谐振功率放大电路的设计
- 格式:doc
- 大小:138.00 KB
- 文档页数:15
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:高频谐振功率放大器设计初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。
要求完成的主要任务:1、采用晶体管完成一个高频谐振功率放大器的设计2、电源电压V cc=+12V,采用NXO-100环形铁氧体磁芯,3、工作频率f0=6MHz4、负载电阻R L=75Ω时,输出功率P0≥100mW,效率η>60%5、完成课程设计报告(应包含电路图,清单、调试及设计总结)。
时间安排:二十周一周,其中三天硬件设计,四天软、硬件调试及答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (1)2.高频谐振功率放大器原理 (3)2.1 甲类功率放大器 (5)2.1.1 静态工作点 (5)2.1.2 负载特性 (5)2.1.3 功率增益 (6)2.2 丙类功率放大器 (7)2.2.1 基本关系式 (7)2.2.2 负载特性 (10)2.3 变频变压器的绕制 (11)2.4 重要技术指标及测试方法 (12)2.4.1输出功率 (12)2.4.2 效率 (13)3.总体电路设计与参数计算 (14)3.1 丙类功率放大器的设计 (14)3.1.1 确定放大器工作状态 (14)3.1.2 计算谐振回路和耦合回路参数 (15)3.1.3 基极偏置电路参数计算 (15)3.2 甲类功率放大器的设计 (15)3.2.1 计算电路性能参数 (15)3.2.2计算静态工作点 (16)4.仿真测试 (17)4.1 multisim软件简介 (17)4.2 仿真电路及仿真波形图 (18)5.实际电路组装与调试 (19)5.1 电路组装要点 (19)5.2 高频谐振功率放大器的调整 (19)5.3实际电路模型及调试结果 (20)6.心得体会 (21)参考文献: (22)附录:元件清单 (23)摘要利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要单元电路。
⾼频⼩信号谐振放⼤器的设计⾼频⼩信号谐振放⼤器的设计⾼频⼩信号谐振放⼤器课程设计任务书1、设计课题:⾼频⼩信号谐振放⼤器2、设计⽬的:设计⼀个⼯作电压为9V ,中⼼频率为20MHz 的⾼频⼩信号谐振放⼤器,可⽤作接收机的前置放⼤器和中频放⼤器。
3、主要技术指标及要求 (1)已知条件及主要技术指标已知条件:负载电阻Ω=k R L 1,电源电压V V cc 9+=。
技术指标:1中⼼频率MHz f o 20=; 2电压增益dB A uo 1≥∑(10倍); 3通频带MHz f 427.0=?; 4电路结构采⽤分⽴元件。
(2)设计的主要⼯作 1收集资料、消化资料;2选择原理电路,计算电路参数并仿真分析; 3制作印制电路板⼀张;4绘制电路原理图⼀张(A4图纸); 5绘制元件明细表⼀张(A4图纸); 6绘制印制电路板底图⼀张(A4图纸);7撰写设计报告⼀份,要求字数在3000字以上。
(3)时间安排1总时间四天,最后半天(4学时)为答辩时间;2星期⼀完成系统⽅案、电路原理图设计并计算电路参数; 3星期⼆上午完成电路参数的计算; 4星期⼆下午完成电路仿真; 5星期三撰写设计报告、绘图;6星期四完善资料,准备答辩,答辩过程分两步完成,前2节课时间分⼩组答辩,并初步推举出优秀设计2~4个;后2节课时间为优秀设计集中答辩时间。
(4)注意事项1作图必须规范,图幅整洁;2设计报告内容详细,叙述清楚,计算准确,有根有据,书写⼯整; 3独⽴完成任务。
第⼀章系统⽅案设计⼀、电路结构的选择根据设计任务书的要求,因放⼤器的增益⼤于20dB ,且MHz f o 20=,MHz f 427.0=?,采⽤单级放⼤器即可实现,拟定⾼频⼩信号谐振放⼤器的电路原理图如图1-1所⽰。
⼆、电路的⼯作过程(⼀)静态⼯作过程当输⼊信号ui=0V 时,放⼤器处于直流⼯作状态(静态)。
理想情况下,变压器T1的次级、变压器T2的初级视为短路,电容器Cb 、Ce 、Cf 视为开路,放⼤器的直流通路如图1-2(a)所⽰。
课程名称:高频电子线路设计课题:高频谐振功率放大器系别:机电工程学院专业班级:电子信息工程学生姓名:指导教师:设计时间:2009/12/7 —2009/12/12高频谐振功率放大器设计者:指导教师:摘要:本电路主要由谐振回路、耦合回路、基极偏置电路三部分组成。
本电路主要应用于发射机的末级功率放大,突出特点为有较高的输出功率和效率。
关键词:高频;甲类功放;丙类功放;谐振引言:利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要单元电路。
根据放大器中晶体管工作状态的不同或晶体管电流导通角θ的范围,可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角越小,放大器的效率越高。
丙类放大器的导通角θ<90%,效率η可达到80%,高频功率放大器一般选择在丙类工作状态。
本设计采用甲类功放输出的最大不失真信号作为激励源,丙类功放作为末级功放以获得较大的输出功率和较高的效率。
1设计任务与要求设计一个高频谐振功率放大器。
=3W ,工作中心频率f0≈6.5MHz ,效率η>50 % ,负技术要求:输出功率P载RL=50Ω,电源电压VCC=9V,2△f0.7=3.25MHz2方案设计与论证利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180°,效率最高也只能达到50%,而丙类功放的θ<90%,效率η可达到80%。
甲类放大器电流的流通角为180°,适用于小信号低功率放大。
乙类放大器导通角等于180°;丙类放大器导通角则小于180°。
乙类和丙类都适用于大功率工作。
丙类工作状态的输出功率和效率是三种工作状态中最高者。
高频功率放大器大多工作于丙类。
但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。
单调谐小信号谐振放大器设计引言谐振放大器是一种电子放大电路,它的输入和输出都是谐振频率。
在无线通信、放大放大器、滤波器和振荡器等电子设备中广泛应用。
本文将介绍单调谐小信号谐振放大器的设计方法和步骤。
一、谐振放大器的原理谐振放大器的设计基于谐振频率的放大,其原理如下:1.输入信号通过输入网络进入放大器。
2.放大器中的增益网络对输入信号进行放大。
3.输出信号通过输出网络输出。
二、单调谐小信号谐振放大器的设计步骤在进行单调谐小信号谐振放大器的设计之前,我们需要明确一些重要的参数:1.频率范围:确定需要放大的频率范围。
2.谐振频率:确定谐振频率。
3.放大增益:确定需要的放大增益。
4.设计目标:根据应用需求确定设计目标。
设计步骤如下:1.确定放大器的类型:根据应用需求选择合适的放大器类型,如共射放大器、共基放大器或共集放大器等。
2.确定大信号参数:计算输入信号的最大振幅和最大频率。
3.确定放大器的频率特性:根据输入信号的频率范围和谐振频率,计算并选择带通滤波器的元件参数。
4.进行放大器设计:根据放大增益的要求,计算并选择放大器的元件参数,如电阻、电容、电感等。
5.进行电源设计:计算并选择适当的电源电压和电源稳压电路。
6.进行仿真和优化:利用电磁仿真软件进行电路仿真,并根据仿真结果优化电路参数。
7.进行实验验证:根据设计结果制作实际电路并进行实验验证。
三、设计注意事项在进行单调谐小信号谐振放大器设计时,需要注意以下几个方面:1.输入和输出的匹配:确保输入输出网络与放大器的输入输出阻抗匹配,以提高功率传输效率。
2.稳定性:通过适当选择电容或电感等元件,可以提高放大器的稳定性。
3.线性度:在设计过程中,需要考虑放大器的线性度,以保证输入输出信号的准确性。
4.功率容量:根据应用需求确定放大器的功率容量。
结论单调谐小信号谐振放大器是一种常用的电子放大电路,其设计步骤包括确定放大器类型、大信号参数、频率特性、元件参数、电源设计,进行仿真和优化以及实验验证。
目录1前言 (1)2 丙类谐振功率放大器 (1)2.1 BJT使用注意事项 (1)2.1.1 集电极最大允许电流ICM (2)2.1.2 集电极最大允许耗散功率PCM (2)2.1.3 二极管击穿耐量PSB (2)2.1.4 发射极开路,集电极-基极间反向击穿电压U(BR)CEO (2)2.2 丙类谐振功率放大器电路 (2)2.3 丙类谐振功率放大器工作原理 (4)2.4 丙类谐振功率放大器电路分析 (4)2.4.1 丙类谐振功率放大器输入端采用自给偏置电路 (5)2.4.2 丙类谐振功率放大器输出端采用直流馈电电路 (5)2.4.3 匹配网络 (6)2.4.4 VBB 、VCM、VBM、VCC对丙类谐振功率放大器性能影响分析.. 63 丙类谐振功率放大器电路的设计 (11)3.1 丙类谐振功率放大器设计 (11)3.1.1 晶体管的选择 (11)3.1.2 判别三极管类型和三个电极的方法 (12)3.1.3 电容的选择 (12)3.2 电路设计与分析 (13)3.2.1电路设计基本事项 (13)3.2.2 电路设计与分析 (14)3.3 电路仿真 (15)3.3.1 ELECTRONICS WORKBENCH EDA 简介 (15)3.3.2 基于EWB电路仿真用例 (15)4 对丙类谐振功率放大器的展望 (17)结论 (17)谢辞 (18)参考文献 (19)1前言电子技术迅猛发展。
由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。
基本放大器是组成各种复杂放大电路的基本单元。
弱电控制强电在许多电子设备中需要用到。
放大器在当今和未来社会中的作用日益增加。
高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。
所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。
⾼频⼩信号调谐放⼤器的电路设计1⾼频⼩信号调谐放⼤器的电路设计与仿真1.1主要技术指标谐振频率:o f =10.7MHz谐振电压放⼤倍数:dB A VO 20≥通频带:MHz B w 17.0=矩形系数:101.0≤r K要求:放⼤器电路⼯作稳定,采⽤⾃耦变压器谐振输出回路1.2给定条件回路电感L=4µH, 0100Q =,11p =,20.3p =,晶体管⽤9018,β=50。
查⼿册可知,9018在V V ce 10=、mA I E 2=时,s g ie u 2860=,us g oe 200=,pf c oe 7=,pf c ie 19=,45fe y ms =,0.31re y ms =。
负载电阻Ω=K R L 10。
电源供电V V cc 12=。
1.3设计过程⾼频⼩信号放⼤器⼀般⽤于放⼤微弱的⾼频信号,此类放⼤器应具备如下基本特性:只允许所需的信号通过,即应具有较⾼的选择性;放⼤器的增益要⾜够⼤;放⼤器⼯作状态应稳定且产⽣的噪声要⼩;放⼤器应具有⼀定的通频带宽度。
除此之外,虽然还有许多其它必须考虑的特性,但在初级设计时,⼤致以此特性作考虑即可. 基本步骤是:⑴选定电路形式依设计技术指标要求,考虑⾼频放⼤器应具有的基本特性,可采⽤共射晶体管单调谐回路谐振放⼤器,设计参考电路见图1-1所⽰。
图1-1 单调谐⾼频⼩信号放⼤器电原理图⼩信号放⼤器的主要特点是晶体管的集电极负载不是纯电阻,⽽是由LC 组成的并联谐振回路,如图2-1所⽰。
由于LC 并联谐振回路的阻抗是随频率⽽变的,在谐振频率o f =达到最⼤值。
因此,⽤并联谐振回路作集电极负载的调谐放⼤器在回路的谢振频率上具有最⼤的放⼤电压增益。
稍离开此频率,电压增益迅速减⼩。
我们⽤这种放⼤器可以放⼤所需要的某⼀频率范围的信号,⽽抑制不需要的信号或外界⼲扰信号。
图中放⼤管选⽤9018,该电路静态⼯作点Q 主要由R b1和Rw1、R b2、Re 与Vcc 确定。
高频谐振功率放大器实验报告高频谐振功率放大器实验报告引言:高频谐振功率放大器是一种用于放大高频信号的重要电子元件。
它的设计和性能对于无线通信、雷达系统以及其他高频应用至关重要。
本实验旨在通过搭建一个高频谐振功率放大器的电路并进行测试,探究其工作原理和性能。
实验器材和方法:本实验使用的器材包括信号发生器、功率放大器、频谱分析仪以及示波器等。
首先,我们搭建了一个基于共射极放大器的高频谐振功率放大器电路。
然后,通过调节信号发生器的频率和功率放大器的偏置电压,我们得到了不同频率下的输出信号。
最后,通过频谱分析仪和示波器对输出信号进行测量和分析。
实验结果和讨论:在实验过程中,我们观察到了以下几点结果和现象。
1. 频率响应特性:通过改变信号发生器的频率,我们得到了功率放大器在不同频率下的输出功率。
我们发现,功率放大器的输出功率在某个特定频率附近达到最大值,而在其他频率下则显著降低。
这是因为在谐振频率附近,谐振电路对输入信号具有最大的增益,从而实现了信号的放大。
2. 谐振电路的选择:在实验中,我们使用了一个LC谐振电路作为功率放大器的输出匹配网络。
这是因为LC谐振电路具有较高的品质因数,能够在特定频率下实现较高的增益和较低的损耗。
同时,通过调节电感和电容的数值,我们可以调整谐振频率和带宽,以满足不同应用的需求。
3. 非线性失真:在实验中,我们注意到在谐振频率附近,功率放大器的输出信号存在一定的非线性失真。
这是因为功率放大器在工作过程中会引入非线性元件,如晶体管等。
这些非线性元件会导致输入信号的失真和谐波的产生。
因此,在实际应用中,我们需要采取相应的补偿措施,以减小非线性失真对系统性能的影响。
4. 功率放大器的效率:通过测量输入功率和输出功率,我们计算了功率放大器的效率。
我们发现,在谐振频率附近,功率放大器的效率较高,可以达到70%以上。
这是因为在谐振频率附近,功率放大器的输入和输出阻抗匹配较好,能够最大程度地转移能量。
实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。
为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图第 3 页共 17 页2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
其基本部分与图1-1相同。
图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1Q02为射极跟随器,主要用于提高带负载能力。
课程设计报告题目:基于multisim的高频谐振功率放大器设计与仿真学生姓名:学生学号:系别:电气信息工程学院专业:电子信息工程届别: 14届指导教师:电气信息工程学院制基于multisim的高频谐振功率放大器设计与仿真1课程设计的任务与要求1.1课程设计的任务在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
本次课程设计的任务就是设计一高频谐振功率放大器。
1.2 课程设计的要求要求的技术指标为:输出功率Po≥125mW,工作中心频率fo=6MHz,η>65%,已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)1.3 课程设计的研究基础利用选频网络作为负载回路的功放称为谐振功放。
根据放大器电流导通角的范围可分为甲类、乙类、丙类和丁类等功放。
电流导通角越小放大器的效率越高。
如丙类功放的小于180度,丙类功放通常作为发射机的末级,以获得较大的输出功率和较高的功率。
丙类谐振功率放大器原理图如图1所示。
图1谐振功率放大器的基本电路谐振功率放大器的特点:(1)放大管是高频大功率晶体管,能承受高电压和大电流。
(2)输出端负载回路为调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
(3)基极偏置电路为晶体管发射结提供负偏压,使电路工作在丙类状态。
(4)输入余弦波时,经过放大,集电极输出电压是余弦脉冲波形。
谐振功率放大器实例实验报告一、实验目的1.了解谐振功率放大器的工作原理;2.掌握谐振功率放大器的基本参数测量方法;3.通过实验验证理论计算结果与实际测量结果的吻合程度。
二、实验原理谐振功率放大器是一种利用谐振电路频率选择特性进行功率放大的放大器。
其工作原理基于放大元件(如晶体管)共振频率与谐振电路的谐振频率相吻合,以获得最大功率转换效率的目标。
三、实验装置1.功率放大器电路;2.频率发生器;3.直流稳压电源;4.示波器;5.电压表;6.电流表。
四、实验步骤1.按照给定的电路图搭建谐振功率放大器电路;2.将频率发生器接入电路,设置合适的频率和幅度;3.使用示波器观察输出波形,调整频率和幅度使得放大器工作在谐振频率点;4.使用电压表和电流表分别测量输入端和负载端的电压、电流,记录数据;5.根据测量数据计算功率放大器的功率增益、效率等参数;6.将测量结果与理论计算结果进行比较和分析;7.结束实验。
五、实验结果与分析根据实验数据和理论计算结果,得到功率放大器的功率增益为XdB,效率为X%。
通过比较发现,实验结果与理论计算结果吻合较好,验证了谐振功率放大器的工作原理和参数测量方法的准确性。
六、实验总结本实验通过搭建谐振功率放大器电路,使用示波器观察输出波形并测量电压、电流等参数,验证了谐振功率放大器的工作原理和性能参数的测量方法。
实验结果表明,谐振功率放大器具有较高的功率增益和效率,并且实验数据与理论计算结果吻合较好。
通过这次实验,我们对谐振功率放大器的原理有了更深入的理解,并掌握了相关的实际操作技巧,为今后的学习和研究打下了基础。
暂无。
以上是关于谐振功率放大器实例实验的报告,通过该实验我们能够更好地了解谐振功率放大器的工作原理和参数测量方法,并通过实验结果验证理论计算的准确性。
这对于我们深入理解功率放大器的工作原理和应用具有重要意义。
毕业设计(论文)任务书
2010 年 1 月 10 日至 2010 年 4 月 25 日题目:谐振功率放大电路的设计
姓名:
学号:
系部:物理系
专业:电子信息科学与技术
年级:二00六
指导教师:(签名)
系主任(或教研室主任):(签章)
谐振功率放大电路的设计
XX大学 XXX
摘要:
本论文利用所学的高频电子线路知识,设计一个高频功率放大器。
通过对电路的设计,来掌握高频谐振功率放大器的设计方法、电路调谐及测试技术。
加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。
高频功率放大器是发送设备的重要组成部分之一,在高频范围内,为了获得足够大的高频输出功率,就要采用高频功率放大器。
由于高频功率放大器的工作频率高,相对频带窄,所以一般采用选频网络作为负载回路。
功率放大电路的主要性能指标:输出功率、效率和非线性失真,而通常在实际应用中为了节省能量所以效率显得尤为重要,因此丙类工作状态为我们所采用,而在工作中为了滤除丙类工作中产生的众多高次谐波分量,因而采用LC谐振回路作为选频网络,也因此也称为丙类谐振功率放大电路
由于丙类谐振功率放大电路方便实用而且容易实现,所以本篇论文主要展示其工作原理、状态及效果。
关键词:谐振、功率、丙类谐振功率、放大电路的设计
目录
(一)设计原理 (5)
(二)谐振功率放大电路的工作原理 (7)
(三)选定器件 (11)
(四)安装调试 (12)
(五)结束语 (12)
(六)致谢 (13)
(七)参考文献 (13)
引言
高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。
高频功率放大器是通信系统中发送装置的重要组件。
按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出
随着现代信息技术的飞速发展和传统工业改造的逐步实现,功率放大电路的应用也变得越来越广泛,作为电子器件中最重要的的功率放大元件,功率放大器也是高频电子线路中需要我们学习的一门主要课程。
因此,这门课程也要求我们熟悉谐振功率放大器的工作方法及工作状态,懂得谐振功率放大器的工作原理并且能设计和测试简单的谐振功率放大电路。
因为功率放大器在实际应用中重要而广泛,所以谐振功率放大器的性能以及效率就显得尤为重要。
在放大器中根据晶体管的工作状态的不同,或晶体管集电极导通角的范围的差异,放大器又可以分为甲、乙、丙、丁等不同的种类。
晶体管中电流的导通角越小,放大器的工作效率也就越高。
所以谐振功率放大器一般都工作在丙类状态,主要应用于无线发射机中,用来对载波信号或高频已调波信号进行功率放大。
正文
(一)设计原理
在设计谐振功率放大电路时,首先要根据放大器的工作频率和输出功率等要求选择适合的功率管。
然后,在依据回路传输效率和元件的数值以及整个电路的可实现性等要求选择适合的滤波匹配网络。
本论文根据放大器的各项工作指标,作如下设计:
1、谐振功率放大电路的结构:
功率管、直流馈电电路和滤波匹配网络三部分构成。
2、功率管:
放大器中功率管的选择可以分为:甲类、乙类、丙类、丁类和甲乙类等几种,在实际应用中考虑到功率管的效率、稳定性以及节能的需要我们通常选择丙类工作状态下的功率管。
3、直流馈电网络:
直流馈电网络可以分为串馈、并馈两类。
(1)其中串馈网络指的是:直流电源、滤波匹配网络和功率管在电路上串接的连接方式。
其中Lc为高频扼流圈,它与Cc构成电源滤波电路,Lc的感抗很大接近断路,Cc的容抗很小,接近短路。
这样就能避免信号电流通过直流而产生级间反馈,造成的不稳定情况。
(2)并馈电路网络指:直流电源Vcc、滤波匹配网络和功率管在电路上并接的一种连接方式。
其中Lc为高频扼流圈,上面Cc为直流电容起阻隔作用下面为电源滤波电容,这两个电容很小接近短路,Lc感抗很大接近断路。
采用这种馈电方式,虽然在连接上是并联,但是匹配网络两端的电压vc直接加载了Lc上,所以加在集电极上的电压vce=Vcc=vc,与串馈网路相同。
4、滤波匹配网络
对于交流通路而言,滤波网络应介于功率管T与外接负载R之间。
主要用来滤除电路中不需要的高次谐波分量。
(二)谐振功率放大电路的工作原理
( a )、( b )、分别为发送设备的中间放大级和末级放大器,( c )为相应的原理电路。
由图知,输入信号(又称为激励信号)经变压器耦合到晶体管的基极和发射极,
是直流电源电压,是基极偏置电源电压,为旁路电容,为电源滤波电容, L 、
C 组成并联谐振回路,作为集电极负载回路(或匹配网络),该回路又称为槽路,负载回路既可以实现选频滤波的功能,又实现阻抗匹配。
放大后的信号通过变压器耦合到负
载上(图( a ))或通过天线(图( b ))向空间辐射。
图( c )中的为 L 、C 回路的电阻。
放大器的工作状态决定于偏置电压的大小,当时,电路可工作在甲类状态,当时为乙类状态,当时为丙类状态,作为高频功率放大器,电路工作在丙类状态,流过晶体管的电流为余弦脉冲,集电
极效率。