5
讲一讲 1.从含有两件正品a1,a2和一件次品b1的三件产品中,每 次任取一件,每次取出后不放回,连续取两次,求取出的两件 产品中恰有一件次品的概率.
6
[尝试解答] 每次取出一个,取后不放回地连续取两次,其一切 可能的结果组成的基本事件有 6 个,即(a1,a2),(a1,b1),(a2,a1), (a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第 1 次 取出的产品,右边的字母表示第 2 次取出的产品.总的事件个数为 6, 而且可以认为这些基本事件是等可能的.
用 A 表示“取出的两件中恰有一件次品”这一事件,所以 A= {(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.
因为事件 A 由 4 个基本事件组成,所以 P(A)=46=23.
7
“有放回”与“不放回”问题的区别在于:对于某一试 验,若采用“有放回”抽样,则同一个个体可能被重复抽取, 而采用“不放回”抽样,则同一个个体不可能被重复抽取.
16
[尝试解答] 把两白球编上序号 1、2,把两黑球也编上序 号 1、2,于是甲、乙、丙、丁四个人按顺序依次从袋内摸出一 个球的所有可能结果,可用树状图直观地表示出来如下:
17
从上面的树状图可以看出,试验的所有可能结果数为 24,乙摸 到白球,且丙摸到黑球的结果有 8 种,则 P=284=13.
13
解:两个玩具正面朝上的情况如下表: 123456
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)