和差问题应用题及答案
- 格式:doc
- 大小:27.50 KB
- 文档页数:5
专题2-和差问题小升初数学思维拓展典型应用题专项训练(知识梳理+典题精讲+专项训练)1、和差问题。
已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
2、计算公式。
(和+差)÷2=大数(和-差)÷2=小数.【典例一】甲、乙两数的平均数是18.4,甲比乙多4,则甲是()A、20.4B、22.4C、16.4【分析】根据题意,甲、乙两数的平均数是18.4,那么它们的和是18.4×2=36.8,又甲比乙多4,也就是它们的差是4,然后再根据和差公式进一步解答.【解答】解:18.4×2=36.8;(36.8+4)÷2=20.4.答:甲是20.4.故选:A.【点评】根据题意,求出两个数的和与差,由和差公式进一步解答.【典例二】王宁和妈妈一起糊纸灯笼,共糊了80个。
如果妈妈给王宁12个纸灯笼后,两人糊灯笼的数量同样多。
妈妈和王宁各糊纸灯笼多少个?【分析】根据“妈妈给王宁12个纸灯笼后,两人糊灯笼的数量同样多”,可以推算出妈妈糊的灯笼比王宁多2个12,再根据和差问题的解题公式:(和-差)2÷=小数,求出王宁糊纸灯笼多少个,最后用两人糊的灯笼的总数减去王宁糊纸灯笼的个数,可以计算出妈妈糊纸灯笼的个数。
【解答】解:(80122)2-⨯÷=-÷(8024)2=÷562=(个)28-=(个)802852答:王宁糊纸灯笼28个,妈妈糊纸灯笼52个。
【点评】本题解题关键是找出题目中两种量的和与差各是多少,再根据和差问题的解题公式:(和-差)2÷=小数,列式计算。
【典例三】张星和王宁一共有邮票128张。
王宁给张星28张后,两人邮票张数同样多。
两人原来各有多少张邮票?(先画图表示题中的数量关系,再解答)【分析】根据题意画图即可,已知两人一共有邮票128张,王宁给张星28张后,两人邮票张数同样多,则现在每人有邮票128264+=(张),张÷=(张),则王宁原有邮票642892星原有邮票642836-=(张)【解答】解:128264÷=(张)王宁:642892+=(张)张星:642836-=(张)答:王宁原有邮票92张,张星原有邮票36张。
经典奥数:和差问题一.选择题(共3小题)1.小雪和小红一共有120张北京冬奥会吉祥物卡片,小红比小雪多12张,小红有()张北京冬奥会吉祥物卡片。
A.72B.66C.64D.622.姐姐有15颗糖,妹妹有9颗,姐姐给妹妹()颗两人就同样多。
A.2B.3C.63.长江比黄河长约836千米,长江和黄河共长约11764千米,那么长江的长度约是()千米。
A.5464B.6300C.7136二.填空题(共9小题)4.小明手上原有60元,给了小强8元,现在两个人手上的钱数相同,小强原来有元。
5.在一次社会实践活动中,小宁和小龙一共带了48元。
小宁用去6元,小龙用去4元后,两人剩下的钱一样多。
小宁原来带了元,小龙原来带了元。
6.两数之和为81,两数之差为29,这两个数中大数为,小数为.7.四(1)班和四(2)班共有80人,四(2)班比四(1)班多2人,四(1)班有人.8.甲、乙两数共98,甲比乙少12,甲数是,乙数是.9.合唱队一共有120人,其中男生比女生多18人,男生有人,女生人.10.果园里桃树和梨树一共有305棵,梨树比桃树少45棵,果园里桃树有棵,梨树有棵.11.《红楼梦》分上、中、下三册,全书共108元.上册比中册贵11元,下册比中册便宜5元.上册是元,下册是元.12.两个连续自然数的和去乘它们的差,积是111,这两个自然数是和.三.应用题(共9小题)13.甲、乙两辆车上共有彩电150台,如果从甲车上取出8台放到乙车上,两辆车上彩电的台数就相同了。
原来甲、乙两辆车上各有多少台彩电?14.小强和小明的体重和是79千克,小强比小明重19千克,小明和小强各重多少千克?15.红红上街花96元买了一件上衣和一条裤子,已知上衣比裤子贵14元。
请问红红买上衣和裤子各花多少钱?16.多味餐厅运进大米和面粉共900千克,面粉比大米多100千克,大米和面粉各运来多少千克?17.三、四、五年级同学共植树108棵.三年级比四年级少植18棵,五年级比三年级多植30棵,三个年级同学各植树多少棵?18.妈妈买了1大瓶果汁和2小瓶果汁,一共是2500毫升.已知一小瓶果汁比一大瓶果汁少1000毫升.一大瓶果汁和一小瓶果汁各是多少毫升?19.妈妈买一套休闲服共花了286元,上衣比裤子贵30元.上衣和裤子各是多少元?20.实验小学三、四、五年级共540人参加植树活动,四年级比五年级少去30人,三年级比五年级少去60人,三、四、五年级各去多少人?(先画出线段图,再解答)21.某学校四年级共有4个班级,其中一班比二班多4人,四班比三班少8人,一班和四班共有87人.四年级4个班共有多少人?经典奥数:和差问题参考答案与试题解析一.选择题(共3小题)1.【解答】解:(120+12)÷2=132÷2=66(张)答:小红有66张北京冬奥会吉祥物卡片。
例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千
克呢?
分析这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克)。
解法1:①第二筐重多少千克?
(150-8)÷2=71(千克)
②第一筐重多少千克?
71+8=79(千克)
或150-71=79(千克)
解法2:①第一筐重多少千克?
(150+8)÷2=79(千克)
②第二筐重多少千克?
79-8=71(千克)
或150-79=71(千克)
答:第一筐重79千克,第二筐重71千克。
练习:三年级图书比四年级图书多50本,并且三年级图书数是四年级的3倍,三年级和四年级各有图书多少本?
例2 今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
分析题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁)。
不论过多少年,两人的年龄差是保持不变的。
所以,当两人年龄和为58岁时他们年龄差仍是28岁。
根据和差问题的解题思路就
能解此题。
解:①爸爸的年龄:
[58+(35-7)]÷2
=[58+28]÷2
=86÷2
=43(岁)
②小强的年龄:
58-43=15(岁)
答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
练习:果园里栽的梨树比苹果树多240棵,梨树的棵数比苹果树的5倍多20棵。
果园里有苹果树和梨树各多少棵?。
和差问题知识结构(1)和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
(2)为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
(3)知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:(两数的和-两数的差)÷2=较小的数较小的数+两数的差=较大的数(两数的和+两数的差)÷2=较大的数较大的数-两数的差=较小的数例题精讲【例 1】在月球表面,白天阳光垂直照射的地方的温度高达127℃,夜晚的温度下降到零下183℃,则月球表面昼夜温差(最高与最低温度的差)是℃。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2004年,第2届,希望杯,4年级,1试【解析】127+183=310【答案】310【巩固】最新的科学探测表明:火星表面的最高温度约为5℃,最低温度约为零下15℃,则火星表面的温差(最高与最低温度的差)约为℃。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2004年,希望杯,第二届,四年级,二试,第2题【解析】5+15=20【答案】20【例 2】小明的家离学校2公里,小光的家离学校3公里,小明和小光的家相距______ 公里。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2003年,第1届,希望杯,4年级,1试【解析】3-2=1千米或3+2=5千米【答案】5公里【巩固】小明的家在学校东400米处,小红的家在小明家的西200米处,那么小红的家距离学校_____米。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2005年,第3届,希望杯,4年级,1试【解析】400-200=200米【答案】200米【例 3】两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?【考点】基本的和差问题【难度】1星【题型】解答【解析】本题也是和差问题的基本题型,借助线段图来分析如下:方法一:把第二筐多的10千克减掉,看成两个第一筐的重量来计算.列式:第一筐:15010270+=(千克).-÷=(千克),第二筐:701080()方法二:把第一筐少的10千克补上,看成两个第二筐的重量来计算.列式:第二筐:15010280-=(千克)()+÷=(千克),第一筐:801070【答案】第一筐70千克,第二筐80千克【巩固】果园共260棵桃树和梨树,其中桃树的棵数比梨树多20棵.桃树和梨树各有多少棵?【考点】基本的和差问题【难度】1星【题型】解答【解析】方法一:桃树:260202140+÷=(棵)梨树:14020120-=(棵)()方法二:梨树:260202120-÷=(棵)桃树:12020140+=(棵)()答:桃树有140棵,梨树有120棵.【答案】桃树有140棵,梨树有120棵【例 4】有一根钢管长12米,要锯成两段,使第一段比第二段短2米.每段各长多少米?【考点】基本的和差问题【难度】1星【题型】解答【解析】第一段:12225-=(米)()-÷=(米) 第二段:1257答:第一段长5米,第二段长7米.【答案】第一段长5米,第二段长7米【巩固】二年级一班和二班共有85人,一班比二班多3人.问一班、二班各有多少人?【考点】基本的和差问题【难度】1星【题型】解答【解析】本题是和差问题的基本题型,已知两个数的和与两个数的差,然后求大小两个数各是多少.和差问题一般可以借助线段图来进行分析.方法一:一班人数:853244+÷=(人) ,二班人数:44341-=(人)()方法二:二班人数:853241+=(人)()-÷=(人) ,一班人数:41344【答案】一班人数44人,二班人数41人【例 5】小勇家养的白兔和黑兔一共有22只,如果再买4只白兔,白兔和黑兔的只数一样多.小勇家养的白兔和黑兔各多少只?【考点】基本的和差问题【难度】1星【题型】解答【解析】解决这道题的关键就是理解“如果再买4只白兔,白兔和黑兔的只数一样多”,这句话的意思也就是白兔的只数比黑兔的只数少4只,或黑兔的只数比白兔多4只.只要理解了这个已知条件,我们就可以把这个题转换成典型和差问题来解决了.方法一:把黑兔多的4只减掉,看成两个白兔的数量来计算.列式:白兔:22429+=(只)-=(只) 或9413()-÷=(只),黑兔:22913方法二:把白兔少的4只加上,看成两个黑兔的数量来计算.列式:黑兔:224213-=(只)-=(只) 或1349()+÷=(只) ,白兔:22139【答案】黑兔13只,白兔9只【巩固】两个连续奇数的和是36,这两个数分别是多少?【考点】基本的和差问题【难度】1星【题型】解答【解析】两个连续奇数的差是2,利用和差公式解答如下.较小数:36-2217-=()÷=较大数:361719【答案】较小数17,较大数19【例 6】一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
和差问题知识点:已知两个数的和与差,求这两个数各是多少的应用题叫做和差问题。
解答和差问题可以用线段图帮助我们解析题意。
例1、参加体验夏令营的学生共有 96 人,其中男生比女生多 8 人,男、女生各有多少人?试一试:1、学校排球、篮球共62 个,排球比篮球多12 个,排球、篮球各有多少个?2、甲、乙两车间共有工人260 人,甲车间比乙车间少30 人,甲、乙两车间各有工人多少人?3、某校五、六年级共有324 人,六年级的人数比五年级多46 人,这个学校五、六年级各有多少人?4、小宁与小芳今年的年龄和是28 岁,小宁比小芳小 2 岁,小芳今年多少岁?5、小敏和他爸爸的平均年龄是 29 岁,爸爸比他大 26 岁。
小敏和他爸爸的年龄各是多少岁?6、小兰期末考试时语文和数学的平均分是96 分,数学比语文多4分。
小兰语文、数学各得多少分?例2、甲、乙两个书架共有书 480 本,若是从甲书架中取出 40 本放入乙书架,这时两个书架上书的本数正好相等。
甲、乙两个书架原来各有多少本?试一试:1、两个桶里共盛水30 千克,若是把第一桶里的水倒 6 千克到第二个桶里,两个桶里的水就同样多。
原来每桶各有水多少千克?2、甲、乙两个库房共存大米58 吨,若是从甲仓调 3 吨大米到乙仓,两个库房所存的大米正好相等。
甲、乙两个库房各存大米多少吨?3、一个书架上、下两层共有图书128 本.若是从上层拿8 本放基层,两层的图书就同样多.上、下两层原来各有图书多少本?4、有两桶水,若是从第一桶倒出20 升给第二桶,那么两桶水同样多,若是两桶水一共220 毫升,这两桶水原来各有多少升?5、甲、乙两个库房共存大米58 吨,若是从甲库房调 3 吨大米到乙仓库,两个库房所存的大米的吨数正好相等,求甲、乙两库房各存大米多少吨 ?例 3、甲、乙两人共有 150 元钱,若是甲增加 13 元,而乙减少 27 元,那么两人的钱数就相等。
甲、乙两人和有多少元?试一试:1、第一车间和第二车间共有工人735 人,若是第一车间调出27 人,第二车间调入 36 人,那么两个车间的人数就相等。
和差问题知识结构(1)和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
(2)为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
(3)知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:(两数的和-两数的差)÷2=较小的数较小的数+两数的差=较大的数(两数的和+两数的差)÷2=较大的数较大的数-两数的差=较小的数例题精讲【例 1】学学和思思共有87颗糖果,学学给了思思5颗后,思思比学学还多3颗,原来学学有颗糖果,思思有颗糖果.【考点】复杂的和差问题【难度】3星【题型】填空【关键词】2010年,学而思杯,2年级,第7题【解析】学学给了思思5颗后,思思比学学还多3颗,这说明学学比思思多5237⨯-=颗糖果,利用和差问题,思思有877240+=颗糖果.()-÷=颗糖果,学学有40747<考点> 和差问题及移多补少问题【答案】学学47颗,思思40颗【巩固】有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:原来大、小两个油桶各装油多少千克?【考点】复杂的和差问题【难度】3星【题型】解答【解析】两个油桶都倒出同样多的油后分别还剩9千克和5千克,那么也就是说大桶比小桶多4千克的油,知道这两桶油的和,又找到了这两桶油的差,这道题就变成了典型的和差问题的应用题了.方法一:大桶:244214+÷=(千克)小桶:14410-=(千克)()方法二:小桶:244210+=(千克)()-÷=(千克)大桶:10414【答案】大桶14千克,小桶10千克【例 2】甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只?【考点】复杂的和差问题【难度】3星【题型】解答【解析】这样想:已知甲、乙两个笼子里小鸡的和是20只,根据甲笼里放入4只,乙笼里取出1只,还剩1只可知,甲、乙两个笼里小鸡只数相差:4+1+1=6(只)解: 1.乙笼比甲笼多多少只?4+1+1=6(只)2.甲笼原来有小鸡多少只? (20-6)÷2=14÷2=7(只)3.乙笼里原来有小鸡多少只? 20-7=13(只)或(20+6)÷2=13(只)答:甲笼里原有小鸡7只;乙笼里原有小鸡13只。
小学数学典型应用题《和差问题》专项练习小学数学典型应用题专项练:和差问题和差问题是指已知两个数量的和与差,求这两个数量各是多少的应用题。
解题的关键是选择适当的数作为标准,设法把若干个不相等的数变为相等的数。
下面是一些经典例题的讲解。
1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:甲班人数=(98+6)÷2=52人,乙班人数=(98-6)÷2=46人。
答案:甲班有52人,乙班有46人。
2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解:长=(18+2)÷2=10厘米,宽=(18-2)÷2=8厘米,长方形的面积=10×8=80平方厘米。
答案:长方形的面积为80平方厘米。
3、有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解:甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多2千克,且甲是大数,丙是小数。
由此可知甲袋化肥重量=(22+2)÷2=12千克,丙袋化肥重量=(22-2)÷2=10千克,乙袋化肥重量=32-12=20千克。
答案:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
4、甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解:“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64筐,乙车筐数=97-64=33筐。
答案:甲车原来装苹果64筐,乙车原来装苹果33筐。
1、甲、乙两人年龄的和是35岁,甲比乙小5岁。
求甲、乙两人各多少岁?甲比乙小5岁,设甲的年龄为x,则乙的年龄为x+5.根据题意得到方程x+x+5=35,解得甲的年龄为15岁,乙的年龄为20岁。
小学和差问题试题及答案一、选择题1. 下面哪个数不是偶数?A) 2 B) 4 C) 5 D) 6答案:C) 52. 如果把5加上一个未知数x,得到的结果是9,那么x是多少?A) 2 B) 3 C) 4 D) 5答案:B) 33. 下面哪个数是一个完全平方数?A) 9 B) 12 C) 16 D) 18答案:C) 164. 黄色、蓝色和绿色的旗子一共有15个,其中绿色旗子的数量比黄色旗子多2个,蓝色旗子的数量是黄色旗子数量的一半。
那么黄色、蓝色和绿色旗子各有几个?A) 黄色:4,蓝色:6,绿色:7B) 黄色:3,蓝色:6,绿色:6C) 黄色:5,蓝色:7,绿色:3D) 黄色:6,蓝色:4,绿色:5答案:D) 黄色:6,蓝色:4,绿色:5二、填空题1. 8 + 7 = ______答案:152. 3 × 4 = ______答案:123. 9 ÷ 3 = ______答案:34. 15 - 6 = ______答案:9三、解答题1. 请用阿拉伯数字写下下面的数:五十六。
答案:562. 请用阿拉伯数字计算下面的算式:7 × 9 - 2 × 3。
答案:573. 这个数在个位和十位之和为9,同时它是一个偶数。
这个数是多少?答案:484. 请用文字解释什么是小学和差问题。
答案:小学和差问题是一种常见的数学应用题,通过给出一段时间或者一段距离的总量和其中的一个部分,要求求解另一个部分的数值。
例如,已知一辆车行驶了100公里,其中前半程行驶了60公里,那么求解后半程的距离就是一个小学和差问题。
总结:本文提供了一些小学和差问题的试题及答案,旨在帮助小学生巩固数学知识和解题能力。
通过选择题、填空题和解答题的形式,提供了多样化的题型,供读者练习和参考。
小学和差问题是小学数学中的基础应用题,培养了学生的逻辑思维和计算能力。
希望读者通过本文的习题练习和答案解析,能够更好地掌握小学和差问题的解题方法和技巧。
(一)和差问题
1、有大小两数,两数的和是32,两数的差是6,求大数和小数?
2、姐妹两人储蓄的和是100元,如果姐姐给妹妹10元,则两人所有的钱正
好相等,姐妹两人各有储蓄多少?
3、有布一段,裁剪制服6套多12尺,如果裁剪8套则缺8尺,这段布长多
少尺?
4、俄文书一部包含上中下三册,上册比中册贵0.3元,中册比下册贵0.6
元,4部俄文书共值人民币30元,求上中下各册书的价格?
5、甲乙两人同时从南北两市镇出发.相向行走,经过3小时走到一座小桥上
相遇.如果甲加快速度每小时多走2里,乙提前0.5小时出发,则结果又在小桥上相遇.如果甲延迟0.5小时出发,乙减慢速度每小时少走2里,则甲乙两人仍在小桥上相遇.求:南北两市镇距离?。
和差问题应用题及答案
小学和差问题的应用题到底有着怎样的难度?以下是整理的和差问题应用题及答案,欢迎参考阅读!
例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克呢?
分析这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克)。
解法1:①第二筐重多少千克?
(150-8)÷2=71(千克)
②第一筐重多少千克?
71+8=79(千克)
或150-71=79(千克)
解法2:①第一筐重多少千克?
(150+8)÷2=79(千克)
②第二筐重多少千克?
79-8=71(千克)
或150-79=71(千克)
答:第一筐重79千克,第二筐重71千克。
练习:三年级图书比四年级图书多50本,并且三年级图书数是四年级的3倍,三年级和四年级各有图书多少本?
例2 今年小强7岁,爸爸35岁,当两人年龄和是58岁时,
两人年龄各多少岁?
分析题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁)。
不论过多少年,两人的年龄差是保持不变的。
所以,当两人年龄和为58岁时他们年龄差仍是28岁。
根据和差问题的解题思路就能解此题。
解:①爸爸的年龄:
[58+(35-7)]÷2
=[58+28]÷2
=86÷2
=43(岁)
②小强的年龄:
58-43=15(岁)
答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
练习:果园里栽的梨树比苹果树多240棵,梨树的棵数比苹果树的5倍多20棵。
果园里有苹果树和梨树各多少棵?
例3 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?
分析解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们。
可是,条件中给出了两科的平均成绩是94分,这
就可以求得这两科的总成绩。
解:①语文和数学成绩之和是多少分?
94×2=188(分)
②数学得多少分?
(188+8)÷2=196÷2=98(分)
③语文得多少分?
(188-8)÷2=180÷2=90(分)
或98-8=90(分)
答:小明期末考试语文得90分,数学得98分。
练习:两堆石子相差16粒,如果混在一起,那么可以重新分成数量都是28粒的三堆。
求原来两堆石子各有多少粒?
例4 甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?
分析这样想:甲、乙两校学生人数的和是864人,根据由甲校调入乙校32人,这样甲校比乙校还多48人可以知道,甲校比乙校多32×2+48=112(人)。
112是两校人数差。
解:①乙校原有的学生:
(864-32×2-48)÷2=376(人)
②甲校原有学生:
864-376=488(人)
答:甲校原有学生488人,乙校原有学生376人。
小结:从以上4个例题可以看出题目给的条件虽然不同,但是解题思路和解题方法是一致的。
和差问题的一般解题规律是:
(和+差)÷2=较大数较大数-差=较小数
或(和-差)÷2=较小数较小数+差=较大数
也可以求出一个数后,用和减去这个数得到另一个数。
下面我们用和差问题的思路来解答一个数学问题。
练习:红红与兰兰共有61本书,红红给了兰兰5本书,兰兰自己又新买了3本书,红红现在比兰兰少2本书。
问:两人原来各有几本书?
例 5 在每两个数字之间填上适当的加或减符号使算式成立。
1 2 3 4 5 6 7 8 9=5
分析这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字相加再减去一部分字后差是5,也就是说1到9的和是45,而两部分的差是5,先要求出这两部分数字,利用和差问题的方法便可以求出。
(45-5)÷2=20,20+5=25
可求出其中几个数的和是25,而另外几个数的和是20。
在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。
例如:5+6+9=20可得到。
1+2+3+4-5-6+7+8-9=5
又如:5+7+8=20可得到。
1+2+3+4-5+6-7-8+9=5
又如:3+4+6+7=20可得到。
1+2-3-4+5-6-7+8+9=5
练习、小红在计算两个数的和时,把其中一个加数个位上的0漏掉了,结果算出的和是37。
已知正确答案为91,求这两个数的差(大减小)是多少?。