列方程解应用题-------古代数学问题
- 格式:doc
- 大小:55.50 KB
- 文档页数:9
10.4列方程组解应用题第一篇:10.4列方程组解应用题10.4列方程组解应用题(3)学习目标:1.培养学生利用现实情境抽象数学模型的能力;2.能够运用三元一次方程组解决实际问题。
重点:利用现实情境找出等量关系,抽象出数学模型.难点:利用现实情境找出等量关系,抽象出数学模型.教学过程:【温故知新】列二元一次方程组解应用题的一般步骤是:(1)申请题意,找出问题中的已知量和未知量,明确问题中的全部关系;(2)选设适当的,确定用以列方程的两个主要的关系;(3)用已知数或含有未知数的代数式,表示主要相等关系的有关数量;(4)根据主要的相等关系列出;(5)解这个,并写出答案。
【探索新知】例6:一个三位数,三位数字之和为12,个位数字是百位数字与十位数字之和的2倍,百位数字是十位数字的3倍,求这个三位数.(1)请小组讨论找出这个题目的等量关系,分别是:;;.(2)若设这个三位数的个位数字是x,十位数字是y,百位数字是z,则根据题意可列方程组为:(3)写出这个题目的解答过程.例7:先欣赏古代数学问题:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。
问上、中、下禾实一秉各几何.”意为:今有上等黍3捆,中等黍2捆,下等黍1捆,共打出黍米39斗;又有上等黍2捆,中等黍3捆,下等黍1捆,共打出黍米34斗;再有上等黍2捆,中等黍2捆,下等黍3捆,共打出黍米26斗.问每捆上、中、下黍各能打出黍米多少斗?此题的等量关系是:;;.此题的解答过程为:【巩固提升】小亮、小莹和大刚每人面前各放有一堆栗子.小亮将自己面前的栗子分出一些给另外二人后,这二人的栗子数各增加1倍.接着小莹又将自己面前的栗子分一些给小亮和大刚,小亮和大刚的栗子数都增加了1倍.然后,大刚又分给另外二人一些栗子,使小亮和小莹面前的栗子数也都增加1倍.这时,他们三人面前的栗子竟然都是24颗.你知道他们三人面前原来有多少颗栗子吗?【课堂小结】尽情谈谈你这节课的收获吧!【达标检测】1.甲、乙、丙三数中,乙数是甲数的2倍,丙数是甲数2.5倍,丙数比甲数多6.甲、乙、丙三数分别是.2.三角形周长为21cm,最长边比其他两边之和少5cm,最短边比其两边之差多5cm.求它的三边长.设最短边为x,最长边为z,另一边为y,可列三元一次方程组.3.(中国古代问题)今有2匹马、3头牛和4只羊,它们各自的总价都不满10000文钱(古时的货币单位)。
1.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何。
”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中.的鸡和兔各有多少只”试用列方程(组)解应用题的方法求出问题的解
2.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是
3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子-条索,索比竿子长一托.折回索子却量竿,却比竿子短-托“其大意为:现有-一根竿和- -条绳索,用绳索去量竿,绳索比竿长5尺:如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是。
看看古代一元二次方程应用题我国古代对代数的研究,特别是对方程解法的研究,有着优良的传统,并取得了重要成果。
古代文献中有很多的方程应用型问题,题的内容来自生活,新颖有趣,有很高的数学价值和欣赏价值.本文列举几例供同学们赏析。
例1、我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.”解:设阔(宽)为x 步,则长为(x+12)步.根据题意,列出方程x (x +12)=864. 展开,整理,得x 2+12x -864=0,解这个方程,得x 1=24,x 2=-36(舍去),x 1+12=36.答:矩形的阔(宽)为24步,长为36步.例2、《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何.”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?解:如图1所示,设甲、乙二人出发后x 时相遇,根据题意,得222BC AB AC =+,其中310710AC x AB BC x ===-,,.则由勾股定理,得222(710)(3)10x x -=+.解这个方程,得123.50x x ==,(舍去).那么甲走的路程是:1071024.5x +-=(步);乙走的路程是:310.5x =(步).甲北东 图1D 图2例3、《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?解:如图2所示,设门的宽为x 尺,则高为( 6.8)x +尺,根据题意,得222AB BC AC +=.即222( 6.8)10x x ++=.解此方程,得122.89.6x x ==-,(舍去).此时 6.89.6x +=.所以门高为9.6尺,门宽是2.8尺.例4、印度古算书中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起.”大意是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?解:设猴子总数为x 只,根据题意,得21128x x x ⎛⎫+= ⎪⎝⎭, 解此方程,得124816x x ==,.所以,猴子总数为48只或16只。
3.4 实际问题与一元一次方程【基础训练】一、单选题1.我国古代有很多经典的数学题,其中有一道题目是:良马日行二百里,驽马日行一百二十里,驽马先行十日,问良马几何追及之.意思是:跑得快的马每天走200里,跑得慢的马每天走120里,慢马先走10天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意可列方程为( )A .12010200x x +=B .12020012010x x +=⨯C .20012020010x x =-⨯D .20012012010x x =+⨯2.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早40分钟经过B 地.设A 、B 两地间的路程是km x ,由题意可得方程( ) A .406070x x -= B .407060x x -= C .260703x x -= D .4070x x -= 3.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,一共有三百八十一盏灯,则这个塔顶的灯数为( ) A .4盏 B .3盏 C .2盏 D .1盏4.今年父亲的年龄是儿子的5倍,5年前父亲的年龄是儿子的15倍,设今年儿子的年龄为x ,可得方程( ) A .5x -5=15(x -5) B .5x +5=15(x -5) C .5x -5=15(x +5) D .5x +5=15(x +5)5.整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x 人先做4h ,则可列一元一次方程为( )A .48(2)14040x x ++= B .114048(2)x x +=+C .4040148(2)x x +=+ D .48(2)1x x ++= 6.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是( )A .11点10分B .11点9分C .11点8分D .11点7分7.甲、乙两地相距1500千米.飞机从甲地到乙地是顺风,需2小时;从乙地返回甲地是逆风,需2.5小时.则飞机往返的平均速度是( )千米/时.A .700B .26663C .675D .6508.某班有52人,其中男生的人数比女生人数的2倍少11人,设女生有x 人,根据题意可列方程( ) A .21152x x B .21152x x C .111522x x D .111522x x9.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A .()21313x x -+=B .()21313x x ++=C .()23113x x ++=D .()23113x x +-=10.中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半, 一共走了六天才到达目的地.则此人第三天走的路程为( ) A .96里 B .48里 C .24里 D .12里11.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .612.《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五;屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺.问木条长多少尺?”如果设木条长为x 尺,根据题意列方程正确的是 ( )A . 4.512x x +=-B .()4.521x x +=+C .()4.521x x +=-D . 4.512x x -=- 13.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x 名工人生产螺母,由题意可知下面所列的方程正确的是( ) A .212002000(22)x x ⨯=-B .21200(22)2000x x ⨯-=C .220001200(22)x x ⨯=-D .22000(22)1200x x ⨯-=14.如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x 名工人生产桌面,则下面所列方程正确的是( )A .()20330024x x =⨯-B .300() 32024x x =⨯-C .()32030024x x ⨯=-D .()2030024x x =- 15.互联网“微商”经营已成为大众创业的新途径,某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利48元,这种商品每件的进价是多少元?若设每件的进价是x 元,那么所列方程为 ( )A .()40%180%48x x +-=B .()80%140%48x x +-=C .()80%140%48x x -+=D .()80%140%48x x --=16.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( )A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6017.某商店在出售某种商品时,以m 元的价格出售,亏本50%,则在这次买卖中该商店的亏损情况是( ) A .亏m 元 B .亏50%m 元 C .亏25%m 元 D .亏50%元18.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中这家商店( )A .赚了32元B .赚了8元C .赔了8元D .不赔不赚19.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 20.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x x C .233072x x D .323072x x21.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”(图1所示),把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方(图2所示)观察图1、图2,请你探究出洛书三阶幻方中的奇数和偶数的位置、数和数之间的数量关系所呈现的规律,并用这个规律,求出图3幻方中b a 的值为( )A .0B .1-C .2-D .3-22.根据图中给出的信息,下面所列方程正确的是( )A .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭ C .()22865x x ππ⨯=⨯⨯- D .22865x ππ⨯=⨯⨯ 23.在今年某月的日历中,用正方形方框圈出的4个数之和是48,则这四个数中最大的一个数是( ) A .8 B .14 C .15 D .1624.完成某项工程,甲单独做10天完成,乙单独做7天完成,现在由甲先做了3天,乙再参加合作,求完成这项工程总共用去的时间,若设完成此项工程总共用x 天,则下列方程中正确的是( )A .31107x xB .331107x xC .1107x xD .31107xx25.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%330x =B .(110%)330x -=C .(110%)2330x -=D .(110%)330x +=26.互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A .80元B .100元C .130元D .150元27.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10元,则该商品每件的进价为( )A .100元B .105元C .110元D .120元28.一份数学试卷,有25道选择题,做对一道题得4分,做错一道题倒扣1分,某同学做了全部试题,得了80分,他共做对了( )A .18道B .19道C .20道D .21道29.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x 千米/时,列方程得( )A .4325.2x +=B .()3425.2x +=C .()3425.2x -=D .3425.2x ⨯+=30.元旦当天,某商场把一双运动鞋按标价的8折出售,仍然获利20%,若该运动鞋的进价为300元,则标价是( )元A .360B .400C .420D .45031.在一次篮球比赛中,甲共参与了11场比赛,胜一场积2分,负一场积1分.甲队在这次比赛中取得了较理想的成绩,获总积分17分,那么甲队的负场数为( )场.A .7B .6C .5D .432.已知:甲有图书80本,乙有图书48本,要使甲乙两人一样多,应从甲调到乙多少本图书?若设应调x 本,则所列方程正确的是( )A .80-x=48B .80+x=48-xC .48-x=80D .80-x=48+x33.水费阶梯收费方式:每月每户用水量20立方米及其以内的部分按1.5元/立方米收费,超过20立方米的部分按2.5元/立方米收费.如果某户居民在某月所交水费40元,那么这个月共用多少立方米的水?设这个月共用x 立方米的水,下列方程正确的是( )A .1.540x =B .()1.520 2.52040x ⨯+-=C .2.540x =D .()2.520 1.52040x ⨯+-=34.父亲和儿子在同一公司上班,为了锻炼身体,他们每天从家(父子二人住同一个家)走路去上班,父亲需要18分钟到公司,儿子需要12分钟到公司,如果父亲比儿子早3分钟动身,儿子追上父亲需要的时间为( )A .5分钟B .6分钟C .7分钟D .8分钟35.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐,乙发齐,七日至长安,今乙发已先二日,甲仍发长安.同几何日相逢?译文:甲从长安出发,5日到齐国乙从齐国出发,7日到长安,现乙先出发2日,甲才从长安出发.问甲经过多少日与乙相逢?设甲经过x 日与乙相逢,可列方程为( ) A .2175x x -+= B .2175x x --= C .275x x += D .2175x x ++= 36.用一根长100cm 的绳子围成一个长方形,且长方形的长比宽多10cm ,则这个长方形的面积是( ) A .252cm B .452cm C .6002cm D .24752cm37.一项工程,甲单独做需要5天完成,乙单独做需要8天完成.若甲先做1天,然后由甲、乙合作完成此项工程.求甲一共做了多少天?若设甲一共做了x 天,则所列方程为( )A .x 5+x+18 =1B .x 5+x-18=1C .x 5﹣x+18=1D .x 5﹣x-18=1 38.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.如果由这两个工程队从两端同时施工,铺好这条管线需要的天数是( )A .8天B .7天C .6天D .5天39.某理财产品的年收益率为5.21%,定期1年,每年到期后可连本带息继续购买下一年的产品.若张老师购买了x 万元该种理财产品,2年后一共拿到10万元,则根据题意列方程正确的是( )A .()1 5.2110x +=B .21 5.21()10x +=C .()21 5.21%10x +=D .()21 5.21%10x += 40.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有30名工人,每人每天可以生产900个口罩面或1200个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( )A .2×1200(30﹣x )=900xB .1200(15﹣x )=900xC .1200(30﹣x )=900xD .1200(30﹣x )=2×900x二、填空题41.某种商品降价10%后的价格恰好比原价的一半多40元,若设该商品原价是x 元,则列出的方程是_____. 42.一艘船从甲码头到乙码头顺流而下,用了2小时,从乙码头返回甲码头逆流而上,用了2.5小时,已知水流速度是3千米/小时,求船在静水中的平均速度,设船在静水中的平均速度是x 千米/小时,则可列方程为__________.43.如图,A B 、两点在数轴上表示的数分别为a b 、,且a 和b 满足()2260a b ++-=,若一小球甲从点A 处以1个单位/秒的速度向左运动,同时另一个小球乙从点B 处以2个单位/秒的速度向左运动,甲乙两小球到原点的距离相等时,经历的时间是__________秒.44.已知一件标价为480元的上衣按八折销售,仍可获利50元.设这件上衣成本价为x 元,根据题意,那么所列方程为_____.45.一艘轮船在两个码头之间航行,顺水航行需要4h ,逆水航行需要5h .已知水流速度是2km/h ,则轮船在静水中的速度__km/h .三、解答题46.问题情境:在高邮高铁站上车的小明发现:坐在匀速行驶动车上经过一座大桥时,他从刚上桥到离桥共需要150秒;而从动车车尾上桥开始到车头离桥结束,整列动车完全在挢上的时间是148秒.已知该列动车长为120米,求动车经过的这座大桥的长度.合作探究:(1)请补全下列探究过程:小明的思路是设这座大桥的长度为x 米,则坐在动车上的小明从刚上桥到离桥的路程为x 米,所以动车的平均速度可表示为 米/秒;从动车车尾上桥开始到车头离桥结束的路程为(x ﹣120)米,所以动车的平均速度还可以表示为 米/秒.再根据火车的平均速度不变,可列方程 .(2)小颖认为:也可以设动车的平均速度为v 米/秒,列出方程解决问题.请你按照小颖的思路求动车经过的这座大桥的长度.47.某口罩加工厂计划若干天完成一批医用外科口罩的订货任务,如果每天生产口罩20万只,那么就比订货任务少生产100万只;如果每天生产口罩23万只,那么就可以超过订货任务20万只.这批口罩的订货任务是多少只?原计划多少天完成?48.随着地铁2号线一期的开通,太原正式进入地铁时代.地铁2号线一期采用按里程分段计价的票制,全程最高票价为6元,学生可享受半价.周日,七年级某班师生共36人从始发站“西桥”乘地铁至终点站“尖草坪”;感受“地铁速度”,其中所有的学生享受了半价票,教师均买全价票,单程共付车票费用126元.参加本次活动的师生各多少人?49.新冠疫情期间,甲、乙、丙三家公司为抗击疫情捐款,他们共捐款216万元,所捐款数的比为3:4:5,问甲、乙、丙三家公司各捐款多少万元?50.2020年10月份,晋中市政府开展的“晋情来消费”家电专用消费券暖心活动,本次活动中的家电消费券单笔交易满600元立减100元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金620元.求该电饭煲的进价.51.某市对居民用水实行阶梯水费,收费标准如表:(1)甲用户上月用水30吨,其该月水费为元(用含a的代数式表示);(2)若a=1.5,乙用户上月水费为30元,求乙用户该月的用水量.52.列方程解应用题:一件衬衫先按进价加价60元标价,再以8折出售,仍可获利24元,这件衬衫的进价是多少钱?审题:A:___________.B:C:设.53.小方家新买的房子要装修,住房户型呈长方形,平面图如下(单位:米).现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a __________;(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格(含安装费),木地板单价为300元/平方米,地砖单价为100元/平方米.已知卧室2的面积为21平方米,则小方家铺设地面总费用是多少?54.某工厂工人急需在计划时间内加工一批零件用于机械制造,如果每天加工500个,就比规定任务少80个;如果每天加工550个,则超额20个.求规定加工的零件数和计划加工的天数分别是多少?55.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,一个螺栓配两个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?56.某文具店购进两种型号的笔共80支进行销售,其进价和售价如表:(1)该店用700元可以购进A,B两种型号的笔各多少支?(2)在(1)的条件下,若把所购进A,B两种型号的笔全部销售完,能获利多少元?57.为了防止新冠疫情的进一步传播,提高环境卫生水平,邢台市区对每个社区提出了两种储存生活垃圾的方案.方案一:买分类垃圾桶,需要费用4000元,以后每月的垃圾处理费用250元;方案二:买不分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用450元.(1)交费时间为多少个月时,两种方案费用相同?(2)若交费时间为12个月,哪种方案更合适,并说明理由;58.小明同学要做一道与数轴有关的问题,需要先画一条数轴:(1)他在数学课本上找到了关于数轴的定义:规定了、单位长度和的直线叫做数轴.(2)已知点Q 表示﹣3,①规定取0.5cm 为一个单位长度,画一条数轴.并在数轴上标出点Q 的位置.①在①的条件下,若点Q 以每秒0.5cm 的速度沿数轴向右运动,同时点P 在原点右边7个单位长度,并以每秒1cm 的速度沿着数轴向左运动,经过多少时间,Q ,P 两点间的距离为2厘米?①数轴上表示整数的点称为整点.在①的条件下,设运动时间为t ,当连结P ,Q 两点的线段恰好能盖住4个整点时,请直接写出t 的取值范围 .59.某服装厂计划若干天完成一批订单任务,如果平均每天生产16套服装,那么就比订单任务少生产80套;如果平均每天生产20套服装,那么就比订单任务多生产20套,该服装厂原计划多少天完成订单任务? 60.甲乙两人分别从相隔56km 的A 、B 两地同时出发,甲骑自行车的速度为每小时20千米,乙步行的速度为每小时8千米.(1)甲、乙分别从A 、B 两地同时出发,相向而行,求经过几小时两人相遇?(2)甲、乙两人从A 地出发,同向而行,当甲到达B 地时立刻掉头返回A 地,求经过几小时两人相遇? 61.阅读下列材料,并完成任务.学习了一元一次方程,我们就可以利用它把无限循环小数化为分数.以无限循环小数0.730.73737373=为例,它的循环节有两位,若设0.73x =,由0.730.73737373=可得,10073.737373x =,所以10073x x -=,解方程,得7399x =,于是,730.7399=. (1)类比应用:(直接写出答案,不写过程)0.2=___________;0.12=____________; (2)能力提升:将1.23化为分数形式,写出解答过程;(3)拓展探究:请运用上面的方法说明0.91=.62.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书籍原价是500元,实际付款为 元;(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?63.“双十一”大促销活动中,某品牌网红店从厂家购进了,A B 两种商品.已知每件B 种商品的进价比每件A 种商品的进价低20元,购进8件A 种商品与购进10件B 种商品的货款相同.(1)求,A B 两种商品每件的进价分别是多少元?(2)该网红店从厂家购进了,A B 两种商品共100件,所用资金恰好为9200元.出售时,A 种商品在进价的基础上加价40%进行标价;B 商品按标价出售,则每件可获利30元.若按标价出售,A B 两种商品,则全部售出后共可获利多少元?(3)在(2)的条件下,“双十一”期间,A 商品按标价的九折出售,B 商品按标价出售一部分商品后进行促销,按标价的九折再让利4元出售,,A B 两种商品全部售出,总获利是全部按标价售出所获利润23,则B 商品按标价售出多少件?64.影片《夺冠》讲述了中国女排的奋斗历程和顽强拼搏、为国争光的感人故事.上初期,某校为了对学生进行爱国主义教育及励志教育,计划组织所有学生及教师观看经了解,甲、乙两家电影院的电影票单价都是30,这两家电影院有两种不同的优惠方式.甲电影院,购买票数量不超过100张时,每张30元;超过100张时,超过的部分打八折.乙电影院,不论买多少张,每张打九折.(1)设该学校有教师和学生共x 人观看电影(每人买一张电影票),请用含x 的式子分别表示在甲、乙两家电影院购票所需的费用;(2)求出两家电影院购票费用相同时x 的值.65.阅读材料,解答下面问题.无限循环小数化分数:利用一元一次方程可以将任何一个无限循环小数化成分数形式.下面以0.6为例说明:设0.6x =①,由0.60.666=⋅⋅⋅.可得10 6.666=⋅⋅⋅x ①,由①-①,得106-=x x 解得:23x =,所以,20.63= 模仿: (1)将无限循环小数0.7化成分数形式.(2)0.12=_______.(直接写出答案)66.列方程解应用题某校举行元旦汇演,七年级的701班、702班、703班三个班各需购买贺卡70张,已知贺卡的价格如下:(1)若701班分两次购买,第一次购买24张,第二次购买46张,则701班购买贺卡费用是多少元?(2)若702班一次性购买贺卡70张,则702班购买贺卡费用是多少元?(3)若703班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?67.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙两店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)请写出分别到两个商店购买练习本的代数式;甲、;乙、.(2)小明要买20本时,到哪个商店更省钱?(3)小明要买10本以上时,买多少本时到两个商店付的钱一样多?68.“滴滴司机”沈师傅从上午8:00至9:15在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅运十批乘客里程如下:(单位:千米)8+,6-,3+,8-,8+,4+,8-,7-,3+,3+(1)将最后一批乘客送到目的地,沈师傅能回到出发点吗?(2)若汽车每千米耗油0.4升,则8:00至9:15汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米);若超过3千米,则超过部分按每千米2元收费,现有一名乘客共付车费22元,则这名乘客共乘坐了多少千米?69.“长珲高铁”被誉为“东北最美高铁”,它给居民出行带来了很大的便利,高铁平均速度比汽车平均速度快80km/小时.从延吉到长春坐汽车需要5小时,坐高铁只需要2.5小时,求汽车的平均速度和高铁的平均速度.70.某网店举行“三周年店庆,回馈老顾客”促销活动,制定的促销方案如表所示,其中表格中的x指的是购物原价(单位:元):在促销活动期间,小李在该网店购物两次:(1)小李第一次在该网店购物,实际付款92.7元,小李此次购物的原价为多少元?(2)小李第二次在该网店购物,实际付款278元,小李此次购物的原价为多少元?71.甲工程队原有55人,乙工程队有35人,现因工作需要,需从甲工程队调出一些人到乙工程队,使乙工程队的人数是甲工程队人数的2倍.(1)列方程解应用题:求应从甲工程队调出多少人到乙工程队?(2)此时,甲工程队还剩 人.72.数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x .(1)AB = ,BC = .(2)当点P 在线段AC 上时,①用含x 的代数式表示:PA= ,PC= .①若7.4PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒.①试说明2AP PQ =①当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.。
列一元一次方程解应用题——古代典型问题-北京版七年级数学上册教案一、教学目标1.知识与技能•能够理解一元一次方程的概念和解法;•能够熟练列出一元一次方程;•能够运用所学知识解决实际问题。
2.过程与方法•操作方法:通过示例,引导学生理解和运用方程的解法;•思维方法:通过小组合作,激发学生的思考和创新能力。
3.情感态度和价值观•引导学生认识到学习数学的重要性;•通过讲述古代典型问题,引导学生学会尊重传统文化。
二、教学重难点1.教学重点•理解一元一次方程的概念;•能够熟练列出一元一次方程;•能够运用所学知识解决实际问题。
2.教学难点•将日常生活问题转化为方程问题;•帮助学生理解和掌握方程解法。
三、教学过程1.导入(5分钟)通过讲述一个古代典型问题,引导学生了解方程的基本概念。
故事情节如下:在民间流传着一种关于猴儿捞月的古老传说,猴子们为了抓取悬挂在空中的月亮,想出了一个聪明的办法,他们站立在高高的树上,快速地向上跳,好似在攀登一座无形的大山。
可是,跳得在高,猴子们却怎么也够不着那飘渺的月亮。
一只智慧的老猴子提出了:“我们齐力一挺,可不是把天拉下来吗?”。
于是,猴子们从树干上拽下一条枯藤,掐断了一条适当长度的藤,然后,一起来挽着这条枯藤,同时喊:“一、二、三!齐力一挺!齐力一挺!”只见月亮缩小缩小,落在了猴子们脚下,他们震惊不已,纷纷围住月亮,手挥脚舞,大笑起来。
老师可适当引导学生分析以上故事,试图引出方程的概念。
2.理论讲解(15分钟)1.什么是一元一次方程?首先,教师可引导学生了解方程的基本概念。
方程是指一个等式,它的左边是一个未知数(称为“基础量”),右边是一个已知数或是几个已知数和运算符(或运算式)。
如果一个方程中只有一个未知量,而且未知量的最高次数是1,那么我们就可以把这个方程叫做一元一次方程。
2.一元一次方程的解法:接着,教师可通过讲解实例来帮助学生掌握一元一次方程的解法。
针对于【北京】版七年级上册数学第二章节学习3 “列一元一次方程”,本教案介绍如何通过列一元一次方程解决实际问题。
2021-2022学年七年级数学上册同步课堂专练(苏科版)4.3用一元一次方程解决问题一、单选题1.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .10031003x x -+=B .10031003x x --= C .3(100)1003x x +-= D .3(100)1003x x --= 【答案】A【详解】解:设大和尚有x 人,则小和尚有(100-x )人, 根据题意得:10031003x x -+=, 故选:A .2.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款( )元.A .288B .306C .288或316D .288或306【答案】C【详解】解:(1)第一次购物显然没有超过100,即在第二次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此可以按照8折付款:360×0.8=288元或395×0.8=316元,故选:C.3.如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧称盘中也有一袋玻璃球,还有2个各20克的砝码,现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10g B.20g C.15g D.25g【答案】A【详解】解:设左、右侧秤盘中一袋玻璃球的质量分别为m 克、n 克,根据题意得:m =n +40;设被移动的玻璃球的质量为x 克,根据题意得:m -x =n +x +20,x =12(m -n -20)=12(n +40-n -20)=10. 故选:A .4.我国古代有很多经典的数学题,其中有一道题目是:良马日行二百里,驽马日行一百二十里,驽马先行十日,问良马几何追及之.意思是:跑得快的马每天走200里,跑得慢的马每天走120里,慢马先走10天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意可列方程为( )A .12010200x x +=B .12020012010x x +=⨯C .20012020010x x =-⨯D .20012012010x x =+⨯ 【答案】D【详解】解:由题意可列方程20012012010x x =+⨯,故选D .5.完成某项工程,甲单独做10天完成,乙单独做7天完成,现在由甲先做了3天,乙再参加合作,求完成这项工程总共用去的时间,若设完成此项工程总共用x 天,则下列方程中正确的是( )A .31107x xB .331107x xC .1107x xD .31107x x【答案】D【详解】解:设完成这项工程共需x 天,由题意得,31107xx .故选:D .6.在某市奥林匹克联赛中,实验一中学子再创辉煌,联赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x 道题,则可列方程:()5240144x x --=;①设答错了y 道题,则可列方程:()5402144y y --=;①设答对题目总共得a 分,则可列方程:1444052a a -+=; ①设答错题目总共扣b 分,则可列方程:1444052b b --=. A .4个B .3个C .2个D .1个【答案】B【详解】 解:①若设答对了x 道题,则可列方程:5x -2(40-x )=144,故①符合题意;①若设答错了y 道题,则可列方程:5(40-y )-2y =144,故①符合题意;①若设答对题目得a 分,则可列方程:1444052a a -+=,故①符合题意; ①设答错题目扣b 分,则可列方程144++4052b b =,故①不符合题意. 所以,共有3个正确的结论.故答案是:B . 7.小亮原计划骑车以10千米/时的速度由A 地去B 地,这样就可以在规定时间到达B 地,但他因故比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A ,B 两地间的距离为x 千米,则根据题意列出的方程正确的为( )A .1015x x =+15+6 B .156********x x =++ C .156********x x +=+ D .61510601560x x +=+ 【答案】B【详解】解:设A 、B 两地间的路程为x 千米, 根据题意,得156********x x =++. 故选:B .8.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x 千米/时,列方程得( )A .4325.2x +=B .()3425.2x +=C .()3425.2x -=D .3425.2x ⨯+=【答案】B【详解】解:由题意得:34325.2x ⨯+=,即()3425.2x +=,故选:B .二、填空题9.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”,大约成书于公元前200年~公元前50年,其中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为_________.【答案】400x -3400=300x -100【详解】解:设有x 个人,依题意,得:400x -3400=300x -100.故答案为:400x -3400=300x -100.10.为坚决打赢疫情防控阻击战,某小区决定组织工作人员对本小区进行排查,现对工作人员进行分组,若每组安排8人;则余下3人;若每组安排9人,则还缺5人,则该小区工作人员共有______人.【答案】67【详解】解:设该小区工作人员分为x 组,根据题意得:8x +3=9x -5,解得:x =8,①8x +3=67.故答案为:67.11.小王是丹尼斯百货负责A 品牌羊毛衫的销售经理,一件A 品牌羊毛衫的进价为600元,加价50%后进行销售,临近年末,小王发现还有积货,所以决定打折出售,结果每件仍获利120元,则A 品牌羊毛衫应按_________折销售.【答案】八【详解】设销售折扣为:x根据题意得:()600150%600120x +-=①0.8x =①A 品牌羊毛衫应按八折销售故答案为:八.12.中国古代数学著作《算法统宗》中有这样一题:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关,”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,请你求出此人第三天的路程为__________.【答案】48里【详解】解:设第六天走的路程为x 里,则第五天走的路程为2x 里,第四天走的路程为4x 里,依次往前推,第一天走的路程为32x 里,根据题意得,x +2x +4x +8x +16x +32x =378,解得,x =6,①第三天走的路程为:8x =8×6=48(里),故答案为:48里.三、解答题13.如图,数轴上线段2AB =(单位长度),4CD =(单位长度),点A 在数轴上表示的数是10-,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.设运动的时间为t 秒,请解决下列问题:(1)当1t =时,A 点表示的数为_________,此时BC =_________;(2)当运动到6BC =(单位长度)时,求运动时间t 的值;(3)P 是线段AB 上一点,当点B 运动到线段CD 上时,若关系式4BD AP PC -=成立,请直接写出....此时线段PD 的长:PD =________.【答案】(1)4-,16;(2)94或154;(3)143或185【详解】解:(1)当1t =时,A 点表示的数为10614-+⨯=-; B 、C 两点运动1秒后在数轴上表示的数为8612-+⨯=-,162114-⨯=,∴此时14(2)16BC =--=.故答案为:4-,16;(2)设运动t 秒时,6BC =(单位长度),①当点B 在点C 的左边时,由题意得:66224t t ++=, 解得:94t =; ①当点B 在点C 的右边时,由题意得:66224t t -+=, 解得:154t =. 综上所述,当运动到6BC =(单位长度)时,运动时间t 的值为94或154; (3)设线段AB 未运动时点P 所表示的数为x ,B 点运动时间为t ,则此时C 点表示的数为162t -,D 点表示的数为202t -,A 点表示的数为106t -+,B 点表示的数为86t -+,P 点表示的数为6x t +,202(86)288BD t t t ∴=---+=-,6(106)10AP x t t x =+--+=+,|162(6)||168|PC t x t t x =--+=--,202(6)20820(8)PD t x t t x t x =--+=--=-+,4BD AP PC -=,288(10)4|168|t x t x ∴--+=--,即:1884|168|t x t x --=--,①当C 点在P 点右侧时,1884(168)64324t x t x t x --=--=--,4683x t ∴+=, 461420(8)2033PD t x ∴=-+=-=; ①当C 点在P 点左侧时,1884(168)64324t x t x t x --=---=-++,8285x t ∴+=, 821820(8)2055PD t x ∴=-+=-=; PD ∴的长有2种可能,即143或185. 故答案为:143或185. 14.已知数轴上点A 对应的数为6-,点B 在点A 右侧,且,A B 两点间的距离为8.点P 为数轴上一动点,点C 在原点位置.(1)点B 的数为____________;(2)①若点P 到点A 的距离比到点B 的距离大2,点P 对应的数为_________;①数轴上是否存在点P ,使点P 到点A 的距离是点P 到点B 的距离的2倍?若存在,求出点P 对应的数;若不存在,请说明理由;(3)已知在数轴上存在点P ,当点P 到点A 的距离与点P 到点C 的距离之和等于点P 到点B 的距离时,点P对应的数为___________;【答案】(1)2;(2)①-1;①23-或10;(3)-8和-4【详解】解:(1)①点A对应的数为-6,点B在点A右侧,A,B两点间的距离为8,①-6+8=2,即点B表示的数为2;(2)①设点P表示的数为x,当点P在点A的左侧,P A<PB,不符合;当点P在A、B之间,x-(-6)=2-x+2,解得:x=-1;当点P在点B右侧,P A-PB=AB=8,不符合;故答案为:-1;①当点P在点A的左侧,P A<PB,不符合;当点P在A、B之间,x-(-6)=2(2-x),解得:x=23 -;当点P在点B右侧,x-(-6)=2(x-2),解得:x=10;①P对应的数为23-或10;(3)当点P在点A左侧时,-6-x+0-x=2-x,解得:x=-8;当点P在A、O之间时,x-(-6)+0-x=2-x,解得:x=-4;当点P在O、B之间时,x-(-6)+x-0=2-x,解得:x=43-,不符合;当点P在点B右侧时,x-(-6)+x-0=x-2,解得:x=-8,不符合;综上:点P表示的数为-8和-4.15.(列方程解应用题)双“11”期间,某快递公司的甲、乙两辆货车分别从相距335km的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2h时,甲车先到达配货站C地,此时两车相距35km,甲车在C地用1h配货,然后按原速度开往B地;乙车继续行驶0.5h时,乙车也到C地,但未停留直达A 地.(1)乙车的速度是_______km/h,B、C两地的距离是______km.(2)求甲车的速度.(3)乙车出发_______小时,两车相距65km.【答案】(1)70,175;(2)80km/h;(3)1.8或3.2【详解】解:(1)甲车先到达配货站C地,此时两车相距35km,乙车继续行驶0.5h也到C地,①乙车的速度是35÷0.5=70(km/h),①乙车从B地到达C地共用2.5h,①B、C两地的距离是70×2.5=175(km),故答案为:70,175;(2)①AB两地相距335km,B、C两地的距离是175km,①A、C两地的距离是335-175= 160(km),①行驶2h时,甲车先到达配货站C地,①160÷2=80(km/h),答:甲车的速度是80km/h;(3)设乙车出发x h两车相距65km,①两车相遇前相距65km时,70x+80x+65=335,解得:x=1.8,①两车相遇后相距65km时,①甲车在C地用1h配货,①甲车行驶(x-1)h,①70x+80(x-1)-65=335,解得:x=3.2,答:乙车出发1.8h或3.2h时,两车相距65km.。
列一元一次方程解应用题——古代典型问题-北京版七年级数学上册教案一、教学目标通过本节课的教学,学生能够:1.学会如何列一元一次方程解决问题;2.掌握古代典型问题的解法;3.了解近代数学家的解题思路和方法。
二、教学重难点本节课的重点是让学生掌握如何列一元一次方程解决问题,并能够应用到古代典型问题中。
难点是让学生了解这些古代问题是如何被解决的,以及近代数学家的解题思路和方法是什么。
三、教学内容1. 常见古代典型问题在古代,人们常常会遇到一些特别的问题,比如:•三珠合一:宝玉家庭三十六计之一孔雀王;•神鸟膜拜:孔子对周公的提问;•男女差额分配:春秋时期楚国风俗地理的一个问题;•船行河上:南宋赵明道在《数学钞》中的问题;•……2. 解决古代典型问题的步骤(1)分析问题,并列出问题的方程。
在解决古代典型问题的时候,需要先进行问题分析,并列出问题的方程。
例如:在《孟子·公孙丑》中有这样的一则故事:孟子问公孙丑:“人皆有爱己之心,如何才能知人之爱其人?”公孙丑答:“过其门而不入,则知其爱其人。
”这是一个古代典型问题,我们可以通过分析得出该问题的方程:x + a = b其中,x表示过门不入的人知道别人对自己的感觉,a表示这个人在门外的时间,b表示所有人在门外的时间之和。
(2)解方程求解。
对于方程x + a = b,我们可以用一元一次方程求解,得到:x = b - a。
(3)验证解的正确性。
将x = b - a代入x + a = b,得到b = b,表明解是正确的。
3. 实际应用将解决古代典型问题的方法应用到实际生活中,比如小学生的课本中有这样一道题目:甲买了一件衣服,花了一百五十元,比买房的钱多了一百五十元,问他买房子花了多少钱?解:设甲买房子花了x元,那么甲的总花费应该是:x + 150 = 150 + x + 150化简后得到:x = 150因此,甲买房子花了150元。
4. 解题思路和方法在解决古代典型问题的时候,需要掌握一些解题思路和方法,具体包括:(1)手算、心算结合,灵活运用算法;(2)突出问题实质,可以采用模拟法或借助等等;(3)发现消数之道,排除不必要的项,是解题的关键。
列不定方程解应用题知识框架一、知识点说明 历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
重难点(1) 根据题目叙述找到等量关系列出方程 (2) 根据解不定方程方法解方程 (3) 找到符合条件的解例题精讲一、不定方程与数论【例 1】 把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求这两个数.【考点】列不定方程解应用题【解析】 这是一道整数分拆的常规题.可设拆成的两个数分别为11x 和13y ,则有:11132001x y +=,要让x 取最小值,y 取最大值. 可把式子变形为:2001111315312132122153131313x x x x y x -⨯+-++===-+,可见12213x+是整数,满足这一条件的x 最小为7,且当7x =时,148y =. 则拆成的两个数分别是71177⨯=和148131924⨯=.【答案】则拆成的两个数分别是77和1924.【巩固】 甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?【考点】列不定方程解应用题【解析】 设甲搬的是18x 块,乙搬的是23y 块.那么1823300x y +=.观察发现18x 和300都是6的倍数,所以y 也是6的倍数.由于3002313y <÷≈,所以y 只能为6或12. 6y =时18162x =,得到9x =;12y =时1824x =,此时x 不是整数,矛盾.所以甲搬了162块,乙搬了138块,甲比乙搬得多,多24块.【答案】甲比乙搬得多,多24块【例 2】 用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.【考点】列不定方程解应用题【解析】 若是四位数abcd ,则()161636<1000a b c d ⨯+++⨯≤,矛盾,四位以上的自然数也不可能。
21.列方程解应用题知识要点梳理一、列方程解应用题的意义列方程解应用题就是用字母表示实际问题里的某个未知数,根据等量关系列出含有未知数的等式,即方程。
二、列方程解应用题的一般步骤1.审题:了解题中的已知条件和未知量,明确各个数量之间的关系,找出等量关系。
2.设:用字母表示题中的一个未知量,并用含该字母的代数式表示其他的未知量。
3.列:找出能够表示应用题全部含义的一个数量关系,列出方程4.解:解列出的方程5.答:检验所求的解是否符合题意,写出答案。
列方程解应用题,关键是寻找题中的等量关系。
方法:(1)直接设未知数;(2)间接设未知数。
途径:(1)根据关键句设未知数;(2)根据单位“1”设未知数;(3)根据公式设未知数。
考点精讲分析典例精讲考点1 直接列方程解应用题【例1】甲和乙一共有100元钱,甲用去49,乙用去27后,两人一共还剩下60元,甲原来有多少钱?【精析】设甲原有x 元,则乙原有(100-x )。
甲剩下的钱可以用x×(1-49)元表示,乙剩下的钱可以用(100-x)×(1-27)元表示,然后根据两人一共剩下60元列出方程。
【答案】设甲原有x 元,则乙原有(100-x )。
x ×(1-49)+(100-x)×(1-27)=605x +(100−x )×(1−2)=60 x =60答:甲原来有72元钱。
【归纳总结】此题比较简单,直接设未知数即可,利用两个等量关系设未知数和列方程。
考点2 间接列方程解应用题【例2】东方小学体育室的足球个数是篮球的3倍,体育课上,每班借6个足球,5个篮球,篮球借完时,还有72个足球。
体育室里原有足球和篮球各多少个?【精析】设班级数共为x个,那么借出的足球为6x个,借出的篮球为5x个。
【答案】设借球的班级数为x个。
5x×3=6x+729x=72x=8篮球:5×8=40个足球:40×3=120个答:体育室里原有足球120个,篮球40个。
我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶(如图),请问这根藤条有多长(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺).本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按
图的方法,转化为平面图形来解决.
解答:解:在Rt△ABC中,由勾股定理得,
AB2=BC2+AC2,
因为BC=20,AC=3×7=21,
所以AB2=202+212=841,
所以AB=29,
所以这根藤条有29尺.
原文解法:术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。
凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。
」先做一个5和7的公倍数,且要除3余1的,得到70;
然后做一个3和7的公倍数,且要除5余1的,得到21;
最后做一个3和5的公倍数,且要除7余1的,得到15;
然后按题目中余数的大小将上面的数字倍大再相加:70*2+21*3+15*2=233
233其实已经满足条件了,但是一般我们是要最小的,怎么办呢?很简单,减3、5、7的最小公倍数105直到得出最小整数为止:233-105*2=23
有100个和尚分100只馒头,正好分完。
如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?
--------------------------------------------------------------------------------本问题的解法甚多,最普通、最常规的办法当然是列出一个方程来求解,这很容易做到,但其流弊是一般化、程式化,对开发智力不利。
现在介绍一种别开生面的“编组法”。
《直指算法统宗》里的话是:“置僧一百为实,以三一并得四为法除之,得大僧二十五个。
”所谓“实”便是“被除数”,“法”便是“除数”。
其办法是:
100÷(3+1)=25,100-25=75。
这是一种“编组法”,由于大和尚一人分3只馒头,小和尚3人分一只馒头。
合并计算,即是:4个和尚吃4只馒头。
这样,100个和尚正好编成25组,而每一组中恰好有1个大和尚,所以人们立即可算出大和尚有25人,从而可知小和尚有75人。
一群猴子分两队,
高高兴兴做游戏.
八分之一再平方,
蹦蹦跳跳进树林.
其余十二高声喊,
充满欢乐的气氛。
告我总数是多少,
两队猴子在一起.
我们设猴子的总数是x,显然全体猴子分成两个部分,不难列出方程
(x/8)2+12=x
解这个方程,得x1=48,x2=16.经检验,这两个根都符合题意,所以猴子的总数是48或16.
井绳一根,三折入井底余一尺,四折入井底差一尺。
绳长几何;井深几何?有意君留解
绳子长7尺,井深2尺
李白无事街上走,提壶去买酒,遇店加一倍,见花喝一斗(斗为古代盛酒器皿),三遇店和花,喝完壶中酒。
试问壶中原有多少酒?(题意说明:“三遇店和花”是指先遇店,后遇花,并重复三次。
)
题里壶中原有酒量是要求的,并告诉了壶中酒的变化及最后结果--三遍成倍添(乘以2)定量减(减肥斗)而光。
求解这个问题,一般以变化后的结果出发,利用乘与除、加与减的互逆关系,逐步逆推还原。
"三遇店和花,喝光壶中酒",可见
三遇花时壶中有酒巴斗,则三遇店时有酒巴1÷2斗,那么,二遇花时有酒1÷2+1斗,二遇店有酒(1÷2+1)÷2斗,于是一遇花时有酒(1÷2+1)÷2+1斗,一遇店时有酒,即壶中原有酒的计算式为
[(1÷2+1)÷2+1] ÷2=7/8(斗)
故壶中原有7/8斗酒
第二种解法代数法:设李白酒壶中原有酒为x斗,根据题意列得方程
[(2x-1)×2-1]×2-1=0.
化简此方程得8x=7.
今有蒲生一日,长三尺。
莞生一日,长一尺。
蒲生日自半。
莞生日自倍。
问几何日而长等?
解法是:
到第2天末,蒲长为3 + 1.5 = 4.5,莞长为1 + 2 = 3,4.5 > 3,不足4.5 - 3 = 1.5尺;
到第3天末,蒲长为4.5 + 0.75 = 5.25,莞长为3 + 4 = 7,5.25 < 7,有余7 - 5.25 = 1.75尺。
于是知道是在第三天初到第三天末之间生长到同一长度的,这期间它们生长速度分别为0.75尺/天,4尺/天。
于是用它们长度的差除以速度的差得到追齐的时间:
1.5 / (4 - 0.75) = 6/13 天
或
1.75 / (4 - 0.75) = 7/13 天
于是所用总时间为
2 + 6/1
3 天
也就等于
3 - 7/13 天。