日本生物技术的进展
- 格式:doc
- 大小:9.08 MB
- 文档页数:8
我国生命科学与生物技术的进展及趋势【摘要】本文介绍了生物技术的重点研究领域,对欧美、日本等国家和我国生物技术的发展状况进行了综述,回顾了我国生物技术的发展历史,介绍和分析了我国生物技术的现状和存在问题,以及解决的对策,展望了21世纪我国生物技术的发展前景,希望21世纪的生物技术能更好的造福人民。
【关键词】:生命科学;生物技术; 趋势; 对策党和政府对生物技术一向给予高度的重视。
70年代末期, 就把遗传工程列为我国八大重点科技领域之一。
如果把1986年作为我国生物技术发展阶段的一条分界线, 那么, 1986年以前的七、八年, 我国生物技术处于一个初创阶段。
中国科学院和高等院校一些生物学基础研究实力较强的单位, 率先开展基因工程和杂交瘤技术的研究。
接着全国许多部门派遣访问学者到国外学习基因工程、细胞工程的技术方法。
国内许多研究单位也相继开展基因工程、细胞工程、酶工程和发酵工程的研究, 为我国生物技术的发展奠定了基础。
总括来说,生物技术是分子遗传学、生物化学、微生物学等基础学科发展的产物。
20 世纪90 年代以来, 生物技术特别是基因重组技术的发展突飞猛进, 产业化进程明显加快, 以欧美为中心的生物技术产业正在迅速兴起。
在20 世纪最后几年里, 全世界生物技术市场较原有的增加了30% , 2000 年生物技术的产值预计达600 亿英镑。
21 世纪将是生命科学和生物技术的世纪。
1 生物技术的重点研究领域1.1 基因组研究研究人类基因组、哺乳类实验动物的基因组、低等真核及原核生物细胞基因组, 同时开展基因图谱的比较研究和技术开发。
1.2 基因治疗研究癌症等疾病的免疫调节和基因治疗、中枢神经系统疾病的基因治疗、受体及转基因技术。
1.3 免疫技术开展疫苗载体及辅助药物的开发, 研究核酸疫苗、单克隆抗体及导向药物, 应用植物生物反应器生产疫苗。
1.4 食品、轻工、化工应用发酵工程技术开发食品及保健品、淀粉及脂类的改性, 应用生物技术改造轻工、化工的高温高压生产条件等。
国内外生物技术发展概况 (2010-10-21 18:00:05) (一)国内外生物技术发展动态 1、国际生物技术发展现状生物技术是近 20 年来发展最为迅猛的高新技术,越来越广泛地应用于农业、医药、轻工食品、海洋开发、环境保护及可再生生物质能源等诸多领域,具有知识经济和循环经济特征,对提升传统产业技术水平和可持续发展能力具有重要影响。
近 10 年来,生物技术获得突破性发展,生物技术产业产值以每 3 年增长 5 倍的速度递增,以生物技术为重点的第四次产业革命正在兴起,预计到 2020 年,全球生物技术市场将达到 30,000 亿美元。
在发达国家,生物技术已成为新的经济增长点,其增长速度大致是25%-30%,是整个经济增长平均数的 8-10 倍。
在生物技术制药领域,包括基因工程药物、基因工程疫苗、医用诊断试剂、活性蛋白与多肽、微生物次生代谢产物、药用动植物细胞工程产品以及现代生物技术生产的生物保健品等研究成果迅速转化为生产力,其中与基因相关的产业发展最强劲。
全球医药生物技术产品占生物技术产品市场的 70%以上,占药物市场的 9% 左右,以高于全球经济增长 5 个百分点的速度快速发展,仅单克隆抗体市场销售额就达 40 亿美元。
农业生物技术产业已经成为各国政府未来农业发展的战略重点,应用基因工程、细胞工程等高新技术培育的农林牧渔新品种、兽用疫苗、新型作物生长调节剂及病虫害防治产品、高效生物饲料及添加剂等已推广运用,产生了巨大的经济效益。
1996 年,全球转基因作物才 170 万公顷,以后逐年直线上升,到 2004 年已经达到 8100 万公顷,8 年间全球转基因作物种植面积增加近 48 倍。
照此增长速度预计 2010 年世界范围内 50%的耕地将种植转基因作物,2020 年将增至 80%。
尤其是抗虫、抗除草剂转基因作物的推广,大幅度提高劳动生产率并减少化学农药施用量,经济效益极为显著。
全球转基因作物市场价值 1995 年仅 7500 万美元, 1997 年达 6.7 亿美元,2002 年为 45.2 亿美元,预计到2010 年将达 200 亿美元。
(生物科技行业)日本生物技术的进展世界生物技术作为参考系,观察日本生物技术,客观地评议日本技术。
日本1868年1月3日成立明治维新政府开始引进欧美技术,经140年的发展,已成为世界上第二位的经济强国。
日本医疗药品售量占世界医疗药品市场的11%,日本高新企业风险企业的投资率为4%,不算低。
日本是壹个呈弧状分布的岛国,位于亚洲大陆东部,长达3000公里。
日本由本州、中国、九州、北海道四个主要岛屿及分布四周的4000多个小岛组成,统称为日本列岛。
海洋生物资源丰富。
日本国土面积大约37.8km2。
日本列岛跨亚热带到亚寒带。
由于受复杂的地形和海流的影响很大、各地区气候差异显著。
大部分地区是温暖的海洋性气候,四季分明。
春天从南部冲绳开始壹直到北海道美丽的樱花,由南往北逐渐盛开,形成美景。
梅雨、台风、大雪常见。
梅雨期降雨,对种植水稻来说是不可缺少的。
日本各处见到水稻田,大米是日本人的主食。
日本列岛位于太平洋地震带。
火山活动频繁,是世界上少有的多火山地带。
1923年东京发生7.9级地震。
日本各处见到各类温泉,人们休息的好地方。
日本人喜欢到多彩频繁的温泉旅游。
国土的67%为山地、多为森林覆盖,林业生物资源不少。
Ⅰ尖端生物技术目前世界上生物科技界的尖端课题是干细胞研究。
到目前为止没有统壹的干细胞的概念。
干细胞特点:即具有无限的自我更新能力,能够分化为壹种之上高度分化的子细胞的能力。
它实际上包括从胚胎发育到成人发育过程中各种未分化的成熟细胞。
为此干细胞的概念能够理解为包括生命起源细胞,组织器官发育的原始细胞,和成体组织细胞更新换代、损伤修复的种子细胞。
受精卵是壹种最原始和分化潜能最大的干细胞。
日本的干细胞研究成果属世界领先地位。
京都大学再生医学研究所的山中伸尔2006年8月“细胞”杂志上世界上首次发表由鼷鼠体细胞制备诱导多功能细胞的论文。
其论文的主要内容:把4种基因转入小鼠的纤维原细胞,就能够让他们重新变成具有分化能力的细胞。
世界生物技术作为参考系,不雅察日本生物技术,客不雅地评议日本技术。
日本1868年1月3日成立明治维新当局开始引进欧美技术,经140年的开展,已成为世界上第二位的经济强国。
日本医疗药品售量占世界医疗药品市场的11%,日本高新企业风险企业的投资率为4%,不算低。
日本是一个呈弧状分布的岛国,位于亚洲大陆东部,长达3000公里。
日本由本州、中国、九州、北海道四个主要岛屿及分布四周的4000多个小岛组成,统称为日本列岛。
海洋生物资源丰富。
日本国土面积大约2。
日本列岛跨亚热带到亚寒带。
由于受复杂的地形和海流的影响很大、各地域气候差别显著。
大局部地域是温暖的海洋性气候,四季清楚。
春天从南部冲绳开始一直到北海道斑斓的樱花,由南往北逐渐盛开,形成美景。
梅雨、台风、大雪常见。
梅雨期降雨,对种植水稻来说是不成缺少的。
日本遍地见到水稻田,大米是日本人的主食。
日本列岛位于承平洋地动带。
火山活动频繁,是世界上少有的多火山地带。
1923年东京发生7.9级地动。
日本遍地见到各类温泉,人们休息的好处所。
日本人喜欢到多彩频繁的温泉旅游。
国土的67%为山地、多为丛林覆盖,林业生物资源不少。
Ⅰ尖端生物技术目前世界上生物科技界的尖端课题是干细胞研究。
到目前为止没有统一的干细胞的概念。
干细胞特点:即具有无限的自我更新能力,能够分化为一种以上高度分化的子细胞的能力。
它实际上包罗从胚胎发育到成人发育过程中各种未分化的成熟细胞。
为此干细胞的概念可以理解为包罗生命发源细胞,组织器官发育的原始细胞,和成体组织细胞更新换代、损伤修复的种子细胞。
受精卵是一种最原始和分化潜能最大的干细胞。
日本的干细胞研究成果属世界领先地位。
京都大学再生医学研究所的山中伸尔2006年8月“细胞〞杂志上世界上初次颁发由鼷鼠体细胞制备诱导多功能细胞的论文。
其论文的主要内容:把4种基因转入小鼠的纤维原细胞,就可以让他们从头变成具有分化能力的细胞。
他们把这细胞称为“诱导多功能细胞〞-ips细胞。
生物工程发展前景生物工程90年代诞生了基于系统论的生物工程,即系统生物工程的概念。
下面是店铺为大家整理的生物工程发展前景的相关资料,欢迎大家阅读。
生物工程专业就业前景生物工程,是20世纪70年代初开始兴起的一门新兴的综合性应用学科。
所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子机算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。
生物工程主要研究基因工程、遗传工程、蛋白质工程、酶工程、细胞工程和发酵工程的理论及其在工、医、农、环境保护等部门中的开发和应用,如研究改变遗传因子组合,生产出有强抗病性的小麦;利用微生物的作用发酵香蕉、制作甜酒;还有大家熟知的克隆羊多利,就是由生物工程技术创造的;根据国际植物基因工程发展的新趋势,还可以利用转基因植物生产各种蛋白类药物,吃了这类含药物基因的食物,就可以起到治病防病的作用等等。
国家、社会对这个专业的需求很大,从发展趋势来看,就业前景十分广阔。
同时,生物工程是一个高新技术产业,对人才的要求也很高。
若想要在本学科有所建树或想从事高级技术工作,就必须读研进一步深造,一般有一半以上的学生会选择读研。
可以转向很多相关领域,如生物,制药,食品等;保研几率比较大,且各学校,各科研院所交叉保送机会很大。
读研如选择生命科学类,则向理科研究方向发展,一般会一直从事研究工作,如继续本专业或转向发酵工程,制药工程,食品科学等,硕士毕业后会有很好的就业前景。
生物工程专业就业方向1、出国生物工程属于综合交叉发展学科,且与应用有紧密的结合,国外很多著名大学都很注意其发展,所以出国深造机遇很大,也会有更大的发展空间,可以转向学习生命科学,这方面在国外有更先进的发展研究,我国的著名高校一般都与国外大学建立了友好交流关系,会推荐此类专业的很多学生出国学习。
近5年世界发达国家生物质热裂解技术的实例。
【近5年世界发达国家生物质热裂解技术的实例】在过去的近5年里,世界各发达国家在生物质热裂解技术方面取得了令人瞩目的进展。
从美国到德国,从日本到加拿大,这些国家的科研机构和企业都在生物质热裂解领域进行了大量的研究和实践,推动着这一技术的发展和应用。
本文将对近5年世界发达国家生物质热裂解技术的实例进行全面评估,探讨其深度和广度,并给出个人观点和理解。
一、美国在美国,生物质热裂解技术得到了广泛的关注和支持。
美国能源部投资了大量资金用于生物质热裂解技术的研发和商业化应用。
位于爱荷华州的一家领先的生物质热裂解公司成功开发出了一种先进的生物质热裂解工艺,将农业废弃物和林业废弃物转化为高附加值的生物燃料和化学品,取得了显著的经济和环境效益。
二、德国作为环境保护和可持续发展的先行者,德国在生物质热裂解技术方面也取得了重要的进展。
德国政府出台了一系列支持生物质能源利用的政策,鼓励企业和研究机构开展生物质热裂解技术的研究和应用。
某研究所近年来开发出了一种高效的生物质热裂解反应器,能够将农林废弃物在高温条件下迅速转化为生物柴油和生物天然气,为德国能源转型注入了新动力。
三、日本日本作为科技创新的重要力量,对生物质热裂解技术的研究也不遗余力。
近年来,日本一家知名企业成功研发出了一种具有自主知识产权的生物质热裂解装置,能够在高效、低排放的条件下将生物质废弃物转化为生物燃料和生物化工原料,为日本的能源安全和环境保护贡献了力量。
四、加拿大加拿大的生物质资源丰富,因此在生物质热裂解技术方面也有着得天独厚的优势。
近年来,加拿大某大学的研究团队在生物质热裂解催化剂的设计和制备方面取得了重要突破,使生物质能够更高效地转化为清洁能源和生物化学品,为加拿大的碳减排目标提供了重要支持。
以上就是近5年世界发达国家生物质热裂解技术的部分实例。
这些实例充分展示了生物质热裂解技术在能源替代和环境保护方面的巨大潜力。
日本二噁英检测及分解技术的发展【摘要】日本二噁英污染对环境和人体健康造成严重影响,因此日本开展二噁英检测技术以及分解技术的研究具有迫切性。
目前,日本的二噁英检测技术已经相当成熟,并且在不断向更精准和快速的方向发展。
日本也在积极探索二噁英分解技术,专注于提高技术的效率和稳定性。
未来,随着新型二噁英检测与分解技术的不断突破,日本在二噁英监测和治理领域将迎来更大的进展。
日本在二噁英技术研究领域已取得显著成就,展望未来,将持续致力于提高技术水平,为环境和人类健康做出更大的贡献。
【关键词】二噁英污染、环境、健康、日本、检测技术、发展趋势、分解技术、研究、监测、治理、进展、展望、新型技术、突破。
1. 引言1.1 二噁英污染对环境和健康的影响二噁英(PCDDs)是一类有毒化合物,由二苯基四氢呋喃环上的氯原子取代而成。
它们对环境和健康造成了严重的影响。
二噁英具有极强的毒性和持久性,可以在生物体内长时间蓄积,引发各种疾病。
长期暴露于二噁英会导致免疫系统受损,神经系统受损,甚至致癌。
二噁英还会影响生态系统的平衡,破坏食物链,对环境造成长期污染。
二噁英污染不仅对人类健康构成威胁,也对整个生态系统造成危害。
由于二噁英的极端毒性和生物富集性,一旦进入环境中,很难被完全清除。
有效监测和分解二噁英成为保护环境和健康的重要课题。
1.2 日本二噁英检测技术的必要性二噁英是一种极其难以检测的有毒化合物,其浓度很低且易与其他化合物混淆,因此传统的检测方法已经无法满足精确检测的需求。
发展高灵敏度、高准确度的二噁英检测技术,可以帮助准确评估环境中二噁英的含量,及时监测和防控污染源,保障环境和公众健康。
二噁英污染对环境和生态系统造成长期积累的危害,不仅影响土壤、水源和空气质量,还可能进入食物链,对人类健康构成威胁。
加强对二噁英污染的监测和治理至关重要。
发展高效的二噁英检测技术可以为及早发现和治理污染源提供重要支持。
日本二噁英检测技术的必要性不可忽视。
20世纪生物技术的主要发现和进展年代主要发现和进展1917年匈牙利工程师K. Ereky首次使用“生物技术”这一名词。
1928年英国细菌学家弗莱明(A. Fleming, 1881—1955)发现了青霉素(penicillins)。
1943年美国20多家工厂开始大规模工业生产青霉素。
1944年O.T. Avery, C. M. Macleod和M. McCarty通过细菌转化实验证明DNA是遗传物质。
1953年J. D. Watson和F.H. Crick提出DNA双螺旋结构模型。
1956年H.A. Sober和E.A. Peterson首次将离子交换基团结合到纤维素上,制成了离子交换纤维素,并成功地用于蛋白质分离。
1959年 B.J Davis首先报道了聚丙烯酰胺凝胶电泳(Palyaerylanide gel electrophoresis)。
S. Uchoa 发现了细菌的多核苷酸磷酸化酶,成功地合成了核糖核酸,研究并重建了将基因内的遗传信息通过DNA中间体翻译成蛋白质的过程A. Kornberg 实现了DNA分子在细菌细胞和试管内的复制1961年M. Nirenberg等破译了遗传密码,揭开了DNA编码的遗传信息是如何传递蛋白质这一秘密。
1964年联合国世界卫生组织召开专门会议,对所发现的各类免疫球蛋白给以正式命名;N.A. Littlefield 等人利用突变细胞株和HAT选择培养液解决了分离杂交瘤细胞的难点。
1965年 F. Jacob和J. Monod提出并证实了操纵子(operon)作为调节细菌细胞代谢的分子机制。
1967年世界上有5个实验室几乎同时发现了DNA连接酶,1970年,发现具有更高活性的T4 DNA连接酶1969年日本千烟一郎成功地将固定化氨基酰化酶用于DL-氨基酸的分析上,实现了工业生产中的连续反应。
1970年H. O. Smith 分离出第一个限制性内切酶1971年在美国的海克召开了第一届国际酶工程会议,从而使七十年代成为固定化技术更迅速发展和取得巨大成功的年代1972年H.G. Khorana 等人合成了完整的tRNA基因美国斯坦福大学P. Berg等完成了世界上首次成功的DNA体外重组实验,标志着生物技术的核心技术-基因工程技术的开始。
2010年1月第7卷第1期·产业与市场·CHINA MEDICAL HERALD 中国医药导报在已经过去的20世纪里,日本生物医药产业的发展落后于西方国家。
但在21世纪,在商业界的支持下,日本政府已出台各领域的重要政策来利用生物技术革命。
日本的生物医药领域变得越来越富有竞争力和动力,重要原因之一是由于国家政策和管理制度改革鼓励了新公司的成立、并购和全球合作。
现分析日本生物医药产业发展现状与展望如下:1日本生物领域发展政策1.1出台“生物产业立国”战略促进产业发展2002年12月26日,日本政府出台生物产业立国的国家战略,力争把生物产业培养成国家支柱产业。
战略主旨是大幅增加生物技术领域的开发投资。
2002年日本有关生物技术的政府预算为4400亿日元,占政府科技预算的13%,不到美国生物技术政府预算的1/7。
2006年政府科技预算大幅向生物技术倾斜,生物技术研究经费较2002年增加1倍,总金额约为8800亿日元,主要用于巩固日本生物技术基础和培养生物技术人才。
根据日本政府颁布生物医药产业的规划,其近期目标是建立一个2360亿美元的生物技术产品市场、并要创建1000家生物技术公司和8万名专业技术人员[1]。
1.2鼓励科研转化成立创新型公司一直以来,日本的大学和学术研究机构的成果转化方面比较落后。
2003年末,政府颁布了一系列政策,鼓励成立新的商业公司和大学创办新公司。
2004年4月,政府对大学系统进行了全面改革,加强了大学的独立性和商业化运作能力,旨在鼓励日本的大学技术转让。
这些改革措施通过对国立大学进行重组使之成为独立公司,并且不再受教育部的监管。
同时大幅度削减了85个研究所的基金,并鼓励大学更重视商业研究。
知识产权的变化是这项改革的重点之一。
过去专利只属于有发明成果的教授个人,而现在这些专利将归大学所有。
专利所有权的变化促进了大学将科研成果转化为商业产品,类似于美国的Bayh-Dole 法案[2]。
16生物技术世界BIOTECHWORLD1 仿刺参的分类及特征1.1 仿刺参的分类由于不同种海参在体型大小、触手长短、疣足与管足的形态、骨片种类等方面均存在差异,据此海参纲依次划分为6个木:芋参目(Molpadida)、枝手目(Dendrochirotida)、无足目(Apodida)、指手目(D a c t y l o c h i r o t i d a )、楯手目(A s p i d o c h i r o t i d a )、平足目(E1asipodida)[1]。
仿刺参又称灰刺参、刺参、灰参、也就是人们俗语中的刺参,隶属于海参纲,棘皮动物门,楯手目,刺参科,仿刺参属,拉丁属名Apostichopus,拉丁种名japonicus,因此仿刺参拉丁学名Apostichopus japonicus [2]。
1.2 仿刺参的特征仿刺参体长约20-40厘米,体型呈圆筒,背面有圆锥形肉刺(称作疣足),疣足大约4-6行并且大小不等、排列也不规则;腹面较为平坦,密集的排列着管足,不规则的纵向排列3行,用于吸附岩礁或者爬行运动。
口位于前端,偏于腹面,有触手20个,肛门偏于背面;皮肤粘滑,肌肉发达,身体可伸展或收缩。
体形大小、颜色和肉刺的多少常随生活环境而异[3]。
2 仿刺参再生的研究关于海参再生的模式,人们通过实验发现包括变形再生(morph allaxis)模式和新建再生(epimorphosis)模式,变形再生的过程是刺参经过吐脏后,残留在体腔内的组织经过分配、改造重新再生出一个新的组织器官,并且基本具有原来的功能;新建再生的过程中,细胞发生分裂,新的细胞不断产生,新细胞用来直接替代损伤或丢失的部分组织和器官,或者依靠新细胞的增殖而形成一个胚基, 胚基具有继续分化的能力,可以分化为新的组织器官从而完成组织和器官的再生[4]。
变形和新建再生两种机制相结合的再生方式是海参中大多数所采用的。
GarcíaArrarás等人的研究发现溴脱氧尿苷标记的细胞分裂活动主要发生在肠系膜的增厚处的体腔上皮和再生的管腔上皮,这为海参的新器官的形成是一个组织新建和变形相结合的过程提供了证据[5]。
日本生物技术的进展世界生物技术作为参考系,观察日本生物技术,客观地评议日本技术。
日本1868年1月3日成立明治维新政府开始引进欧美技术,经140年的发展,已成为世界上第二位的经济强国。
日本医疗药品售量占世界医疗药品市场的11%,日本高新企业风险企业的投资率为4%,不算低。
日本是一个呈弧状分布的岛国,位于亚洲大陆东部,长达3000公里。
日本由本州、中国、九州、北海道四个主要岛屿及分布四周的4000多个小岛组成,统称为日本列岛。
海洋生物资源丰富。
日本国土面积大约37.8km2。
日本列岛跨亚热带到亚寒带。
由于受复杂的地形和海流的影响很大、各地区气候差异显著。
大部分地区是温暖的海洋性气候,四季分明。
春天从南部冲绳开始一直到北海道美丽的樱花,由南往北逐渐盛开,形成美景。
梅雨、台风、大雪常见。
梅雨期降雨,对种植水稻来说是不可缺少的。
日本各处见到水稻田,大米是日本人的主食。
日本列岛位于太平洋地震带。
火山活动频繁,是世界上少有的多火山地带。
1923年东京发生7.9级地震。
日本各处见到各类温泉,人们休息的好地方。
日本人喜欢到多彩频繁的温泉旅游。
国土的67%为山地、多为森林覆盖,林业生物资源不少。
Ⅰ尖端生物技术目前世界上生物科技界的尖端课题是干细胞研究。
到目前为止没有统一的干细胞的概念。
干细胞特点:即具有无限的自我更新能力,能够分化为一种以上高度分化的子细胞的能力。
它实际上包括从胚胎发育到成人发育过程中各种未分化的成熟细胞。
为此干细胞的概念可以理解为包括生命起源细胞,组织器官发育的原始细胞,和成体组织细胞更新换代、损伤修复的种子细胞。
受精卵是一种最原始和分化潜能最大的干细胞。
日本的干细胞研究成果属世界领先地位。
京都大学再生医学研究所的山中伸尔2006年8月“细胞”杂志上世界上首次发表由鼷鼠体细胞制备诱导多功能细胞的论文。
其论文的主要内容:把4种基因转入小鼠的纤维原细胞,就可以让他们重新变成具有分化能力的细胞。
他们把这细胞称为“诱导多功能细胞”-ips细胞。
他们已证明这种方法培育出来的小老鼠ips细胞和小老鼠胚胎融合,发育成嵌合体小鼠,这证明,ips细胞、类似于胚胎干细胞,具有分化成其他细胞的功能。
2007年11月20日,山中伸尔发表了由人体皮肤细胞制备干细胞的论文。
在细胞杂志和Tames Thomson在科学杂志上。
其论文的内容是:人类皮细胞中取4组基因。
利用小鼠试验同样方法,利用人类皮细胞中取得4组基因做试验,得到“诱导多功能细胞”ips细胞。
Ips 细胞跟人类胚胎干细胞一样,具有分化成其他类型细胞的功能。
干细胞的实用化有两个方向:一方面,干细胞应用于再生医疗。
2006年开始山中伸弥和庆应大学的罔野荣之共同研究脊髓损伤治疗法。
理化研究所研究,由干细胞制备網膜色素上细胞和红血球前驱细胞等问题。
另一方面,干细胞应用于新药开发。
武田药品工业公司由ips开拓新药。
由干细胞培养心脏细胞、肝细胞等。
日本政府文教科学部2008年度投入22亿日元援助干细胞项目。
2000年时世界上尖端生物技术专利申请数为约12000件,其中美国占40%,中国占30%,欧洲和日本在其后。
日本生物技术风险企业数为334家。
日本政府为了促进生物技术风险企业的培育,2005年12月颁布200余页的生物技术战略大纲,其中详细阐述了具体的战略重点及实施计划。
Ⅱ生物产业1.生物技术发展环境日本政府迈入21世纪后,以建立生物技术产业的竞争力为目标,陆续推出各项支援方案,建立整体产业发展环境。
(1)制定生物技术战略:日本政府认为21世纪是生命科学的世纪,因此制定了《生物技术战略大纲》,提出实现跨跃式发展的三大战略:大力充实研究开发、从根本上加速产业化进程,加深国民对科技的理解。
实施生物技术战略的总体目标是实现健康和长寿(2010年癌症治愈率提高20%),提高食品的安全性和功能性(粮食自给率从2001年的40%提高到2010年的45%),实现可持续的舒适社会(到2010年生物能源的利用应相当于替代原油约110亿升/年)。
(2)改革国家科学与技术体系:日本的国家研究院正在改革。
截止2001年4月59个国家研究院已经转变成为独立管理的机构。
政府科技改革的另一个特点是加强资金体系的竞争性。
决策者们更多地关注研究目的的创新性和原创性,而年青研究者将有更多的机会获得独立的资金支持。
(3)加大重点项目资金资助:日本政府把遗传研究作为千年计划之一。
2001年生物技术产业的预算增加34.8%,生命科学研究部分的预定经费为5-35亿美元,比2000年增加了28%,其重点用于基因研究,希望透过人类基因的解析,有助于糖尿病、癌症等,疾病的治疗,其中大约有8000万美元用于3000多种蛋白质的结构分析。
此外约有44亿美元用于新成立的机构。
政府还拨款5300万美元支持大学实验设备,希望提升政府与大学之间的合作。
(4)推行药物试验改革:在日本企业开发的新药很难找到愿意参加药物试验的病人及医生,使临床试验困难,相关法令的限制曾阻碍了生物医药产业的发展。
政府从制度指定上,促进药物获得临床试验使用许可,从而加速日本药厂的新药开发。
为协助增进药厂的全球竞阿巴斯金是大批量生产的产品。
该药是大肠癌治疗药,人类抗血管内皮细胞增子因子(VEGF)“毛能克鲁尔”抗体。
捷吾阿林是用放射性同位素钇90标记的抗CD20“毛能克鲁尔”抗体。
抗体相关公司大兴投资1FN 2008年后急扩大。
2007年日本医药品界重新组织大企业的抗体药品生产。
艾滋易和阿斯德拉斯制药公司收购抗体高新企业。
武田药品工业公司新成立抗体研究中心。
协和发酵工业公司和其林后阿马公司合并了。
日本生物技术市场的明细表中,可见日本市场的具体动向,但因篇幅所限省略。
5.生物技术公司的2007年度排行榜:生物企业排行榜是每年年初日经生物技术编辑部作成的。
根据2007年日经生物技术杂志上发表的记事为基础的“话题分数”和日经BP社生物技术编辑部所属的记者投票为基础的“价值分数”来选定排列顺序。
话题分数和价值分数各50分为满分。
其合数来决定企业的排列顺序。
话题性分数是通过日经生物技术杂志日经生物技术联线、日经生物技术年鉴、生物高新企业大全等反映各企业的情报的标志。
价值性分数是反映各企业的研究开发潜力、独创性、商品开发力、企业的合并和收购或股价上升等企业成长情况的指标。
排列顺序分为四类等级:冠军、亚军、季军、四级企业。
冠军麒麟集团、武田药品工业、中外制药、宝生物亚军协和发酵工业、阿斯德拉斯制药、味素(加鲁比斯)、大塚制药艾滋伊、第一三共、三菱化学、安基艾斯MG·劳修大亚斯季军花王、日本化学、积水化学工业、富山化学工业、富士胶卷、玖拉玖苏·斯米斯玖兰、奥林巴斯、知恩滋伊模、万有制药、巴伊艾鲁药品、三得利、努巴鲁德伊斯、后亚滋、瓦伊斯、撒努伊、GE横河、雅克鲁德本社、阿斯德拉捷内加四级苏世集团、帝人、阿后美德利玖斯、大日本住友制药、化学及血清疗法研究所、旭化成/旭化成化学、阪大微生物病研究会、医学生物研究所、加内加、日本伊拉伊利利、日本蛋产业、美拉加宝鲁天玖斯、富士录像、德鲁毛、佳巴斯、东累、生化学工业、持田制药、荣研化学、北里研究所、雪印乳业、资生堂、科研制药、DNA片研究所、东洋纺、三洋电机、不二制血、东芝、旭硝子、明治制菓、免疫生物研究所、大正制药、氨基酸化学、日本化药、奥利恩达鲁酵母工业、医药分子设计研究所、丰田汽车、合同酒精、创晶。
Ⅲ生物农业农业相关的世界上热门课题是克隆技术和基因工程。
1.克隆技术:克隆技术是1997年英国世界上首次培育克隆羊而诞生的新技术。
所谓克隆就是同一个副本或拷贝的集合;获取同一拷贝的过程称为克隆化。
细胞克隆:为某一研究目的,从大量群体细胞中分离出某类型单个细胞,由此单个细胞增殖所产生的很多细胞的集合称为细胞克隆。
分子克隆:从众多不同的分子群体中分离到某一感兴趣的分子,继而经无性繁殖(扩增)产生的很多相关分子的集合,即为分子克隆 DNA克隆:DNA克隆就是应用酶学的方法,在体外将各种来源的遗传物质——同源的或异源的、原核的或真核的、天然的或人工合成的DNA与载体DNA结合成一具有自我复制能力的DNA分子—复制子,继而通过转化或转染宿主细胞、筛选出含有目的基因的转化子细胞,再进行扩增,提取获得大量的DNA分子,即DNA克隆。
在分子生物学及分子遗传学领域所谈的分子克隆专指DNA克隆。
日本总理大臣“生命科学研究开发计划”基础上农林水产部推进畜产动物、医用实验动物、绝灭前的希有动物克隆事业。
日本鹿儿岛畜产草地研究所培育隼人2号克隆牛。
现阶段对体细胞克隆牛研讨安全性问题。
出售时自己要谨慎。
畜产草地研究所、京都大学、畜产生物科学安全研究所04年~08年开发体细胞克隆牛的技术。
研究克隆产肉的安全性2006年予算是4747万日元体细胞克隆猪的制造技术及种子猪的有效性研究农业生物资源研究所、静罔中小家畜试验场04年~06年开发高效率的克隆猪技术。
研究克隆猪后代作为种子猪的可能性2006年的予算是1639万9000日元为了染色体健康科学的产业化开发猪后代试验动物农业生物资源研究所北里大学05年~07年为新药的产业化,利用体细胞克隆的染色体开发医疗用模型猪。
2006年的予算是4716万3000日元体细胞克隆胎儿的胎盘机能的基础研究:解析分娩迟缓原因北海道立畜产试验场06年~08年体细胞克隆牛分娩迟延的分子生物学解析06年予算是100万日元为提高体细胞克隆牛的成功率,进行发育机制的研究畜产草地研究所06年~10年为了提高克隆牛的成功率,研究发育初期的影响,异常发育的因素、细胞遗传学的影响等因素开发动物的有用技术。
培育模型家畜农业生物资源研究所06年~08年利用克隆技术培养转基因动物。
开发家畜系列技术家畜改良中心98年应用体细胞克隆牛技术,培育转基因动物应用机器人技术,开发胚胎操作的自动化设备畜产草地研究所、大阪大学、东北大学、川崎大学、富士平工业、产业技术综合研究所05年~09年机器人技术应用到胚胎操作,开发胚胎操作自动化设备。
06年度予算是6000万日元2.转基因技术:转基因动物是指用DNA重组技术,将人们所需的目的基因导入动物的受精卵或早期胚胎内使外源目的基因随细胞分裂而增殖并在体内表达,且能稳定地遗传给后代动物。
东京大学、农业生物资源研究所共同培育出吐黄丝的转基因家蚕。
研究人员首先共同决定蚕茧颜色的基因。
蚕茧的颜色除了白色以外还有黄色、金色、橙红色,绿色等各种。
决定蚕茧染色的是蚕饲料桑叶中的黄色类胡萝卜素和绿色墨黄酮。
这些色素在蚕的肠道中被吸收后送入绢丝腺,并给绢丝着色。
蚕的Y(yellow bood黄血)基因控制着胡萝卜素结合蛋白表达,将CBP基因导入生产白茧系列家蚕中,成功地让家蚕产生了黄茧。