高考数学一轮总复习 第二章 函数 第9讲 指数与指数函数、幂函数课件 文 新人教A版
- 格式:ppt
- 大小:7.77 MB
- 文档页数:57
2019-2020年高考数学一轮复习专题2.9幂函数指数函数与对数函数讲【考纲解读】【直击考点】题组一 常识题1.[教材改编] 如果3x=4,则x =________.【解析】 由指数式与对数式的互化规则,得x =log 34. 2.[教材改编] 2log 510+log 50.25=________.【解析】 2log 510+log 50.25=log 5(102×0.25)=log 525=2. 3.[教材改编] 函数y =log 2(x 2-1)的单调递增区间是________.【解析】 由x 2-1>0得x <-1或x >1.又函数y =log 2x 在定义域内是增函数,所以原函数的单调递增区间是(1,+∞). 题组二 常错题4.函数y =log 12(2x 2-3x +1)的单调递减区间为________.【解析】 由2x 2-3x +1>0,得x >1或x <12,易知u =2x 2-3x +1⎝ ⎛⎭⎪⎫x >1或x <12在(1,+∞)上是增函数,所以原函数的单调递减区间为(1,+∞).5.设a =14,b =log 985,c =log 83,则a ,b ,c 的大小关系是________.【解析】 a =14=log 949=log 93<log 83=c ,a =log 93>log 985=b ,所以c >a >b .题组三 常考题6. lg 52+2lg 2+⎝ ⎛⎭⎪⎫15-1=________. 【解析】 原式=lg 5-lg 2+2lg 2+5=lg 5+lg 2+5=1+5=6.7.设a =log 32,b =log 52,c =log 45,则a ,b ,c 的大小关系是________________.8. 设函数f (x )=ln(1+|x |)-1x 2+2,若f (x )>f (2x -1),则x 的取值范围为________. 【解析】 由f (x )=ln(1+|x |)-12+x2可知f(x )是偶函数,且在[0,+∞)上是增函数,所以f (x )>f (2x -1),即f (|x |)>f (|2x -1|),即|x |>|2x -1|,解得13<x <1.【知识清单】1 幂函数的概念、图象与性质 常用幂函数的图象与性质2指数函数的概念、图象与性质【考点深度剖析】1.与指数函数有关的试题,大都以其性质及图像为依托,结合推理、运算来解决,往往指数函数与其他函数进行复合,另外底数多含参数、考查分类讨论.2.关于对数的运算近两年高考卷没有单独命题考查,都是结合其他知识点进行.有关指数函数、对数函数的试题每年必考,有填空题,又有解答题,且综合能力较高.3.从近几年的新课标高考试题来看,幂函数的内容要求较低,只要求掌握简单幂函数的图像与性质.【重点难点突破】考点1 幂函数的概念、图象与性质【1-1】已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x)是幂函数,且在(0,+∞)上是增函数?【答案】【1-2】若幂函数y=(m2-3m+3)的图象不经过原点,则实数m的值为________.【答案】 1或2【解析】 由⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0,解得m =1或2.经检验m =1或2都适合.【1-3】设424999244(),(),()999a b c ===,则a ,b ,c 的大小关系是________.【答案】【解析】∵函数是增函数,∴,又∵函数是减函数,∴,∴. 【思想方法】1.判断一个函数是否为幂函数,只需判断该函数的解析式是否满足:(1)指数为常数;(2)底数为自变量;(3)幂系数为1.2..幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸. 【温馨提醒】在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键. 考点2 指数函数的概念、图象与性质【2-1】若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________. 【答案】 3【2-2】设f (x )=|3x-1|,c <b <a 且f (c )>f (a )>f (b ),由在关系式①3c>3b ;②3b >3a ;③3c+3a >2;④3c +3a<2中一定成立的是 . 【答案】④【解析】作f (x )=|3x-1|的图象如图所示,由图可知,要使c <b <a 且f (c )>f (a )>f (b )成立,需有c <0且a >0,所以3c<1<3a,所以f (c )=1-3c,f (a )=3a-1.又f (c )>f (a ),所以1-3c>3a-1,即3a+3c <2,故填④.【思想方法】指数函数的底数中若含有参数,一般需分类讨论.指数函数与其他函数构成的复合函数问题,讨论复合函数的单调性是解决这类问题的重要途径之一.求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.【温馨提醒】一些指数方程、不等式问题的求解,往往结合相应的指数型函数图象利用数形结合求解.考点3 对数函数的概念、图象与性质【3-1】已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)在定义域上单调性是.【答案】增函数【解析】由于,即时,所以,因而在上是增函数.【3-2】已知f(x)=log a(a x-1)(a>0且a≠1).(1)求f(x)的定义域;(2)判断函数f(x)的单调性.【答案】(1)时,定义域为,时,定义域为;(2)时,增函数,时,减函数.【解析】(1)由a x-1>0得a x>1,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,设0<x1<x2,则1<ax1<ax2,故0<ax1-1<ax2-1,∴log a(ax1-1)<log a(ax2-1).∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上是增函数.类似地,当0<a<1时,f(x)在(-∞,0)上为增函数.【3-3】已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.【答案】(1)单调递增区间是(-1,1),递减区间是(1,3);(2)存在,.【基础知识】【思想方法】利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决. 【温馨提醒】解决对数型函数、对数型不等式问题,一定要注意定义域优先原则.【易错试题常警惕】由幂函数的函数值大小求参数的范围问题,一般是借助幂函数的单调性进行求解,一定要具体问题具体分析,做到考虑问题全面周到. 如:若,则的取值范围是 .【分析】由的图象关于轴对称知,函数在上是减函数,在上是增函数.因为,所以32010321a a a a ->⎧⎪+>⎨⎪->+⎩或32010321a a a a -<⎧⎪+<⎨⎪-<+⎩或 ()32010321a a a a ⎧->⎪+<⎨⎪->-+⎩或()32010321a a a a ⎧-<⎪+>⎨⎪-->+⎩,解得或或或,所以的取值范围是()()2,11,4,3⎛⎫-∞--+∞ ⎪⎝⎭.【易错点】本题容易只考虑到,在同一单调区间的情况,不全面而致误. 【练一练】已知幂函数f (x )=x(m 2+m )-1(m ∈N +),经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围。
第二章函数与导数第9课时指数函数、对数函数及幂函数(3) (对应学生用书(文)、(理)24~25页)考情分析考点新知①对数函数在高考中的考查主要是图象和性质,同时考查数学思想方法,以考查分类讨论及运算能力为主;考查形式主要是填空题,同时也有综合性较强的解答题出现,目的是结合其他章节的知识,综合进行考查.②幂函数的考查较为基础,以常见的5种幂函数为载体,考查求值、单调性、奇偶性、最值等问题是高考命题的出发点.①理解对数函数的概念;理解对数函数的单调性;掌握对数函数图象通过的特殊点.②知道对数函数是一类重要的函数模型.③了解指数函数y=a x与对数函数y=log a x的相互关系(a〉0,a≠1).④了解幂函数的概念,结合函数y=x,y=x2,y=x3,y=x-1,y=x-2的图象,了解它们的变化情况.1。
(必修1P112测试8改编)已知函数f(x)=log a x(a〉0,a≠1),若f(2)>f(3),则实数a的取值范围是________.答案:(0,1)解析:因为f(2)>f(3),所以f(x)=log a x单调递减,则a∈(0,1).2. (必修1P89练习3改编)若幂函数y=f(x)的图象经过点错误!,则f(25)=________.答案:错误!解析:设f(x)=xα,则错误!=9α,∴α=-错误!,即f(x)=x-错误!,f(25)=错误!。
3. (必修1P111习题15改编)函数f(x)=ln错误!是________(填“奇”或“偶”)函数.答案:奇解析:因为f(-x)=ln错误!=ln错误!错误!=-ln错误!=-f(x),所以f(x)是奇函数.4。
(必修1P87习题13改编)不等式lg(x-1)〈1的解集为________.答案:(1,11)解析:由0〈x-1〈10,∴1〈x〈11。
5。
(必修1P87习题14改编)对于任意的x1、x2∈(0,+∞),若函数f(x)=lgx,则错误!与f错误!的大小关系是______________________.答案:错误!≤f错误!解析:(解法1)作差运算;(解法2)寻找错误!与f错误!的几何意义,通过函数f(x)=lgx图象可得.1. 对数函数的定义一般地,我们把函数y =log a x(a〉0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2。