选修2-2《导数及其应用》函数的单调性与导数
- 格式:ppt
- 大小:226.00 KB
- 文档页数:14
1.3.1函数的单调性与导数[学习目标]1•结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函.3.会求函数的单调区间(其中多项式数的单调性,并能够利用单调性证明一些简单的不等式函数的最高次数一般不超过三次).尸知识梳理自主学习知识点一函数的单调性与其导数的关系在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f' (x)>0单调递增f' (x)<0单调递减—f' (x) = 0常函数思考以前,我们用定义来判断函数的单调性,在假设X i V X2的前提下,比较f(x i)与f(X2)的大小,在函数y= f(x)比较复杂的情况下,比较f(x i)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性?答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减知识点二利用导数求函数的单调区间利用导数确定函数的单调区间的步骤:(1) 确定函数f(x)的定义域.⑵求出函数的导数f' (x).(3)解不等式f' (x)>0,得函数的单调递增区间;解不等式f' (x)v0,得函数的单调递减区间.知识点三导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些也就是说导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度如图,函数y= f(x)在(a,0)和(0, b)内的图象“陡峭”,在(一® a)和(b,+^ )内的图象“平题型一利用导数确定函数的单调区间例1求下列函数的单调区间.(1)f(x) = 3X2—2ln x; (2)f(x)= x2• e e;1(3)f(x) = x+ x .解⑴函数的定义域为 D = (0 ,+^). T f' (x)= 6x—2,令f (x) = 0,得x i = ¥, X2= —申x 3 3 (舍去),用x i分割定义域D,得下表:x0,号3+ 8 3 ,+f' (x)一0+f(x)•••函数f(x)的单调递减区间为0,呼,单调递增区间为.3 3⑵函数的定义域为D = (— 8,+^). •/ f' (x)= (x2)' e—x+ x2(e—x)' = 2xe—x—x2e—x= e—x(2x —x2),令f' (x)= 0,由于e x> 0, • x i = 0, x2= 2,用x i, x2分割定义域D,得下表:x(—8, 0)0(0,2)2(2, +8)f' (x)一0+ 0一f' (x)• f(x)的单调递减区间为(—8, 0)和(2, +8),单调递增区间为(0,2).(3)函数的定义域为D = (—8 , 0)U (0, +8).1f ' (x)= 1 —~2,令f' (x)= 0,得x i=—1, X2= 1,用x i , X2 分割定义域D,得下表:xx(—8,—1)—1(—1,0)(0,1)1(1 ,+ 8 )f' (x)+0一一0+f(x)•••函数f(x)的单调递减区间为(一1,0)和(0,1),单调递增区间为(一8,—1)和(1,+8).反思与感悟首先确定函数定义域,然后解导数不等式,最后写成区间的形式,注意连接同类单调区间不能用“U”.跟踪训练1 求函数f(x)= x3—3x的单调区间.解f' (x)= 3x2—3 = 3(x2—1).当f' (x)> 0 时,x v—1 或x> 1,此时函数f(x)单调递增;当f' (x)v 0时,一1 v x v 1,此时函数f(x)单调递减.•函数f(x)的递增区间是(—8,—1), (1,+ 8 ),递减区间是(一1,1).题型二利用导数确定函数的大致图象例2 画出函数f(x) = 2x3—3x2—36x+ 16的大致图象.解f' (x) = 6x2—6x—36= 6(x2—x—6)= 6(x—3)(x+ 2).由f' (x)> 0 得x v — 2 或x> 3,•函数f(x)的递增区间是(一8,—2)和(3,+ 8).由f' (x)v 0 得一2v x v 3,•函数f(x)的递减区间是(一2,3).由已知得f( —2) = 60, f(3)=—65, f(0) = 16.•结合函数单调性及以上关键点画出函数f(x)大致图象如图所示(答案不唯一).反思与感悟利用导数可以判定函数的单调性,而函数的单调性决定了函数图象的大致走向当函数的单调区间确定以后,再通过描出一些特殊点,就可以画出一个函数的大致图象跟踪训练2已知导函数f' (x)的下列信息:当2v x v 3 时,f' (x)v 0;当x> 3 或x v 2 时,f' (x)> 0;当x= 3 或x= 2 时,f' (x)= 0;试画出函数f(X )图象的大致形状•解当2 v X V 3时,f' (x)v 0,可知函数在此区间上单调递减;当x> 3或x v 2时,f' (x)> 0,可知函数在这两个区间上单调递增;当x= 3或x= 2时,f' (x)= 0,在这两点处的两侧,函数单调性发生改变综上可画出函数f(x)图象的大致形状,如图所示(答案不唯一).例3 已知函数f(x)= 2ax—x3, x€ (0,1], a>0,若函数f(x)在(0,1]上是增函数,求实数a的取值范围•解f' (x) = 2a —3x2,又f(x)在(0,1]上是增函数等价于f' (x)>0对x€ (0,1]恒成立,且仅有有限个点使得f' (x) = 0,3••• x€ (0,1]时,2a —3x2>0,也就是a>3x2恒成立.3 3又x€ (0,1]时,/2€ 0, ,3• a的取值范围是-,+ ^反思与感悟已知函数在某个区间上的单调性,求参数的范围,是近几年高考的热点问题,解决此类问题的主要依据就是导数与函数的单调性的关系,其常用方法有三种:①利用充要条件将问题转化为恒成立问题,即f' (x)> 0(或f' (x) w 0)在给定区间上恒成立,然后转为不等式恒成立问题;②利用子区间(即子集思想),先求出函数的单调增或减区间,然后让所给区间是求出的增或减区间的子集;③利用二次方程根的分布,着重考虑端点函数值与0的关系和对称轴相对区间的位置•1跟踪训练 3 已知函数f(x)= In x, g(x)= 2ax2+ 2x, a^ 0.(1)若函数h(x) = f(x)—g(x)存在单调递减区间,求a的取值范围;⑵若函数h(x) = f(x)—g(x)在[1,4]上单调递减,求a的取值范围1解(1)h(x) = In x —?ax2—2x, x€ (0, + ),1• h' (x)= -一ax— 2.xh(x)在(0, + m)上存在单调递减区间,1•••当 x € (0,+^)时,-一ax — 2v 0 有解,x 1 2即a >X — 2有解. 1 2设 G(x) = x 2-X , 只要a >G(x)min 即可. 工1 2而 G(x) = - — 1 2— 1,x--G (x)min = 一 1 , a > — 1.(2) •/ h(x)在[1,4]上单调递减,1• x € [1,4]时,h ' (x) = 一一 ax — 2< 0 恒成立,x 1 2即a > £— 2恒成立,x 2 x- 1 …--a 》G(X )max ,而 G(x)= x 一 1 一 1 ,• ■ • a 》—16.1 1错解 y ' = 1 — i,令y ' = 1 —1 >0,得x > 1或x v 0,所以函数y = x — ln x 的单调递增区x x 1间为(1, + m ), (—g, 0).令y ' = 1 — _v 0,得0 v x v 1,所以函数y = x — In x 的单调递减 x 区间为(0,1).错因分析在解与函数有关的问题时,一定要先考虑函数的定义域,这是最容易忽略的地方. 正解 函数y = x — ln x 的定义域为(0, + g ), 又 y ' = 1 —-,X ,1令y ' = 1 — ->0,得x > 1或x v 0(舍去),所以函数y = x — ln x 的单调递增区间为(1, + g ). x 1令y ' = 1 — _v 0,得0v x v 1,所以函数y = x — ln x 的单调递减区间为(0,1). x 防范措施 在确定函数的单调区间时,首先要确定函数的定义域--G (x)max =_7 16,例4 求函数y = x — ln x 的单调区间m当堂检测宜查自纠1•函数f(x) = x + In x 在(0,6)上是()A. 单调增函数B. 单调减函数1 1C. 在0,-上是减函数,在-,6上是增函数e e1 1D. 在0, -上是增函数,在-,6上是减函数e e答案A1解析•/ x€ (0,6)时,f,(x) = 1 + -> 0,•••函数f(x)在(0,6)上单调递增.x2. f,(x)是函数y= f(x)的导函数,若y= f,(x)的图象如图所示,则函数y= f(x)的图象可能是( )答案D解析由导函数的图象可知,当x v 0时,f,(x)>0,即函数f(x)为增函数;当0v x v 2时, f,(x)< 0,即f(x)为减函数;当x> 2时,f,(x)> 0,即函数f(x)为增函数•观察选项易知D正确•3•若函数f(x)= x3—ax2- x+ 6在(0,1)内单调递减,则实数a的取值范围是()A. [1,+旳B.a= 1C.(—s, 1]D.(0,1)答案A解析T f,(x) = 3x2—2ax—1,且f(x)在(0,1)内单调递减,•不等式3x2—2ax—K 0在(0,1)内恒成立,• f,(0)w 0,且f,(1)w 0, • a> 1.4•函数y = x 2— 4x + a 的增区间为 ________ ,减区间为 ________ . 答案(2,+^ )( — 8, 2)解析 y ' = 2x — 4,令 y ' > 0,得 x > 2;令 y ' v 0,得 x v 2, 所以y = x 2— 4x + a 的增区间为(2,+ g ),减区间为(一^, 2).1 一5•已知函数 f(x) = 2ax — -, x € (0,1].若f(x)在x € (0,1]上是增函数,则 a 的取值范围为x1答案—2,+m1解析 由已知条件得f ' (x) = 2a +采.••• f(x)在 (0,1]上是增函数,1而g(x) = — 2"2在 (0,1]上是增函数,1f ' (x)=— 1 + p 对 x € (0,1]有 f ' (x)>0,且仅在 x = 1 时, —1• a =— 时,f(x)在(0,1]上是增函数 一 1• a 的取值范围是一夕+g ._课堂小结 ------------------判断函数单调性的方法如下:(1)定义法.在定义域内任取 X 1 , x 2,且X 1V X 2,通过判断f(X 1)—f(x 2)的符号来确定函数的单调 性.⑵图象法.利用函数图象的变化趋势进行直观判断.图象在某个区间呈上升趋势,则函数在这个区间内是增函数;图象在某个区间呈下降趋势,则函数在这个区间内是减函数 (3)导数法.利用导数判断可导函数 f(x)在区间(a , b)内的单调性,步骤是:①求f ' (x);②确定f ' (x)在(a , b)内的符号;③确定单调性.(x)> 0, 12护在x € (0,1]上恒成立g(X )max = g(1)=— 12.f ' (x) = 0.求函数y = f(x)的单调增区间、减区间分别是解不等式f' (x) > 0和f' (x) v 0所得的x的取值集合.反过来,如果已知f(x)在区间D上单调递增,求f(x)中参数的值,这类问题往往转化为不等式的恒成立问题,即f' (x)>0在D上恒成立且仅在有限个点上等号成立,求f(x)中参数的值.同样可以解决已知f(x)在区间D上单调递减,求f(x)中参数的值的问题.课时精练一、选择题1•函数y=(3 —x1 2)e x的单调递增区间是()A. ( —g, 0)B.(0 ,+s )C.( — g,—3)和(1 ,+g )D.( —3,1)答案D解析求导函数得y' = (—x2—2x+ 3)e x.令y' = (—x2—2x+ 3)e x>0,可得x2+ 2x—3v 0,—3v x v 1.•••函数y = (3 —x2)e x的单调递增区间是(—3,1).2.已知函数f(x) = —x3+ ax2—x—1在(一g, +g )上单调递减,则实数a的取值范围是()A. ( —g,—.3] U [ 3,+g )B. [ —.3, .3]C. ( — g,—.3) U ( 3,+g )D. ( —. 3, .3)答案B解析由题意得f' (x) = —3x2+ 2ax—1< 0在(—g , + g)上恒成立,且仅在有限个点上f' (x)=0,则有△= 4a2—12W 0,解得—.3W a w 3.3. 下列函数中,在(0,+g )内为增函数的是()A.y= sin xB.y= xe2C. y= x3—xD.y= In x—x答案B解析显然y= sin x在(0, + g)上既有增又有减,故排除A;对于函数y= xe2,因e2为大于零的常数,1对于 D , y' = —— 1 (x> 0).x故函数在(1, + g)上为减函数,在(0,1)上为增函数.故选B.不用求导就知y= xe2在(0 ,+g)内为增函数;对于C, y' = 3x2— 1 = 3 x+于x —_33,故函数在—g,——3, -3, + g上为增函数,3 3在—专,专上为减函数;3 34•设f(x), g(x)在[a, b]上可导,且f' (x)>g ' (x),则当a v x v b 时,有()A. f(x)> g(x)B. f(x)v g(x)C. f(x) + g(a)> g(x) + f(a)D. f(x) + g(b)> g(x) + f(b)答案C解析■/ f' (x) - g' (x) > 0,•••(f(x)—g(x))' >0,••• f(x)- g(x)在[a, b]上是增函数,•••当a v x v b 时f(x)- g(x)> f(a)- g(a),• f(x) + g(a)> g(x) + f(a).5. 函数y= ln_|x|的图象大致是()x答案C解析T y= f(—x)= ln~! =—f(x),—x•- y= f(x) = ln |x l为奇函数,x• y= f(x)的图象关于原点成中心对称,可排除 B.又•••当x> 0 时,f(x)=乎,f' (x)= 1-x2l x,•当x> e 时,f' (x)v 0,•函数f(x)在(e,+s)上单调递减;当O v x v e 时,f' (x)>0,•函数f(x)在(0, e)上单调递增.故可排除A , D,而C满足题意.6. 定义在R上的函数f(x)满足:f' (x)> 1 —f(x) ,f(O)= 6 ,f' (x)是f(x)的导函数,则不等式e x f(x) >e x+ 5(其中e为自然对数的底数)的解集为()A.(O,+s )B.( 0) U (3 ,+s )C.( — f, 0)U (1 ,+s )D.(3 ,+s )答案A解析由题意可知不等式为e x f(x) —e x—5> 0,设g(x) = e x f(x)—e x—5,••• g' (x)= ef(x)+ e x f' (x) —e x=e x[f(x) + f'x)—1] > 0.•函数g(x)在定义域上单调递增.又••• g(0) = 0, • g(x)> 0 的解集为(0,+^).二、填空题7•若函数f(x)= 2x2—In x在定义域内的一个子区间(k —1, k+ 1)上不是单调函数,贝U实数k的取值范围是__________________ .3答案1, 31 4x2—1解析显然函数f(x)的定义域为(0, + f), f' (x) = 4x — - = --- •由f' (x)> 0,得函数f(x)x x1 1的单调递增区间为2,+ m;由f'(x)< 0,得函数f(x)单调递减区间为0, 2 •因为函数在1 1 3区间(k—1, k+ 1)上不是单调函数,所以k—1v 2< k + 1,解得一2< k v3,又因为(k—1, k3+1)为定义域内的一个子区间,所以k— 1 >0,即k> 1•综上可知,K k<3.38•函数y= f(x)在其定义域—2, 3内可导,其图象如图所示,记y= f(x)的导函数为y= f' (x),则不等式f' (x)< 0的解集为__________ •1答案—3, 1 U [2,3)9.函数y= In(x2—x—2)的递减区间为________ •答案(— R, —1)2x—1 1解析f' (x)= -,令f' (x)< 0得x<—1或1<x< 2,注意到函数定义域为(―8,—x2—x— 2 2 4 4 U (2, + f),故递减区间为(一8,—1)・1 110•若函数f(x)= x 2+ ax + -在2,+m上是增函数,则a 的取值范围是 _________X 2 答案 [3 ,+^ )1 1解析 因为f(x)= x 2 + ax + -在2,+ m上是增函数,'X. 厶1 1故f ' (x)= 2x + a —采》0在2,+g 上恒成立, 1 1即a >尹—2x 在-,+ 上恒成立•2则 h ' (x)=— --3 — 2,入1当x € 2,+ g 时,h ' (x) v 0,贝U h(x)为减函数, 1所以 h(x) v h 2 = 3,所以 a >3. 三、解答题11. 已知函数f(x) = ax 3+ bx 2的图象经过点 M(1,4),曲线在点M 处的切线恰好与直线 垂直.(1) 求实数a , b 的值;⑵若函数f(x)在区间[m , m + 1]上单调递增,求 m 的取值范围.解 (1) •••函数 f(x)= ax 3 + bx 2 的图象经过点 M(1,4),二 a + b = 4.① f ' (x)= 3ax 2+ 2bx ,则 f ' (1) = 3a + 2b.1由条件 f ' (1) •— 9 =— 1,即 3a + 2b = 9.② 由①②解得a = 1, b = 3.(2) f(x) = x 3 + 3x 2,则 f ' (x)= 3x 2 + 6x. 令 f ' (x)= 3x 2 + 6x >0,得 x >0 或 x < — 2. •••函数f(x)在区间[m , m + 1]上单调递增, •••[m , m + 1]?(—g,— 2] U [0,+ g) /• m >0或 m + K — 2, • m >0 或 m W — 3.12. 已知函数f(x)= a x + x 2— xln a — b(a , b € R , a > 1), e 是自然对数的底数. (1)试判断函数f(x)在区间(0,+g )上的单调性;⑵当a = e , b = 4时,求整数k 的值,使得函数f(x)在区间(k , k + 1)上存在零点 解 (1)f ' (x) = a x ln a + 2x — In a = 2x + (a x — 1)ln a.•/a > 1, •••当 x € (0, + g )时,ln a >0 , a x — 1>0 ,1令 h(x)=护—2x ,x + 9y = 0• f' (x)> 0,•函数f(x)在(0 , +g)上单调递增.⑵•/ f(x) = e x+ x2- X—4, ••• f (x) = e x+ 2x—1,••• f' (0) = 0.当x> 0 时,e x> 1, • f' (x) >0,• f(x)是(0, + g)上的增函数.同理,f(x)是(-g, 0)上的减函数•又f(0) =—3v 0, f(1) = e—4v 0, f(2) = e2—2>0, 当x>2 时,f(x)>0,•••当x> 0时,函数f(x)的零点在(1,2)内,•- k= 1满足条件.1 1f(0) = —3V0, f(—1)=——2V 0, f( —2) = -2+ 2>0, e e当x v—2 时,f(x)>0,•••当x v 0时,函数f(x)零点在(一2,—1)内,•- k=—2满足条件.综上所述,k= 1或—2.13. 求下列函数的单调区间.(1) y= In (2x+ 3) + x2;x一1(2) f(x) = aln x+ (a 为常数).x+ 13解(1)函数y= In (2x+ 3) + x2定义域为一§, + g •/y= In (2x+ 3) + x2, , 2 4x2+ 6x+ 2 2 2x+ 1 x+ 1…y = + 2x= =y 2x+ 3 2x+ 3 2x+ 3当y' > 0,即一3v x v —1 或x>—丄时,2 2函数y= In(2x+ 3) + x2单调递增.1当y' v 0,即一1 v x v —时,函数y= In(2x+ 3) + x2单调递减.3 1故函数y = In(2x + 3) + x 2的单调递增区间为 一2, — 1 , — ?, 当a >0时,f ' (x)> 0,函数f(x)在(0,+s )上单调递增当 a v 0 时,令 g(x)= ax 2 + (2a + 2)x + a , 由于 △= (2a + 2尸一4a 2= 4(2a + 1),1①当 a =-㊁时,A= 0, g(x )w 0,1② 当 a v -号时,Av 0, g(x)v 0, f ' (x)v 0,函数f(x )在(0 ,+a )上单调递减 1③当一2< a v 0 时,A> 0.设x 1, X 2(X 1< X 2)是函数g(x)的两个零点, Qa 2+ 2a + — 2a + 1 >。
导数在研究函数中的应用—单调性一、教材分析本节课,是苏教版选修2-2第一章第3节课。
它承接导数的定义和运算,开启了导数在函数中应用的研究,是导数应用的基础知识,地位重要.二、学情分析学生前面已经学习了导数的定义和简单函数四则运算的导数公式,尤其是已经有了“割线逼近切线”这种数学思想,这为本节课提供了充分的思想方法准备.并且,在本节课开头设置的三个问题中,有的问题可以用单调性定义解决,有些通过观察可以直接判断,而有些则并不能一眼看出单调性,这就触动学生要寻找新的解题方法,探索新的思路。
通过数学问题的导引,带领学生走进课堂.在实际教学中,考虑到学生比较容易局限于观察图象,得出结论,缺乏严谨的推理。
事实上,图象只能提供直观感受,并不能作为说理依据。
教师就要引导学生共同思考:怎样从已有的单调性的定义中,找出合理、可行、有效的方法。
师生共同观察、思考、猜想、证明,最终得出结论,比较圆满地完成一个数学知识的学习过程,体验数学发现的乐趣,拓宽师生的数学视野.三、教学目标1 .探索并了解函数的单调性和函数导数的关系;2.比较初等方法与导数方法在研究函数性质过程中的异同,体现导数方法在研究函数性质中的一般性和有效性.四、教学重点、难点我认为本节课的重点是从单调性的定义出发,逐步建立单调性与导数之间的关系。
其间,既有代数变形,又有图形直观;既有大胆的猜想,又有严密推理。
教师和学生在这些思想方法之间灵活穿梭、切换,既有激烈地思想交锋,又有严密地逻辑推理,让看似平静的课堂充满了智慧的碰撞。
五、教学方法与教学手段教师从课本章头图引入课题,自然地把导数和单调性结合起来。
教师通过设置问题串,从“会”到“不会”,激发学生学习兴趣,展开探究。
教师利用多媒体PPT和几何画板,动态演示,确定研究方向,最终得出结论。
六、教学过程教师为了能够真正体现“要提高学生独立获取数学知识,并用数学语言表达问题的能力”这个新课程理念,设计了10个环节。
《导数在研究函数中的应用—函数的单调性与导数》说课稿一、教材分析1教材的地位和作用“函数的单调性和导数”这节新知在教材是选修2—1,本节计划两个课时完成。
作为高三总复习课首先明确考纲的要求了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次)。
在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。
其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。
激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。
2教学内容本节课的主要教学内容是导数在研究函数中的应用(1)—函数的单调性与导数。
在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。
例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。
培养学生数形结合思想、转化思想、分类讨论的数学思想。
3教学目标(一)知识与技能目标:1、能探索并应用函数的单调性与导数的关系求单调区间;2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。
(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。
2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。
(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。
4教学重点,难点教学重点:利用导数研究函数的单调性、求函数的单调区间。
探求含参数函数的单调性的问题。
二、教法分析1“ 以”, 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。