第二章-无人机飞行原理及翼型特征下
- 格式:ppt
- 大小:7.43 MB
- 文档页数:13
《无人机飞行原理》课程标准课程类别:专业核心课程适用专业:无人机应用技术学分:3学分学时:48学时编写执笔人及编写日期:刘慎悦杨帆 2020年7月21日审定负责人及审定日期:一.课程性质本课程是高职无人机应用技术专业(560610)的一门专业核心课程,开设在第四学期,前期课程有:《无人机概论》、《无人机飞行安全及法律法规》、《航空电机学》、《无人机结构与系统》,并行课程有《无人机操控技术与任务设备》,后续课程有:《多旋翼无人机组装与飞行实训》、《无人机综合实训》、《无人机应用技术专业毕业设计》、《无人机应用技术专业顶岗实习》。
本课程培养学生综合运用航空机械、空气动力、控制等相关专业知识与技能,在掌握无人机结构、系统、简单飞行原理的基础上,进一步学习无人飞行器的飞行原理及其飞行性能。
使学生掌握无人机与大气的基本知识,飞行中的空气动力,无人机的飞行性能,无人机平衡性、稳定性与操纵性,螺旋桨与旋翼等知识,为今后对无人机飞行器结构、原理的深入认识打下基础,也为后续的实训课程铺垫理论基础。
二.课程目标通过本课程的学习,学生能了解飞机(固定翼、多旋翼和飞艇)与大气的一般知识、飞行中的空气动力、飞行性能、飞机的平衡性稳定性与操纵性、螺旋桨与旋翼及飞艇等基本知识。
达到以下具体目标:(一)知识目标(1)掌握空气动力的相关定义;(2)能够了解大气参数、分层及参数与飞行高度的关系;(3)能够掌握连续性原理与伯努利定理,升力的产生及影响因素、阻力的产生及影响因素、升力公式与阻力公式、高速气流中大气参数的变化及流速与流管切面之间的关系;(4)能够运用所学电气技术、无人机动力系统的组成及工作原理等知识,掌握无人机动力系统安装调试技术、步骤以及常用工具设备的使用方法和规范;(5)能够掌握平飞性能、起飞与着陆性能、机动性能的相关知识;(6)能够掌握无人飞行器平衡性、稳定性、操纵性的定义与条件;(7)能够掌握螺旋桨拉力的产生、旋翼参数及产生力的原理,地面效应、直升机的运动与无人旋翼机的操纵;(8)能够运用所学无人机机载设备种类、组成、原理等知识,掌握无人机机载设备的安装调试技术、步骤以及相关工具的使用方法和规范;(9)能够掌握飞艇的静力性能与操控等基本知识(二)能力目标(1)掌握无人机飞行器的飞行原理、飞行性能的相关知识;(2)具备对无人机飞行状态的判断力;(3)具备一定查阅资料与使用相关资料于实践中的能力;(4)具有团队合作能力;(5)具有探究学习、分析问题和解决问题的能力。
无人机的结构、飞行原理、系统组成、组装与调试目录第一章初步认识无人机的基本构成第二章无人机的飞行原理第三章飞行操作:模拟—电动—油动第四章无人机的发动机第五章无人机的系统组成第六章无人机的组装第七章无人机的调试第一章初步认识无人机的基本构成无人机最早出现于第二次世界大战时,直至近几年有厂商逐步把军用无人机技术转移至电子消费品的生产之上,制成定价较平、操作较易的无人机,始令无人机在消费者市场大热起来。
今次Lock Sir便为大家讲解无人机的运作结构及飞行原理。
一般来说,无人机有飞行器机架、飞行控制系统、推进系统、遥控器、遥控信号接收器和云台相机等6大构成部分。
1. 飞行器机架飞行器机架(Flying Platform)的大小,取决于桨翼的尺寸及电机(马达/马达)的体积:桨翼愈长,马达愈大,机架大小便会随之而增加。
机架一般采用轻物料制造为主,以减轻无人机的负载量(Payload)。
2. 飞行控制系统飞行控制系统(Flight Control System)简称飞控,一般会内置控制器、陀螺仪、加速度计和气压计等传感器。
无人机便是依靠这些传感器来稳定机体,再配合GPS 及气压计数据,便可把无人机锁定在指定的位置及高度。
3. 推进系统无人机的推动系统(Propulsion System)主要由桨翼和马达所组成。
当桨翼旋转时,便可以产生反作用力来带动机体飞行。
系统内设有电调控制器(Electronic Speed Control),用于调节马达的转速。
4. 遥控器这是指Remote Controller或Ground Station,让航拍玩家透过远程控制技术来操控无人机的飞行动作。
5. 遥控信号接收器主要作用是让飞行器接收由遥控器发出的遥控指令信号。
4轴无人机起码要有4条频道来传送信号,以便分别控制前后左右4组旋轴和马达。
6. 云台相机目前无人机所用的航拍相机,除无人机厂商预设于飞行器上的相机外,有部分机型容许用户自行装配第三方相机,例如GoPro Hero 4运动相机或Canon EOS 5D系列单眼相机,惟近年亦有厂商提倡采用M4 /3无反单眼(如:Panasonic LUMIX GH4)作航拍用途。
无人机的飞行原理无人机,又称无人驾驶飞行器,是一种不需要搭载人员直接进行飞行控制的飞行器。
它的出现极大地改变了航空领域的发展格局,成为了军事、民用、科研等领域的重要工具。
那么,无人机是如何实现飞行的呢?接下来,我们将深入探讨无人机的飞行原理。
首先,无人机的飞行原理与传统飞机类似,都是依靠空气动力学原理来实现飞行。
无人机通常由机翼、螺旋桨、电机、电子设备等组成。
在飞行过程中,无人机通过电机驱动螺旋桨旋转,产生向下的气流,从而产生升力。
而机翼的设计也能够产生升力,支撑无人机的飞行。
通过不同的控制方式,无人机可以实现前进、上升、下降、转弯等各种飞行动作。
其次,无人机的飞行原理还与电子设备密切相关。
现代无人机通常配备有各种传感器、导航系统、飞行控制器等电子设备,这些设备能够实时感知飞行环境、自动调整飞行姿态、实现自主飞行。
通过这些电子设备的协同作用,无人机可以实现精准的飞行控制,适应不同的飞行任务需求。
此外,无人机的飞行原理还与无线通信技术息息相关。
现代无人机通常通过无线通信设备与地面控制站进行通信,实现远程操控、数据传输、图像传输等功能。
地面控制站可以通过无线通信设备实时获取无人机的飞行状态、环境信息、图像数据等,从而实现对无人机的实时监控和指挥。
最后,无人机的飞行原理还需要考虑能源供应问题。
无人机通常使用电池或燃料作为能源,通过电机或发动机转化为动力,驱动无人机的飞行。
在飞行过程中,无人机需要合理利用能源,保证飞行时间和飞行距离的需求。
综上所述,无人机的飞行原理是一个涉及多个学科领域的复杂系统工程,包括空气动力学、电子技术、通信技术、能源技术等。
只有深入理解无人机的飞行原理,才能更好地设计、制造、操控无人机,发挥其在军事、民用、科研等领域的重要作用。
希望通过本文的介绍,读者对无人机的飞行原理有了更深入的了解。
无人机的飞行原理
无人机是一种通过遥控或自主飞行的飞行器,它的飞行原理与其他飞行器有所不同。
无人机的飞行原理主要包括以下几个方面:
一、气动原理
无人机的飞行主要依靠气动原理,即利用空气的流动来产生升力和推力。
无人机的机翼和螺旋桨都是利用气动原理来产生升力和推力的。
机翼的上表面比下表面更加凸起,当飞机在空气中飞行时,空气流经机翼时会产生向上的升力,从而使飞机能够在空中飞行。
而螺旋桨则是通过旋转产生推力,从而使飞机向前飞行。
二、控制原理
无人机的控制主要依靠电子设备来实现。
无人机上装有多个传感器和控制器,可以实时感知飞行状态和环境变化,并通过控制器来调整飞行姿态和飞行方向。
无人机的控制系统包括飞行控制器、遥控器、GPS导航系统、惯性导航系统等。
三、能源原理
无人机的能源主要来自电池或燃油发动机。
电池是无人机的主要能源
来源,它可以为无人机提供长时间的飞行能力。
而燃油发动机则可以
为无人机提供更高的飞行速度和更长的飞行时间。
四、自主飞行原理
无人机的自主飞行主要依靠自主导航系统和自主控制系统。
自主导航
系统可以通过GPS、惯性导航等技术来实现无人机的自主定位和导航。
而自主控制系统则可以通过人工智能、机器学习等技术来实现无人机
的自主飞行和自主决策。
总之,无人机的飞行原理是一个复杂的系统工程,它涉及到多个学科
领域的知识和技术。
随着科技的不断发展,无人机的飞行原理也在不
断地创新和完善,为人们带来更加便捷和高效的飞行体验。
无人机飞行原理无人机,作为一种新型的飞行器,其飞行原理与传统飞机有所不同,今天我们就来探讨一下无人机的飞行原理。
首先,无人机的飞行原理可以归纳为四个基本要素,动力系统、控制系统、结构系统和气动系统。
其中,动力系统提供飞行所需的动力,控制系统用来控制飞行器的姿态和飞行方向,结构系统支撑和连接各部件,气动系统则影响着无人机在空气中的飞行性能。
动力系统是无人机飞行的基础,无人机通常采用螺旋桨或者喷气发动机作为动力装置。
螺旋桨通过旋转产生推力,从而推动无人机飞行;而喷气发动机则通过燃烧燃料产生高温高压气体,从喷嘴喷出,产生推力。
这些动力装置为无人机提供了必要的动力,使其能够在空中飞行。
控制系统是保证无人机飞行稳定的关键,它包括飞行控制器、姿态稳定系统、导航系统等。
飞行控制器负责接收和处理飞行器的姿态、位置和速度等信息,并根据预设的飞行路径和指令进行控制;姿态稳定系统则通过调整飞行器的姿态,保持其在飞行过程中的稳定性;导航系统则能够为无人机提供定位和导航信息,使其能够按照预定的航线飞行。
结构系统是无人机的支撑系统,它包括机身、机翼、起落架等部件。
这些部件通过合理的结构设计和材料选择,能够有效地支撑和连接无人机的各个部件,保证其在飞行过程中的结构稳定性和强度。
气动系统是无人机在空气中飞行的基础,它包括机翼、机身、尾翼等部件。
这些部件的设计能够影响无人机在空气中的升力、阻力和稳定性,从而影响着无人机的飞行性能和操控性。
综上所述,无人机的飞行原理涉及到多个方面,包括动力系统、控制系统、结构系统和气动系统。
这些系统共同作用,使得无人机能够在空中飞行,并完成各种任务。
通过对无人机飞行原理的深入了解,我们能够更好地掌握无人机的飞行技术,为无人机的研发和应用提供更加坚实的理论基础。
无人机科普小知识丨无人机为什么能够飞起来在机翼上,压力最高的点也就是所谓的驻点,在驻点处是空气与前缘相遇的地方。
空气相对于机翼的速度减小到零,由伯努利定理知道这是压力最大的点。
上翼面和下翼面的空气必须从这个点由静止加速离开。
在一个迎角为零、完全对称的机翼上,从驻点开始,流经上下表面的气流速度是相同的,所以上下表面的压力变化也是完全相同的。
这和在狭长截面的文氏管中的流动是相似的,在流速达到最大点,其压力达到最低。
在这个最低压力点之后,两个表面的流速同时降低。
空气最终必定要回到主来流当中,压力也恢复到正常。
由于上下表面的速度和压力特性是相同的,所以这种状态的机翼不会产生升力。
如果对称机翼相对来流旋转了一个迎角,驻点就会稍稍向前缘的下表面移动,并且流经上下表面的空气流动情况也发生的改变,流经上表面的空气被迫多走了一段距离,在上下表面,空气仍然有一个从驻点加速离开的过程,但是下表面的最高速度要小于上表面的最高速度。
因此,机翼下表面的压力就比上表面的压力大,升力由此产生。
所以,知道旋转一个正的迎角,对称翼型完全能够产生升力。
一个有弯度的翼型展示了与对称翼相似的速度和压力分布,但是由于翼型存在弯曲,尽管弦线的位置可能是几何零迎角,平均压力和升力与对称翼型仍然存在差异。
在某些几何迎角为负的位置上,上下表面的平均压力是可能相等的,因此有弯度翼型存在一个零升迎角,这是翼型的气动力零点。
尽管在这个迎角下没有产生升力,但由于翼型弯度存在,上下面的流动特征是不一样的。
因此,尽管上下表面没有平均压力差,在翼表面上却会产生不平衡并导致俯仰力矩的产生,这个力矩在飞行器配平中非常重要。
升力系数有一个非常明确的极限值。
如果迎角太大或是弯曲度增加太多,流线就会被破坏并且流动从机翼上分离。
分离剧烈地改变了上下表面的压力差,升力被大幅度降低,机翼处于失速状态。
气流分离在小范围内是一种普遍的现象。
在上表面,流动可能在后缘前某个地方就分离了,气流在上下表面都可能分离,但是有可再附着。
可编辑修改精选全文完整版严浩月无人机概论课程近年来,无人机市场发展迅猛,无人机人才需求缺口巨大,而国内无人机教育还处在探索和起步阶段。
《无人机概论》以无人机为中心,阐述了无人机相关的基本概念、基本原理、基本技术和基本方法,力求宽而不深、多而不杂、深入浅出、通俗易懂。
全书共分9章,内容分别为无人机概述、无人机结构与系统、无人机飞行原理、航空气象、无人机飞行管理、无人机法律法规、无人机操纵、无人机的日常维护、无人机行业应用。
《无人机概论》可作为中等和高等职业院校无人机应用技术及相关专业的配套教材或参考教材,也可作为无人机培训教材和无人机爱好者的参考书。
第1章无人机概述1.1无人机相关概念1.1.1航空航天1.1.2飞行器1.1.3无人机与无人机系统1.2无人机的特点与分类1.2.1无人机的特点1.2.2无人机的分类1.3无人机的发展历史、现状与未来1.3.1无人机的发展历史与现状1.3.2无人机的发展展望第2章无人机结构与系统2.1无人机结构与系统概述2.2无人机的基本结构2.2.1固定翼无人机的基本结构2.2.2无人直升机的基本结构2.2.3多旋翼无人机的基本结构2.3无人机的动力系统2.3.1电动系统2.3.2油动系统2.4无人机控制站与飞行控制系统2.4.1无人机控制站2.4.2无人机飞行控制系统2.5无人机通信导航系统2.5.1无人机通信2.5.2无人机导航2.6无人机任务载荷系统与发射回收系统2.6.1无人机任务载荷系统2.6.2无人机发射回收系统第3章无人机飞行原理3.1空气动力学基础3.1.1大气性质3.1.2气体流动的基本规律3.2固定翼无人机飞行原理3.2.1升力3.2.2阻力3.2.3升阻比3.2.4拉力3.2.5平衡3.2.6稳定性3.2.7操纵性3.3无人直升机飞行原理3.3.1升力3.3.2旋翼运动3.3.3稳定性3.3.4操纵性3.4多旋翼无人机飞行原理第4章航空气象4.1大气成分与结构4.1.1大气成分4.1.2大气层的结构4.2气象要素4.2.1气温4.2.2气压4.2.3湿度4.2.4降水4.2.6能见度4.3气象环境对飞行的影响4.3.1风切变对飞行的影响4.3.2云对飞行的影响4.3.3能见度对飞行的影响4.3.4湍流对飞行的影响4.3.5积冰对飞行的影响4.3.6锋面天气对飞行的影响4.3.7气压、气温、大气密度对飞行的影响4.4气象资料及其来源与服务设施4.4.1气象图4.4.2气象资料来源4.4.3气象服务设施第5章无人机飞行管理5.1航空器飞行管理5.1.1航空器适航管理5.1.2航空器飞行环境管理5.1.3航空器人为因素管理5.1.4航空器组织运行管理5.2空中交通管理5.2.1空中交通服务5.2.2空域管理5.2.3空中交通流量管理5.3无人机飞行管理体系5.3.1无人机管控机构5.3.2无人机管控技术5.3.3无人机管控对象与内容5.3.4无人机管控法规5.4无人机空域与飞行计划申请5.4.1无人机空域的相关法律法规5.4.2隔离空域申请5.4.3飞行计划申请第6章无人机法律法规6.1中国民航法律法规体系6.1.1法律6.1.2行政法规6.1.3民航规章6.1.4规范性文件6.2中国无人机法律法规体系6.2.1无人机监管文件体系6.2.2飞行管理文件6.2.3空中交通管理文件6.2.4驾驶员管理文件6.2.5无人机登记管理文件6.2.6无人机监管技术支撑文件第7章无人机操纵7.1无人机飞行操纵7.1.1无人机飞行操纵的类型7.1.2无人机遥控器的操纵7.1.3无人机遥控器飞行手法7.1.4戴氏飞行训练法介绍7.2无人机地面站7.2.1地面站控制概述7.2.2飞控调试7.2.3航迹规划7.2.4数据监控7.3无人机的飞行7.3.1多旋翼飞行7.3.2固定翼飞行7.3.3直升机飞行7.4无人机的飞行安全7.4.1外部因素7.4.2自身因素7.4.3外场飞行注意事项7.4.4无人机首次飞行第8章无人机的日常维护8.1无人机飞行手册8.1.1概述8.1.2正常程序8.1.3应急程序8.1.4性能8.1.5飞行限制8.1.6质量和配平/载荷清单8.1.7系统描述8.1.8运行、保养和维护8.1.9附录8.1.10安全提示8.2无人机的维护8.2.1预防性维护8.2.2检查性维护8.2.3修理和更换8.2.4动力系统的维护。
无人机的飞行原理无人机飞行原理无人机,也被称为无人驾驶飞行器,是一种通过无线遥控或自动化预置程序来操控飞行的飞行器。
无人机的飞行原理主要涉及到气动力学和控制系统。
一、气动力学原理无人机的飞行主要依靠气动力学原理,即通过控制机翼、螺旋桨或喷气等方式来产生升力和推力。
1. 升力:无人机通过机翼的形状、气动力学特性和速度的变化来产生升力。
机翼上的气流在上下表面产生压差,从而产生向上的升力。
无人机的机翼通常呈对称翼型或者低升阻比翼型,以实现更好的升力和操纵性能。
2. 推力:无人机的推力主要由螺旋桨或喷气发动机提供。
螺旋桨通过旋转产生气流,产生向前的推力。
而喷气发动机通过喷射高速气流产生反作用力,推动无人机向前飞行。
二、控制系统原理无人机的飞行控制主要依靠三个自由度:横滚、俯仰和偏航。
通过控制这些自由度,无人机可以实现各种飞行动作和姿态变化。
1. 横滚控制:横滚是无人机绕机身纵轴旋转的动作。
通过改变左右侧旋翼或改变对称翼型的升降舵,可以产生不同的升力,从而使无人机产生横滚运动。
2. 俯仰控制:俯仰是无人机绕机身横轴旋转的动作。
通过改变前后旋翼或改变水平尾翼的升降舵,可以产生不同的升力,从而使无人机产生俯仰运动。
3. 偏航控制:偏航是无人机绕垂直轴旋转的动作。
通过改变尾翼的方向舵或水平尾翼的升降舵,可以产生不同的升力,从而使无人机产生偏航运动。
控制系统通过传感器、计算机和执行机构来实现对无人机的控制。
传感器可以检测无人机的姿态、速度和位置等信息,计算机通过处理这些信息来产生控制指令,执行机构则根据指令来调整无人机的姿态和飞行状态。
三、飞行模式原理无人机可以根据不同的飞行任务和需求,选择不同的飞行模式。
1. 手动模式:在手动模式下,飞行员通过遥控器直接操纵无人机的姿态和飞行动作。
这种模式适用于需要精确控制和灵活应对复杂环境的任务。
2. 自动模式:在自动模式下,无人机根据预先设定的航线、飞行计划和指令来执行飞行任务。
无人机培训教材第一章引言无人机,又称无人驾驶飞行器(UnmannedAerialVehicle,UAV),是一种通过遥控或自主飞行方式进行各种任务的航空器。
随着科技的发展,无人机在各个领域中的应用越来越广泛,如航拍、农业、物流、环境监测等。
为了确保无人机安全、高效地运行,提高无人机驾驶员的操作技能和理论知识,本教材旨在为无人机操作者提供全面、系统的培训内容。
第二章无人机基础知识2.1无人机分类与结构无人机按照用途可分为军用、民用和商业无人机;按照飞行原理可分为固定翼无人机、旋翼无人机和多旋翼无人机。
无人机的结构主要包括飞行器、导航系统、遥控系统、任务设备等部分。
2.2飞行原理与飞行性能无人机飞行原理主要包括空气动力学、飞行力学、飞行控制等。
飞行性能参数有飞行速度、飞行高度、续航时间、载重能力等。
2.3导航与飞控系统导航系统负责无人机的定位、导航和飞行路径规划。
飞控系统负责无人机的稳定飞行、姿态控制、自动起飞、着陆等功能。
第三章无人机操作技能培训3.1遥控器操作遥控器是无人机飞行操作的主要工具,操作者需熟练掌握遥控器的各个功能键、摇杆、开关等操作方法。
3.2起飞与着陆起飞与着陆是无人机飞行过程中最关键的操作环节。
操作者需掌握起飞、悬停、着陆等基本动作,确保无人机安全起飞和着陆。
3.3飞行姿态控制飞行姿态控制是无人机飞行过程中保持稳定的关键。
操作者需掌握无人机的前进、后退、上升、下降、左转、右转等飞行姿态控制方法。
3.4自动飞行与任务设备操作操作者需掌握无人机的自动飞行模式、航线规划、任务设备操作等技能,实现无人机的高效作业。
第四章无人机法规与安全4.1无人机法规无人机驾驶员需遵守国家关于无人机的相关法规,包括飞行空域、飞行高度、飞行速度等限制。
4.2飞行安全飞行安全是无人机飞行过程中的重要环节。
操作者需了解飞行安全知识,掌握应对突发状况的方法。
第五章无人机维护与保养5.1无人机检查与维护无人机在使用过程中需定期进行检查和维护,确保飞行安全。
无人机的原理是什么?来源:小小马带你学一、无人机的飞行原理旋翼和轮子一样,是一项神奇的发明。
四旋翼无人机更是化作了航拍机,满足了许多普通人关于天空的想象。
旋翼之所以能飞,玩过竹蜻蜓的朋友应该都知道:当手的搓动给了竹蜻蜓一个旋转的速度后就会产生升力,让竹蜻蜓起飞。
同理,多旋翼无人机也是由电机的旋转,使螺旋桨产生升力而飞起来的。
比如四旋翼无人机,当飞机四个螺旋桨的升力之和等于飞机总重量时,飞机的升力与重力相平衡,飞机就可以悬停在空中了。
小时候看漫画,看到哆啦A梦和大雄头戴竹蜻蜓自由的在空中翱翔,就特别想和他们一样,可以飞翔在空中,俯瞰大地。
但是如果现在真有人发明出一模一样的竹蜻蜓,我肯定是不愿意戴的。
因为飞起来的效果是这样的:螺旋桨疯狂旋转,人也向反方向疯狂旋转......大雄整个人都转蒙逼了,还怎么能跟静香一起看风景呢?根据牛顿第三定律,旋翼在旋转的同时,也会同时向电机施加一个反作用力(反扭矩),促使电机向反方向旋转。
这也是为什么现在的直升机都会带一个「小尾巴」,在水平方向上施加一个力,去抵消这种反作用力,保持直升机机身的稳定。
而回到四旋翼飞行器上,它的螺旋桨也会产生这样的力,所以为了避免飞机疯狂自旋,四旋翼飞机的四个螺旋桨中,相邻的两个螺旋桨旋转方向是相反的。
如下图所示,三角形红箭头表示飞机的机头朝向,螺旋桨M1、M3的旋转方向为逆时针,螺旋桨M2、M4的旋转方向为顺时针。
当飞行时,M2、M4所产生的逆时针反作用力(反扭矩)和M1、M3产生的顺时针反作用力(反扭矩)相抵消,飞机机身就可以保持稳定,不会像大雄那样「疯狂」自转了。
不仅如此,多轴飞机的前后左右或是旋转飞行的也都是靠多个螺旋桨的转速控制来实现的:垂直升降这个很好理解,当飞机需要升高高度时,四个螺旋桨同时加速旋转,升力加大,飞机就会上升。
当飞机需要降低高度时同理,四个螺旋桨会同时降低转速,飞机也就下降了。
之所以强调同时,是因为保持多个旋翼转速的相对稳定,对保持飞行器机身姿态来说非常重要,看了之后的讲究你就会明白了~ 原地旋转上面已经说了,当无人机各个电机转速相同,飞机的反扭矩被抵消,不会发生转动。