动量守恒定律复习经典例题
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)dr r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.4.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出α射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核22286Rn 发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋21884Po 此过程动量守恒,若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能。
高中物理动量守恒定律专项训练100(附答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v tgt -=-解得:4282t s +=2.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.3.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m考点:牛顿第二定律;动量守恒定律;能量守恒定律.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、v2同向运动,并发生对心碰撞,碰后m2被右侧墙壁原速弹回,又与m1碰撞,再一次碰撞后两球都静止.求第一次碰后m1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m2速度的大小分别为和,由动量守恒定律得:(4分)两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE 损1=f·d=mv 20(1分),由能量守恒得:12mv 21+12mV 21=12mv 20-ΔE 损1(2分) 且考虑到v 1必须大于V 1,解得:v 1=13()26+v 0 设子弹射入第二块钢板并留在其中后两者的共同速度为V 2, 由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)2+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mvv M m'=-;7.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m =0.1kg .P 2的右端固定一轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得012/2v v m s ==,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 1022(2)mv Mv m M v '+=+ 解得2033/4v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能222102111•2+Mv 2m )0.2222P E mv M v J =-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得2222103211112+Mv 2mv +Mg 2222mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =8.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.9.如图所示,木块m 2静止在高h=0.45 m 的水平桌面的最右端,木块m 1静止在距m 2 左侧s 0=6.25 m 处.现木块m 1在水平拉力F 作用下由静止开始沿水平桌面向右运动,与 m 2碰前瞬间撤去F ,m 1和m 2发生弹性正碰.碰后m 2落在水平地面上,落点距桌面右端水平 距离s=l .2 m .已知m 1=0.2 kg ,m 2 =0.3 kg ,m 1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m /s 2)求:(1)碰后瞬间m 2的速度是多少? (2)m 1碰撞前后的速度分别是多少? (3)水平拉力F 的大小?【答案】(1)4m/s (2)5m/s ;-1m/s (3)0.8N 【解析】试题分析:(1)m 2做平抛运动,则:h=12gt 2; s=v 2t ; 解得v 2=4m/s(2)碰撞过程动量和能量守恒:m 1v=m 1v 1+m 2v 212m 1v 2=12m 1v 12+12m 2v 22代入数据解得:v=5m/s v 1=-1m/s (3)m 1碰前:v 2=2as11F m g m a μ-=代入数据解得:F=0.8N考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.10.如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B ,C 的上表面相平且B ,C 不粘连,A 滑上C 后恰好能到达C 板的最右端,已知A ,B ,C 质量均相等,木板C 长为L ,求①A 物体的最终速度 ②A 在木板C 上滑行的时间【答案】①34v ;②04L v 【解析】试题分析:①设A 、B 、C 的质量为m ,B 、C 碰撞过程中动量守恒, 令B 、C 碰后的共同速度为,则,解得,B、C共速后A以0v的速度滑上C,A滑上C后,B、C脱离A、C相互作用过程中动量守恒,设最终A、C 的共同速度,则解得②在A、C相互作用过程中,根据功能关系有(f为A、C间的摩擦力)代入解得20 16mvfL=·此过程中对C,根据动量定理有代入相关数据解得4Ltv=考点:动量守恒定律;能量守恒定律及动量定理.11.如图所示,水平光滑轨道AB与以O点为圆心的竖直半圆形光滑轨道BCD相切于B 点,半圆形轨道的半径r=0.30m.在水平轨道上A点静止放置一质量为m2=0.12kg的物块2,现有一个质量m1=0.06kg的物块1以一定的速度向物块2运动,并与之发生正碰,碰撞过程中无机械能损失,碰撞后物块2的速度v2=4.0m/s.物块均可视为质点,g取10m/s2,求:(1)物块2运动到B点时对半圆形轨道的压力大小;(2)发生碰撞前物块1的速度大小;(3)若半圆形轨道的半径大小可调,则在题设条件下,为使物块2能通过半圆形轨道的最高点,其半径大小应满足什么条件.【答案】【小题1】7.6N【小题2】6.0m/s【小题3】0.32m【解析】(1)设轨道B点对物块2的支持力为N,根据牛顿第二定律有N-m2g=m2v22/R解得 N=7.6N根据牛顿第三定律可知,物块2对轨道B点的压力大小N′=7.6N(2)设物块1碰撞前的速度为v0,碰撞后的速度为v1,对于物块1与物块2的碰撞过程,根据动量守恒定律有 m1v0=mv1+m2v2因碰撞过程中无机械能损失,所以有m1v02=m1v12+m2v22代入数据联立解得 v0=6.0m/s(3)设物块2能通过半圆形轨道最高点的最大半径为R m,对应的恰能通过最高点时的速度大小为v,根据牛顿第二定律,对物块2恰能通过最高点时有 m2g=m2v2/R m对物块2由B运动到D的过程,根据机械能守恒定律有m2v22=m2g•2R m+m2v2联立可解得:R m=0.32m所以,为使物块2能通过半圆形轨道的最高点,半圆形轨道半径不得大于0.32m12.如图所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M=1kg的小物块A.装置的中间是水平传送带,它与左、右两边的台面等高,并能平滑对接.传送带始终以v=1m/s的速率逆时针转动,装置的右边是一光滑曲面,质量m=0.5kg的小物块B从其上距水平台面高h=0.8m处由静止释放.已知物块B与传送带之间的动摩擦因数0.35μ=,l=1.0m.设物块A、B间发生的是对心弹性碰撞,第一次碰撞前物块A处于静止状态.取g=10m/s2.(1)求物块B与物块A第一次碰撞前的速度大小;(2)物块A、B间发生碰撞过程中,物块B受到的冲量;(3)通过计算说明物块B与物块A第一次碰撞后能否运动到右边的曲面上?(4)如果物块A、B每次碰撞后,弹簧恢复原长时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B第n次碰撞后的运动速度大小.【答案】(1)3m/s;(2)2kgm/s;(3)17l<,所以不能;(4)113nms-⎛⎫⎪⎝⎭【解析】【分析】物块B沿光滑曲面下滑到水平位置由机械能守恒列出等式,物块B在传送带上滑动根据牛顿第二定律和运动学公式求解;物块A、B第一次碰撞前后运用动量守恒,能量守恒列出等式求解;当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B运动到左边台面是的速度大小为v1,继而与物块A发生第二次碰撞.物块B与物块A第三次碰撞、第四次碰撞…,根据对于的规律求出n次碰撞后的运动速度大小.【详解】(1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律可得: 2012mgh mv = 解得:04m v s= 设物块B 在传送带上滑动过程中因受摩擦力所产生的加速度大小为a ,则有:μmg=ma , 设物块B 通过传送带后运动速度大小为v ,有:v 12-v 02=-2al ,解得:v 1=3m/s >v=1m/s ,则物块B 与物块A 第一次碰撞前的速度大小为3m/s ;(2)设物体A 、B 第一次碰撞后的速度分别为A v 、B v ,取向右为正方向由动量守恒定律得:1A B mv Mv mv -=+ 由机械能守恒定律得:2221111222B A mv mv Mv =+ 解得:v A =-2m/s ,v B =1m/s ,(v A =0m/s ,v B =-3m/s 不符合题意,舍去)12?B m I P mv mv kg s=∆=-= ,方向水平向右; (3) 碰撞后物块B 在水平台面向右匀速运动,设物块B 在传送带上向右运动的最大位移为l',则有:0-v B 2=-2al′, 解得:17l l '=< 所以物块B 不能通过传送带运动到右边的曲面上;(4) 当物块B 在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B 运动到左边台面是的速度大小为v B ,继而与物块A 发生第二次碰撞由(2)可知,v B =113v 同理可得:第二次碰撞后B 的速度:v B1=2111()33B v v =第n 次碰撞后B 的速度为:v B (n-1)=1111()()33n n m v s-= 【点睛】本题是多过程问题,分析滑块经历的过程,运用动量守恒,能量守恒、牛顿第二定律和运动学公式结合按时间顺序分析和计算,难度较大.。
高中物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
2.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面.A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P2向左滑行距离:22222.25m2vsa'==所以P1、P2静止后距离:△S=L-S1-S2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解4.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450.【答案】最多碰撞3次【解析】解:设小球m的摆线长度为l小球m在下落过程中与M相碰之前满足机械能守恒:①m和M碰撞过程是弹性碰撞,故满足:mv0=MV M+mv1 ②③联立②③得:④说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:mv1=MV M1+mv2 ⑤⑥解得:⑦整理得:⑧故可以得到发生n 次碰撞后的速度:⑨而偏离方向为450的临界速度满足:⑩联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。
动量守恒定律应用的各种题型1.两球碰撞型【例题1】甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P 1=5kgm/s ,P 2=7kgm/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kgm/s ,则二球质量m 1与m 2间的关系可能是下面的哪几种?A 、m 1=m 2B 、2m 1=m 2C 、4m 1=m 2D 、6m 1=m 2。
★解析:甲乙两球在碰撞过程中动量守恒,所以有: P 1+P 2= P 1,+ P 2,即:P 1,=2 kgm/s 。
由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加。
所以有:22'212'12221212222m P m P m P m P +≥+ 所以有:m 1≤5121m 2,不少学生就选择(C 、D )选项。
这个结论合“理”,但却不合“情”。
因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有2211m P m P 〉,即m 1275m 〈;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即2'21'1m P m P 〈,所以 2151m m 〉。
因此选项(D )是不合“情”的,正确的答案应该是(C )选项。
2、子弹打木块型(动量守恒、机械能不守恒)【例题2】质量为m 的子弹,以水平初速度v 0射向质量为M 的长方体木块。
(1)设木块可沿光滑水平面自由滑动,子弹留在木块内,木块对子弹的阻力恒为f ,求弹射入木块的深度L 。
并讨论:随M 的增大,L 如何变化?(2)设v 0=900m/s ,当木块固定于水平面上时,子弹穿出木块的速度为v 1=100m/s 。
若木块可沿光滑水平面自由滑动,子弹仍以v 0=900m/s 的速度射向木块,发现子弹仍可穿出木块,求M/m 的取值范围(两次子弹所受阻力相同)。
1、两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。
质量为m的小球以速度v1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H和物块的最终速度v。
点评:本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。
2.子弹打木块类问题
【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均
阻力的大小和该过程中木块前进的距离。
点评:这个式子的物理意义是:f·d恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
3.反冲问题
在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例4】质量为m的人站在质量为M,长为L的静止小船
的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船
左端离岸多远?
4.爆炸类问题
【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒
【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?
点评:以动量守恒定律等知识为依托,考查动量守恒条件的理解与灵活运用能力
易出现的错误:(1)对动量守恒条件理解不深刻,对系统水平方向动量守恒感到怀疑,无法列出守恒方程.(2)找不出圆环与小球位移之和(L-L cosθ)。
6.物块与平板间的相对滑动
【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A 开始向左运动,B开始向右运动,最后A不会滑离B,求:
(1)A、B最后的速度大小和方向;
(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
【例8】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度;(2)滑块C离开A时的速度。