金属材料结构缺陷基本理论
- 格式:ppt
- 大小:3.86 MB
- 文档页数:8
金属材料中的位错与塑性金属作为一种重要的结构材料,在人类历史上一直扮演着至关重要的角色。
无论是建筑工程、交通运输、电子设备还是航空航天等领域,金属材料都无处不在。
然而,即使已经经过千锤百炼的金属材料也有各种各样的缺陷,其中最基本的就是位错。
位错是指晶格中出现的原子排列偏差,是导致金属材料塑性变形的重要因素之一。
本文将首先介绍位错的概念和形成机制,然后阐述位错对金属材料的影响,最后探讨位错与塑性之间的关系。
一、位错的概念和形成机制位错是指晶格中出现的原子排列偏差,又叫错位。
在一个完美的晶体中,原子应该排列得十分整齐,且紧密地接触着周围的原子。
但在生产过程中,晶体中常常会出现原子排列偏差。
这种偏差是由于某个原子因为某种原因不能成功转移到它应该位置的一个空位上而形成的。
这个空位就叫做间隙。
假设在一个晶体中有一个间隙,它就会产生一个插入位错,也就是原子从原本应该占据的位置插入到另一处,正是在这里难以容纳该原子从而生成了间隙。
另一种常见的位错是滑移位错,它是由于晶体中某个晶面上的原子出现晶面上的原子应该移动的方向与晶面的平面不一致导致的。
二、位错对金属材料的影响位错是金属材料内部的缺陷,在原子尺度上影响着金属整体的性质和行为。
最常见的位错类型是线位错,它会导致晶体中某个晶面上的原子整体向另一个方向移动一定的距离,由于原子之间的相互作用力,线位错处会形成应力场,形成某个区域所受到的应力明显大于另一些区域。
这种不均匀性是位错对材料影响的主要体现。
同时,由于位错的存在,晶体中局部就有更多的间隙,增加了材料的形变难度。
如果一根线位错遇到另一根线位错,则它们就会互相阻挡并产生绕过的效果,这种效果被称为康普顿效应。
另外,位错还容易在行进过程中被附着的杂质粒子卡住,从而对整个材料产生不良影响。
因此,位错对材料的强度、韧性、延展性以及其它机械性能影响很大。
三、位错与塑性之间的关系在处理金属拥有自己的机械特性时,重要的一条涉及塑性。
金属材料中的晶格缺陷金属材料是人类社会中不可或缺的一部分,广泛应用于工业生产、机械制造、建筑和装饰等方面。
而与金属材料相关的一个重要的概念便是晶格缺陷。
晶格缺陷指的是晶体结构中的原子或离子位置出现偏差或缺陷,这些缺陷会对材料的物理特性、力学性能、耐久性等造成不同程度的影响。
晶格缺陷分为点缺陷、线缺陷和面缺陷三种类型。
1. 点缺陷点缺陷是指晶体结构中某一点处原子或离子数目或种类与理想晶体结构出现偏差的缺陷。
其中最常见的点缺陷包括空位缺陷、插入缺陷和替代缺陷。
(1)空位缺陷空位缺陷是指晶体结构中某一点处由于原子或离子缺失而产生的缺陷。
空位缺陷对金属材料的物理特性和力学性能等影响较小,但是会影响金属材料的机械强度和耐久性。
例如,在均匀延展过程中,空位缺陷是一种激活位点,可以促进原子扩散,从而使金属材料失去稳定性。
(2)插入缺陷插入缺陷是指晶格结构中外来原子或离子插入到晶格中,从而打破原有的晶格结构,产生的缺陷。
插入缺陷会对金属材料的物理特性、力学性能等产生影响。
(3)替代缺陷替代缺陷是指在晶格结构中,某些原子或离子被其他原子或离子所替代所引起缺陷。
替代缺陷会对金属材料的物理特性、力学性能等产生影响。
2. 线缺陷线缺陷是指晶体结构中某一条直线或曲线处原子或离子数目或种类出现偏差的缺陷,包括位错、螺旋位错和混合位错等。
(1)位错位错是指在晶体结构中,处于某一平面上方和下方原子排列有偏差,从而形成的一个线状缺陷。
位错在金属材料中广泛存在,其对金属材料的力学性能、塑性变形和强度影响较大。
(2)螺旋位错螺旋位错是指位错沿晶体中某一个平面上旋转而形成的一种位错。
螺旋位错会对晶体的物理特性、力学性能等产生重要影响。
(3)混合位错混合位错是指通过位错的组合形成新位错的缺陷,混合位错是位错的一种重要类型。
3. 面缺陷面缺陷是指晶体结构中某一平面内的原子或离子数目或种类与理想晶体结构出现偏差的缺陷,面缺陷的种类较多。
金属材料中的晶格缺陷是一种普遍存在的现象,晶格缺陷的产生会影响到金属材料的物理特性、力学性能、耐久性等方面。
金属表面主要缺陷定义:模具痕:折弯等模具成型过程中在结构件表面产生的压痕、轻微凹坑等。
磨擦痕:加工过程中板材在机床台面运动过程中产生的轻微划痕,无凹入感。
运动部件摩擦痕:螺丝,旋转轴等运动部件在运动过程中和基体产生的痕迹。
焊渣:指电镀、氧化前,金属焊接时飞溅到焊缝位置以外区域的、牢固粘附在基材表面的金属点状颗粒。
烧伤:拉丝处理时因操作不当、造成零件表面过热而留下的烧蚀痕迹。
凹坑:由于基体材料缺陷、或在加工过程中操作不当等原因而在材料表面留下的小坑状痕迹。
抛光区:对基材上的腐蚀、划伤、焊接区、铆接区等部位进行机械打磨抛光后表现出的局高光泽、光亮区域及焊接的背面所呈现出的打磨痕迹。
镀前划伤:指电镀或氧化之前的基体材料上的划伤痕迹,手摸有明显的凹入感。
镀后划伤:指电镀之后因操作不当等人为造成的表面划伤痕迹。
基材花斑:电镀或氧化前因基体材料腐蚀、材料中的杂质或者材料微孔等原因所造成的、与周围材质表面不同光泽或粗糙度的斑块状花纹外观。
镀层起泡:电镀不良、或因基材原因而出现的镀层鼓起甚至脱落现象。
露白:镀锌彩色钝化膜因磨擦而被去除、露出锌层,或因缝隙截留溶液导致的无钝化膜现象,呈现为区别于周围彩色的白色。
黑点:镀锌彩色钝化膜上因初期腐蚀变化而出现的零星分散的小黑点。
雾状:镀铬、镀镍表面上的模糊、不清晰、不光亮的现象。
水印:电镀或氧化后因清洗水未及时干燥或干燥不彻底所形成的斑纹、印迹。
挂具印:电镀或者氧化时挂具和结构件接触部位局部无镀层或者膜层的现象。
指印:镀层表面的指纹等缺陷。
水纹:压铸件成形时,熔体流动产生的可见条纹。
缩水:因材料、工艺等原因使压铸件表面出现凹陷的收缩现象。
砂眼:压铸件表面的疏松针孔。
披锋:压铸件上浇口残留物取掉后的毛刺。
局部无铬层:指镀铬表面因电镀工艺的局限而在凹槽内、深孔内、折弯内角等低电位区出现铬层未电镀上的现象腐蚀:因各种原因所导致的表面金属生锈、氧化现象。
修补:因膜层损伤、轻微腐蚀等原因而用涂料所作的局部遮盖处理。
铸造制品主要缺陷有偏析、气孔、缩孔与缩松、夹杂、裂纹、冷隔及其他缺陷。
1偏析偏析——在铸件中出现化学成分不均匀的现象。
偏析使铸件的性能不均匀,严重时会造成废品。
偏析可分为两大类:微观偏析和宏观偏析。
晶内偏析(又称枝晶偏析)——是指晶粒内各部分化学成分不均匀的现象,是微观偏析的一种。
凡形成固溶体的合金在结晶过程中,只有在非常缓慢的冷却条件下,使原子充分扩散,才能获得化学成分均匀的晶粒。
在实际铸造条件下,合金的凝固速度较快,原子来不及充分扩散,这样按树枝状方式长大的晶粒内部,其化学成分必然不均匀。
为消除晶内偏析,可把铸件重新加热到高温,并经长时间保温,使原子充分扩散。
这种热处理方法称为扩散退火。
密度偏析(旧称比重偏析)——是指铸件上、下部分化学成分不均匀的现象,是宏观偏析的一种。
当组成合金元素的密度相差悬殊时,待铸件完全凝固后,密度小的元素大都集中在上部,密度大的元素则较多地集中在下部。
为防止密度偏析,在浇注时应充分搅拌或加速金属液冷却,使不同密度的元素来不及分离。
宏观偏析有很多种,除密度偏析之外,还有正偏析、逆偏析、V形偏析和带状偏析等。
偏析金相组织见图1:图1边部灰色处为反偏析区2气孔金属在凝固过程中,气体的溶解度急剧降低,在戮度很大的固态金属中难以逸出而滞留于熔体内形成气孔。
与缩孔缩松的形态不同,气孔一般呈圆形、椭圆形或长条形,单个或成串状分布,内壁光滑。
孔内常见气体有H2、CO、H2O、CO2等。
按气孔在铸锭中出现的位置分为内部气孔、皮下气孔和表面气孔。
气孔的存在减少了铸锭的有效体积和密度,经加工后虽可被压缩变形,但难以焊合,结果造成产品的起皮、起泡、针眼、裂纹等缺陷。
气孔形态金相组织见图2:图2浇铸时由模底和模壁产生的气体来不及逸出而沿结晶方向形成气孔3缩孔与缩松金属在凝固过程中,发生体积收缩,熔体不能及时补充,而在最后凝固的地方出现收缩孔洞,称为缩孔或缩松。
容积大而集中的缩孔称为集中缩孔,细小而分散的缩孔称为缩松,其中出现在晶界和枝晶间借助于显微镜观察的缩松称为显微缩松。
金属材料的晶体缺陷与塑性变形金属材料是我们日常生活中使用最广泛的材料之一,它们具有出色的强度、导电性和耐腐蚀性能。
然而,这些材料中经常会出现各种各样的晶体缺陷,比如空位、过垫、位错等。
这些缺陷对于材料的力学性能和物理性质会产生深远影响,尤其是对于金属材料的塑性变形来说,晶体缺陷更是至关重要的因素。
1. 晶体缺陷的分类晶体缺陷是指晶体中由于各种因素导致的结构上的缺陷或变异。
从不同角度来进行分类,晶体缺陷可以分为以下类型:1.1 点缺陷点缺陷是指晶体中的空位、过垫和杂质原子等点状缺陷。
其中空位是最常见的一种点缺陷,其可以影响晶体的热力学性质,例如分子扩散、热导率和蒸发等。
1.2 线缺陷线缺陷是指晶体中的位错和螺旋线等。
位错是晶体中空间中某些原子排列错误的位置,随着应力的作用,位错可以在晶体中移动,导致晶体的塑性变形。
螺旋线则是由于晶体的外在形状而形成的缺陷,对于晶体的磁学性能有一定的影响。
1.3 面缺陷面缺陷是指而晶体中的晶粒边界和晶体表面等面状缺陷。
晶粒边界是不同晶粒之间的界面,晶体形成时会存在不同的晶粒之间的排列错误,从而形成晶粒边界。
晶粒边界有利于调整晶体中不同晶粒的方向和结构,从而达到材料强度和硬度之间的平衡。
2. 晶体缺陷与塑性变形晶体缺陷在材料的机械性能中起着至关重要的作用,其中最重要的是晶体缺陷与塑性变形之间的关系。
塑性变形是指材料结构的变形过程中一个结构单元从一种能量状态变为另一种,通常是由于位错的滑移或形成使受力部分发生塑性变形。
塑性变形取决于材料的塑性机制,即材料中塑性形变所依赖的机制,和材料的内部结构。
晶体缺陷会影响材料内部的塑性机制和材料的内在结构,从而影响材料的强度、韧性和延展性等力学性质。
2.1 种类与数量晶体缺陷的种类和数量是影响材料塑性变形的关键因素。
通常情况下,材料中的晶体缺陷越多越多样化,材料的塑性变形就越容易发生。
例如,在晶体中形成许多杂质原子可以增加位错的丰度,从而使材料的塑性发生改变。
金属材料缺陷的特点金属材料是工业生产中常用的一种材料,但是在生产和使用过程中,金属材料会出现各种缺陷,这些缺陷会直接影响到金属材料的性能和使用寿命。
因此,了解金属材料缺陷的特点对于保证产品质量和安全具有重要意义。
一、金属材料缺陷的分类1. 内部缺陷:内部缺陷是指金属材料内部存在的各种不良组织或结构,包括气孔、夹杂物、晶界、析出物等。
2. 表面缺陷:表面缺陷是指金属表面存在的各种不良组织或结构,包括划痕、裂纹、氧化皮等。
3. 尺寸偏差:尺寸偏差是指制造过程中由于加工误差或测量误差而导致零件尺寸与设计要求不符合的情况。
二、金属材料缺陷的特点1. 内部缺陷:(1)气孔:气孔是指金属内部存在的大小不等的空洞。
气孔通常由于熔体中残留的气体没有完全排出或者在冷却过程中气体溶解度降低而形成。
气孔会降低材料的强度和韧性,导致材料易于断裂。
(2)夹杂物:夹杂物是指金属内部存在的非金属物质,如氧化物、硫化物、碳化物等。
夹杂物会影响金属的力学性能和耐腐蚀性能。
(3)晶界:晶界是指相邻晶粒之间的界面。
晶界缺陷包括错位、堆垛缺陷等,会影响金属的强度和延展性。
(4)析出物:析出物是指在固溶体中析出的第二相组织,如硬质相、脆性相等。
析出物会影响金属的力学性能和耐腐蚀性能。
2. 表面缺陷:(1)划痕:划痕是指金属表面被尖锐或硬质物体刮擦后形成的线状或点状凹槽。
划痕会影响产品外观和表面质量。
(2)裂纹:裂纹是指金属表面或内部存在的断裂面。
裂纹会降低材料的强度和韧性,导致材料易于断裂。
(3)氧化皮:氧化皮是指金属表面被氧化后形成的一层薄膜。
氧化皮会影响产品外观和表面质量,同时也会降低金属的耐腐蚀性能。
3. 尺寸偏差:尺寸偏差包括公差、误差等。
公差是指零件尺寸与设计要求之间的允许范围,误差是指实际测量值与理论值之间的偏差。
尺寸偏差会影响产品的精度和可靠性。
三、金属材料缺陷的检测方法1. X射线探伤:X射线探伤可以检测金属内部存在的各种缺陷,如气孔、夹杂物、晶界等。