五年级【数学(人教版)】实际问题与方程(第4课时)-4课后练习
- 格式:docx
- 大小:354.85 KB
- 文档页数:2
人教版数学五年级上册实际问题与方程教案与反思(推荐3篇)〖人教版数学五年级上册实际问题与方程教案与反思第【1】篇〗设计说明1.创设情境,引入新课。
数学教学中,教师要不失时机地创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。
上课伊始,由学生喜欢的体育运动这一话题引入本节课的情境,拉近了课本与学生的距离,使学生产生浓厚的.学习兴趣。
2.重视解题方法的教学。
“授之以鱼不如授之以渔”,解决问题的教学,关键是理清思路,教授方法,启迪思维,提高解题能力。
因此在这节课的教学中,首先让学生观察图画,了解画面信息,接着组织学生小组交流,分析数量关系,讨论解决问题的方法。
在列方程解决问题的过程中,通过设计关键问题,层层深入引导学生讨论交流,使学生学会写设句,并根据题中的数量关系列出方程。
最后引导学生总结列方程解决问题的步骤,使学生对本节课的知识有一个系统的认识。
课前准备教师准备PPT课件学情检测卡课堂活动卡学生准备练习卡片教学过程⊙创设情境,谈话导入师:同学们都喜欢什么体育运动?生:排球、乒乓球、篮球、足球……师:你知道吗?有一个小朋友叫小明,他跟你们一样,也非常喜欢体育运动,更是在学校的跳远比赛中破了纪录,你们想知道学校原来的跳远纪录是多少吗?这节课我们就来列方程解决这个问题。
(板书课题)设计意图:把学生感兴趣的话题引入到新知的学习中,通过创设情境使学生感受到生活中处处有数学,从而对本节课的知识产生探究欲望,这样的设计过渡自然、顺理成章。
⊙探究新知1.教学例1,出示情境图。
(1)写用字母x表示未知数的设句。
师:请同学们认真观察情境图并说说从中获取了哪些信息。
预设生1:小明的跳远成绩为4.21m,超过原纪录0.06m。
生2:这道题让我们求学校原跳远纪录是多少米。
师:应该设谁为x?怎样把x表示什么写清楚?生:这道题要求学校原跳远纪录是多少米,应设学校原跳远纪录为xm。
《实际问题与方程》(同步练习)-五年级上册数学人教版一.填空题(共12小题)1.王叔叔以八五折的优惠价购买了一辆自行车,比原价购买少付120元。
若将自行车的原价设为x元,则本题可列方程。
2.乐乐有65元零花钱,弟弟有y元零花钱,乐乐给弟弟8元之后两人的钱数就同样多了。
根据题意,可列方程为,解得y=。
3.小芳身高1.5m,在与妹妹的合影中她的高度是5cm,妹妹在这张照片中的高度是3cm。
在求“妹妹实际身高是多少米”时用比例的知识解决,设妹妹身高为x米后可列式是,妹妹的身高是m。
4.五年级绘画兴趣小组有23名女生,比男生人数的2倍少7人,求男生人数列方程为。
(不解答)5.果园里种了桃树和梨树共180棵,桃树的棵数是梨树的3倍。
如果设梨树的棵数为x,则可列方程为。
6.一本漫画书105页,芳芳每天看x页,看了5天,还剩页;当x=15时,还剩页。
7.芳芳和明明两个同学玩猜数游戏。
一个人先想好一个数,另一个人猜。
芳芳说:“我想的这个数乘4再减去2等于10”,明明说:“我想的这个数先乘2再加上4也等于10。
”两人都马上猜出了结果,原来两人想的数一样。
他们想的数是,如果用学过的方程来解答,方程可以分别列成和。
8.如图,用方程表示数量关系为。
9.两地间的距离是300km。
甲、乙两辆汽车同时从两地开出,相向而行,经过2.5小时相遇。
甲车每小时行64km,乙车每小时行x千米。
请用方程表示等量关系:。
10.实验小学“献爱心”活动中,五年级捐的钱数是一年级的1.8倍,五年级比一年级多捐96元,一年级捐款多少元?题中的等量关系是;解:设一年级捐款x元,应列方程为。
11.在如图中描出长度是(150+x)的一段。
x=。
12.水果店购进一批苹果,若卖2.4元/kg,就会亏40元;若把单价提到2.7元/kg,就会赚80元。
老板购买这批苹果一共用了元。
(建议用方程思维解题)二.选择题(共5小题)13.一个长方形的周长是180厘米,长比宽多30厘米,求长是多少厘米。
第5单元简易方程第10课时实际问题与方程(1)【教学内容】教材P72例6。
【教学目标】1.初步理解和掌握列方程来解决一些简单的实际问题的步骤。
2.让学生自主探究,分析数量之间的等量关系,并正确列出方程解决实际问题,培养学生的主体意识、创新意识以及分析观察和表达能力。
3.使学生感受数学与现实生活的密切联系,体会数学在生活中的应用价值和学习数学的乐趣。
【重点难点】重点:学会如何利用方程来解应用题。
难点:找题中的等量关系,并根据等量关系列出方程。
【学习过程】一、复习导入李强原来跳高成绩是1.05米,现在达到了1.12米。
成绩提高了多少米?学生找出数量关系,独立列式解答。
师:这里大家是直接列式解答,其实还可以列方程解答,这节课就来学习如何用方程来解决问题。
(板书:实际问题与方程(1))二、探究新知课件出示教材P72例6。
1.阅读与理解。
师:从图中你能获得什么信息?【学情预设】已知小明成绩为4.21m,超过原记录0.06m。
求学校原跳远记录是多少。
2.分析与解答。
(1)自主尝试。
【学情预设】学生可能直接用算术法解答:4.21-0.06=4.15(m)师:还有没有其他方法呢?(2)探索用方程解题。
①找等量关系,列方程。
师:我们还可以列方程解答。
由于原纪录是未知数,可以把它设为x m,大家找一找图中的等量关系,尝试列出方程。
学生尝试自己列出方程,小组交流,指名汇报。
【学情预设】预设1:根据“原纪录+超出部分=小明的成绩”列出方程:x+0.06=4.21。
预设2:根据“小明的成绩-原纪录=超出部分”列出方程:4.21-x=0.06 。
②解方程。
师:两种方法都是可行的,该如何求出x的值呢?学生独立解出方程,集体订正。
订正时强调解题格式,注意书写格式,最后不要忘记检验。
第二种方法可能在解方程时有些困难,老师及时予以引导。
3.强化与巩固。
完成教材P72“做一做”。
先说一说等量关系,再列方程解决。
三、巩固运用1.教材“练习十六”第2题。
实际问题与方程班级:组别:组号:姓名:实际问题与方程(例4)预习要求1.预习课本第78页例4,初步学会设一个未知数,会列方程解含有两个未知数的实际问题。
2.体会用方程法解决问题的优越性,提高分析问题和解决问题的能力。
☆温馨提醒:先找出题中数量间的相等关系,再列方程。
【旧知回顾】1.学校科技小组的男生人数是女生人数的3倍,设女生有X人,男生有()人,男Array女生共有()人,男生比女生多(2.4.5x+x=( )5.8x-x=( )【合作探究】1.探一探(1)例4中有两个未知数,设谁为x比较合适,说出你的理由。
(2)在解法过程中运用了什么运算定律?(3)你在预习中碰到了什么问题?2.试一试(1)把回顾旧知的第1题改为:科技小组一共有32人,男生人数是女生人数的3倍,男生和女生各有多少人?①找出题中的关键句,写出等量关系式。
(A档)②假设谁为x呢?列出方程并解答。
(B档)(2)完成课本第78页“做一做”。
(B档)3.小结(1)用方程法解含用两个未知数的实际问题时,设其中的1倍量(标准量)为x,另一个未知量用含有x的式子表示出来。
(2)再根据题目中的等量关系列出方程并求解,还得检验结果是否正确。
【精练反馈】1.解下列方程。
(A档)13.2x+9x=33.3 8x-3x=1055.4x+x=12.8 x-0.36x=162.甲桶的油是乙桶的4倍,如果从甲桶中取出15千克油倒入乙桶,那么两桶油的重量相等。
甲、乙两桶原来各有多少千克油?(用方程解)(B档)【课堂总结】通过这节课学习,你收获了什么?还有什么疑问吗?【拓展延伸】C档张叔叔给某个单位送100个花瓶,每个运费1.5元,如果运送途中有损坏,那么每损坏一个不但不给运费,还要赔偿这个单位损失15元,送完货,张师傅得到运费84元,他损坏了几个花瓶?(关系式:总钱数-赔偿的钱=得到的钱)【易错收集】【答案】【旧知回顾】1.3x 4x 2x2.5.5x 4.8x【合作探究】1.(1)设陆地面积为x比较合适,因为陆地面积是单位“1”,那么海洋面积就是2.4x。