第二章-无人机飞行原理及翼型特征下
- 格式:ppt
- 大小:7.43 MB
- 文档页数:13
《无人机飞行原理》课程标准课程类别:专业核心课程适用专业:无人机应用技术学分:3学分学时:48学时编写执笔人及编写日期:刘慎悦杨帆 2020年7月21日审定负责人及审定日期:一.课程性质本课程是高职无人机应用技术专业(560610)的一门专业核心课程,开设在第四学期,前期课程有:《无人机概论》、《无人机飞行安全及法律法规》、《航空电机学》、《无人机结构与系统》,并行课程有《无人机操控技术与任务设备》,后续课程有:《多旋翼无人机组装与飞行实训》、《无人机综合实训》、《无人机应用技术专业毕业设计》、《无人机应用技术专业顶岗实习》。
本课程培养学生综合运用航空机械、空气动力、控制等相关专业知识与技能,在掌握无人机结构、系统、简单飞行原理的基础上,进一步学习无人飞行器的飞行原理及其飞行性能。
使学生掌握无人机与大气的基本知识,飞行中的空气动力,无人机的飞行性能,无人机平衡性、稳定性与操纵性,螺旋桨与旋翼等知识,为今后对无人机飞行器结构、原理的深入认识打下基础,也为后续的实训课程铺垫理论基础。
二.课程目标通过本课程的学习,学生能了解飞机(固定翼、多旋翼和飞艇)与大气的一般知识、飞行中的空气动力、飞行性能、飞机的平衡性稳定性与操纵性、螺旋桨与旋翼及飞艇等基本知识。
达到以下具体目标:(一)知识目标(1)掌握空气动力的相关定义;(2)能够了解大气参数、分层及参数与飞行高度的关系;(3)能够掌握连续性原理与伯努利定理,升力的产生及影响因素、阻力的产生及影响因素、升力公式与阻力公式、高速气流中大气参数的变化及流速与流管切面之间的关系;(4)能够运用所学电气技术、无人机动力系统的组成及工作原理等知识,掌握无人机动力系统安装调试技术、步骤以及常用工具设备的使用方法和规范;(5)能够掌握平飞性能、起飞与着陆性能、机动性能的相关知识;(6)能够掌握无人飞行器平衡性、稳定性、操纵性的定义与条件;(7)能够掌握螺旋桨拉力的产生、旋翼参数及产生力的原理,地面效应、直升机的运动与无人旋翼机的操纵;(8)能够运用所学无人机机载设备种类、组成、原理等知识,掌握无人机机载设备的安装调试技术、步骤以及相关工具的使用方法和规范;(9)能够掌握飞艇的静力性能与操控等基本知识(二)能力目标(1)掌握无人机飞行器的飞行原理、飞行性能的相关知识;(2)具备对无人机飞行状态的判断力;(3)具备一定查阅资料与使用相关资料于实践中的能力;(4)具有团队合作能力;(5)具有探究学习、分析问题和解决问题的能力。
无人机的结构、飞行原理、系统组成、组装与调试目录第一章初步认识无人机的基本构成第二章无人机的飞行原理第三章飞行操作:模拟—电动—油动第四章无人机的发动机第五章无人机的系统组成第六章无人机的组装第七章无人机的调试第一章初步认识无人机的基本构成无人机最早出现于第二次世界大战时,直至近几年有厂商逐步把军用无人机技术转移至电子消费品的生产之上,制成定价较平、操作较易的无人机,始令无人机在消费者市场大热起来。
今次Lock Sir便为大家讲解无人机的运作结构及飞行原理。
一般来说,无人机有飞行器机架、飞行控制系统、推进系统、遥控器、遥控信号接收器和云台相机等6大构成部分。
1. 飞行器机架飞行器机架(Flying Platform)的大小,取决于桨翼的尺寸及电机(马达/马达)的体积:桨翼愈长,马达愈大,机架大小便会随之而增加。
机架一般采用轻物料制造为主,以减轻无人机的负载量(Payload)。
2. 飞行控制系统飞行控制系统(Flight Control System)简称飞控,一般会内置控制器、陀螺仪、加速度计和气压计等传感器。
无人机便是依靠这些传感器来稳定机体,再配合GPS 及气压计数据,便可把无人机锁定在指定的位置及高度。
3. 推进系统无人机的推动系统(Propulsion System)主要由桨翼和马达所组成。
当桨翼旋转时,便可以产生反作用力来带动机体飞行。
系统内设有电调控制器(Electronic Speed Control),用于调节马达的转速。
4. 遥控器这是指Remote Controller或Ground Station,让航拍玩家透过远程控制技术来操控无人机的飞行动作。
5. 遥控信号接收器主要作用是让飞行器接收由遥控器发出的遥控指令信号。
4轴无人机起码要有4条频道来传送信号,以便分别控制前后左右4组旋轴和马达。
6. 云台相机目前无人机所用的航拍相机,除无人机厂商预设于飞行器上的相机外,有部分机型容许用户自行装配第三方相机,例如GoPro Hero 4运动相机或Canon EOS 5D系列单眼相机,惟近年亦有厂商提倡采用M4 /3无反单眼(如:Panasonic LUMIX GH4)作航拍用途。
无人机的飞行原理无人机,又称无人驾驶飞行器,是一种不需要搭载人员直接进行飞行控制的飞行器。
它的出现极大地改变了航空领域的发展格局,成为了军事、民用、科研等领域的重要工具。
那么,无人机是如何实现飞行的呢?接下来,我们将深入探讨无人机的飞行原理。
首先,无人机的飞行原理与传统飞机类似,都是依靠空气动力学原理来实现飞行。
无人机通常由机翼、螺旋桨、电机、电子设备等组成。
在飞行过程中,无人机通过电机驱动螺旋桨旋转,产生向下的气流,从而产生升力。
而机翼的设计也能够产生升力,支撑无人机的飞行。
通过不同的控制方式,无人机可以实现前进、上升、下降、转弯等各种飞行动作。
其次,无人机的飞行原理还与电子设备密切相关。
现代无人机通常配备有各种传感器、导航系统、飞行控制器等电子设备,这些设备能够实时感知飞行环境、自动调整飞行姿态、实现自主飞行。
通过这些电子设备的协同作用,无人机可以实现精准的飞行控制,适应不同的飞行任务需求。
此外,无人机的飞行原理还与无线通信技术息息相关。
现代无人机通常通过无线通信设备与地面控制站进行通信,实现远程操控、数据传输、图像传输等功能。
地面控制站可以通过无线通信设备实时获取无人机的飞行状态、环境信息、图像数据等,从而实现对无人机的实时监控和指挥。
最后,无人机的飞行原理还需要考虑能源供应问题。
无人机通常使用电池或燃料作为能源,通过电机或发动机转化为动力,驱动无人机的飞行。
在飞行过程中,无人机需要合理利用能源,保证飞行时间和飞行距离的需求。
综上所述,无人机的飞行原理是一个涉及多个学科领域的复杂系统工程,包括空气动力学、电子技术、通信技术、能源技术等。
只有深入理解无人机的飞行原理,才能更好地设计、制造、操控无人机,发挥其在军事、民用、科研等领域的重要作用。
希望通过本文的介绍,读者对无人机的飞行原理有了更深入的了解。
无人机的飞行原理
无人机是一种通过遥控或自主飞行的飞行器,它的飞行原理与其他飞行器有所不同。
无人机的飞行原理主要包括以下几个方面:
一、气动原理
无人机的飞行主要依靠气动原理,即利用空气的流动来产生升力和推力。
无人机的机翼和螺旋桨都是利用气动原理来产生升力和推力的。
机翼的上表面比下表面更加凸起,当飞机在空气中飞行时,空气流经机翼时会产生向上的升力,从而使飞机能够在空中飞行。
而螺旋桨则是通过旋转产生推力,从而使飞机向前飞行。
二、控制原理
无人机的控制主要依靠电子设备来实现。
无人机上装有多个传感器和控制器,可以实时感知飞行状态和环境变化,并通过控制器来调整飞行姿态和飞行方向。
无人机的控制系统包括飞行控制器、遥控器、GPS导航系统、惯性导航系统等。
三、能源原理
无人机的能源主要来自电池或燃油发动机。
电池是无人机的主要能源
来源,它可以为无人机提供长时间的飞行能力。
而燃油发动机则可以
为无人机提供更高的飞行速度和更长的飞行时间。
四、自主飞行原理
无人机的自主飞行主要依靠自主导航系统和自主控制系统。
自主导航
系统可以通过GPS、惯性导航等技术来实现无人机的自主定位和导航。
而自主控制系统则可以通过人工智能、机器学习等技术来实现无人机
的自主飞行和自主决策。
总之,无人机的飞行原理是一个复杂的系统工程,它涉及到多个学科
领域的知识和技术。
随着科技的不断发展,无人机的飞行原理也在不
断地创新和完善,为人们带来更加便捷和高效的飞行体验。
无人机飞行原理无人机,作为一种新型的飞行器,其飞行原理与传统飞机有所不同,今天我们就来探讨一下无人机的飞行原理。
首先,无人机的飞行原理可以归纳为四个基本要素,动力系统、控制系统、结构系统和气动系统。
其中,动力系统提供飞行所需的动力,控制系统用来控制飞行器的姿态和飞行方向,结构系统支撑和连接各部件,气动系统则影响着无人机在空气中的飞行性能。
动力系统是无人机飞行的基础,无人机通常采用螺旋桨或者喷气发动机作为动力装置。
螺旋桨通过旋转产生推力,从而推动无人机飞行;而喷气发动机则通过燃烧燃料产生高温高压气体,从喷嘴喷出,产生推力。
这些动力装置为无人机提供了必要的动力,使其能够在空中飞行。
控制系统是保证无人机飞行稳定的关键,它包括飞行控制器、姿态稳定系统、导航系统等。
飞行控制器负责接收和处理飞行器的姿态、位置和速度等信息,并根据预设的飞行路径和指令进行控制;姿态稳定系统则通过调整飞行器的姿态,保持其在飞行过程中的稳定性;导航系统则能够为无人机提供定位和导航信息,使其能够按照预定的航线飞行。
结构系统是无人机的支撑系统,它包括机身、机翼、起落架等部件。
这些部件通过合理的结构设计和材料选择,能够有效地支撑和连接无人机的各个部件,保证其在飞行过程中的结构稳定性和强度。
气动系统是无人机在空气中飞行的基础,它包括机翼、机身、尾翼等部件。
这些部件的设计能够影响无人机在空气中的升力、阻力和稳定性,从而影响着无人机的飞行性能和操控性。
综上所述,无人机的飞行原理涉及到多个方面,包括动力系统、控制系统、结构系统和气动系统。
这些系统共同作用,使得无人机能够在空中飞行,并完成各种任务。
通过对无人机飞行原理的深入了解,我们能够更好地掌握无人机的飞行技术,为无人机的研发和应用提供更加坚实的理论基础。