mml m M I b ml I x x x 2222222222)()()()()()()()()(φφφφφ&&&&&&&&&& (1-17) 整理后得到系统状态空间方程:u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I b ml I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++−+++++−=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡2222222222)(0)(00)()()(010000)()()(00010φφφφ&&&&&&&& u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ&& (1-18) 由(1-9)的第一个方程为: xml mgl ml I &&&&=−+φφ)(2对于质量均匀分布的摆杆有:231ml I = 于是可以得到:x ml mgl ml ml &&&&=−+φφ)31(22 化简得到:x ll g &&&&4343+=φφ (1-19) 设,,则有: },,,{φφ&&x x X =xu &&=′u l x x lg x x ′⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡4301004300100000000010φφφφ&&&&&&&& u x x x y ′⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ&& (1-20) 另外,也可以利用MATLAB 中tf2ss 命令对(1-13)式进行转化,求得上述状态方程。
1.1.2系统物理参数实际系统的模型参数如下:M 小车质量 1.096 Kgm 摆杆质量 0.109Kg b 小车摩擦系数 0 .1N/m/secl 摆杆转动轴心到杆质心的长度 0.25m I 摆杆惯量 0.0034 kg*m*m1.1.3实际系统模型把上述参数代入,可以得到系统的实际模型。
摆杆角度和小车位移的传递函数:26705.00102125.002725.0)()(22−=Φs s s X s (1-24) 摆杆角度和小车加速度之间的传递函数为:26705.00102125.002725.0)()(2−=Φs s V s (1-25) 摆杆角度和小车所受外界作用力的传递函数:30942.29169.270883167.035655.2)()(23−−+=Φs s s s s U s (1-26) 以外界作用力作为输入的系统状态方程:u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡35655.20883167.0008285.27235655.0010000629317.00883167.000010φφφφ&&&&&&&& u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ&& (1-27) 以小车加速度作为输入的系统状态方程:u x x x x ′⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡301004.2900100000000010φφφφ&&&&&&&& u x x x y ′⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ&& (1-28) 需要说明的是,在固高科技所有提供的控制器设计和程序中,采用的都是以小车的加速度作为系统的输入,如果用户需要采用力矩控制的方法,可以参考以上把外界作用力作为输入的各式。
1.2系统可控性分析系统的可控性分析原理可参考《现代控制工程》中第11 章的控制系统的状态分析内容或其它相关资料。
对于连续时间系统: DuCX y Bu AX X +=+=&系统状态完全可控的条件为:当且仅当向量组[]B A B A AB Bn 12...−是线性无关的,或n ×n 维矩阵n −1B ]的秩为n 。