浅谈分子对称性
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
第四章 分子的对称性§4.1 对称性操作和对称元素§ <1>分子对称性概念原子组成分子构成有限的图形,具有对称性。
与晶体的对称性不同。
晶体的主要对称性是点阵结构,而分子的对称性主要是指分子骨架在空间的对称性以及分子轨道(波函数)的对称性。
○1分子对称性:指分子的几何图形(原子骨架和原子、分子轨道空间形状)中有相互等同的部分,而这些等同部分互相交换以后,与原来的状态相比,不发生可辨别的变化,即交换前后图形复原。
○2对称操作:不改变物体内部任何两点间的距离,使图形完全复原的一次或连续几次的操作。
(借助于一定几何实体)○3对称元素:对图形进行对称操作,所依赖的几何要素,如:点,线,面及其组合。
<2>对称元素及相应的对称操作○1恒等元素和恒等操作,(E ) ΛE 所有分子图形都具有。
○2旋转轴(对称轴)和旋转操作,Λn n C C ,;对称轴是一条特定的直线。
绕该线按一定方向(逆时针方向为正方面)进行一个角度θ旋转,nπθ2=如:H 2O : πθ21==n 。
分子中可能有 n 个对称轴,其中n 最大的称为主轴,其它称为非主轴,如:BF 3 ,主轴C 3 ,三个C 2垂直于C 3 与分子平面平行。
n C 将产生n 个旋转操作:E =-nn n n n n C C C C ,,,,12逆时旋转为正操作,k n C ;顺时旋转为逆操作,k n C -。
)(k n nk n C C --= 分子图形完全复原的最少次数称操作周期,旋转操作的周期为 n ;分子中,nC的轴次不受限制,n 为任意整数。
如: E =→332333,,C C C C○3对称和反映操作。
Λσσ, :对称面是一个特定的镜面,把分子图形分成两个完全相等的对称部分,两部分之间互为镜中映像,对称操作是镜面的一个反映。
图形中相等的部分互相交换位置,其反映的周期为2。
E =Λ2σ。
对称面可分为:v σ面:包含主轴; h σ面:垂直于主轴;d σ面:包含主轴且平分相邻'2C 轴的夹角(或两个v σ之间的夹角)。
分子的对称性的概念和性质
分子的对称性是指分子内部的元素和化学键的排列方式能够使分子具有某种对
称性质,例如轴对称、面对称或中心对称等。
分子的对称性具有以下性质:
1. 对称性越高,分子越稳定。
高对称性的分子能更好地分散电荷,使电子对于分子的外界环境的影响降低,从而提高其稳定性。
2. 对称性决定了部分分子性质。
例如,分子的光学旋光性、通过红外光谱确定的基团、共振能力和一些电学性质,都与其对称性有关。
3. 不同的分子对称性能够使分子之间的相互作用发生变化。
例如,对称性相同的分子之间的吸引力强于对称性不同的分子,因为它们之间的电场相互作用更强。
4. 分子的对称性还决定了它们在不同状态下的性质。
例如,具有闭壳层分子轨道的分子具有惰性,而具有非闭壳层分子轨道的分子具有较强的反应性和化学活性。
第四章 分子的对称性§4.1 对称性操作和对称元素§ <1>分子对称性概念原子组成分子构成有限的图形,具有对称性。
与晶体的对称性不同。
晶体的主要对称性是点阵结构,而分子的对称性主要是指分子骨架在空间的对称性以及分子轨道(波函数)的对称性。
○1分子对称性:指分子的几何图形(原子骨架和原子、分子轨道空间形状)中有相互等同的部分,而这些等同部分互相交换以后,与原来的状态相比,不发生可辨别的变化,即交换前后图形复原。
○2对称操作:不改变物体内部任何两点间的距离,使图形完全复原的一次或连续几次的操作。
(借助于一定几何实体)○3对称元素:对图形进行对称操作,所依赖的几何要素,如:点,线,面及其组合。
<2>对称元素及相应的对称操作○1恒等元素和恒等操作,(E ) ΛE 所有分子图形都具有。
○2旋转轴(对称轴)和旋转操作,Λn n C C ,;对称轴是一条特定的直线。
绕该线按一定方向(逆时针方向为正方面)进行一个角度θ旋转,nπθ2=如:H 2O : πθ21==n 。
分子中可能有 n 个对称轴,其中n 最大的称为主轴,其它称为非主轴,如:BF 3 ,主轴C 3 ,三个C 2垂直于C 3 与分子平面平行。
n C 将产生n 个旋转操作:E =-nn n n n n C C C C ,,,,12逆时旋转为正操作,k n C ;顺时旋转为逆操作,k n C -。
)(k n nk n C C --= 分子图形完全复原的最少次数称操作周期,旋转操作的周期为 n ;分子中,nC的轴次不受限制,n 为任意整数。
如: E =→332333,,C C C C○3对称和反映操作。
Λσσ, :对称面是一个特定的镜面,把分子图形分成两个完全相等的对称部分,两部分之间互为镜中映像,对称操作是镜面的一个反映。
图形中相等的部分互相交换位置,其反映的周期为2。
E =Λ2σ。
对称面可分为:v σ面:包含主轴; h σ面:垂直于主轴;d σ面:包含主轴且平分相邻'2C 轴的夹角(或两个v σ之间的夹角)。
分子的对称性和空间构型在化学中,分子的对称性和空间构型是两个重要的概念。
对称性是指分子在一些操作下保持不变的性质,而空间构型则是描述分子中原子的相对位置和排列方式。
这两个概念在研究分子性质和反应机理中起着至关重要的作用。
首先,让我们来探讨分子的对称性。
对称性是指分子在一些操作下保持不变的性质,比如旋转、反射、转动等。
分子的对称性可以通过对称元素来描述,包括轴对称元素和面对称元素。
轴对称元素是指分子中存在一个轴,沿着这个轴旋转分子一定角度后,分子与原来的位置完全重合。
常见的轴对称元素有Cn轴(n为整数)和S2n轴(n为整数)。
面对称元素是指分子中存在一个面,将分子沿着这个面反射后,分子与原来的位置完全重合。
常见的面对称元素有σ面。
对称性对于分子的性质和反应机理的研究非常重要。
对称性可以决定分子的光谱性质、化学反应的速率和选择性等。
例如,分子的对称性可以决定分子的振动光谱中是否存在红外活性峰。
在化学反应中,对称性可以决定反应的速率和反应产物的选择性。
因此,通过对分子的对称性进行研究,可以更好地理解分子的性质和反应机理。
接下来,我们来讨论分子的空间构型。
空间构型是描述分子中原子的相对位置和排列方式的概念。
分子的空间构型可以通过分子的立体结构来描述。
分子的立体结构可以通过实验技术如X射线衍射、核磁共振等确定。
在分子的立体结构中,原子的相对位置和排列方式对于分子的性质和反应机理有着重要的影响。
例如,分子的立体结构可以决定分子的手性性质。
手性分子是指与其镜像不可重叠的分子,具有手性的分子在光学活性、药物作用等方面表现出独特的特性。
此外,分子的立体结构还可以决定分子之间的相互作用,如分子间的氢键、范德华力等。
分子的对称性和空间构型在化学中的应用非常广泛。
在有机化学中,对称性和空间构型的研究可以帮助我们理解有机分子的合成和反应机理。
在无机化学中,对称性和空间构型的研究可以帮助我们理解无机化合物的性质和反应机理。
浅谈分子对称性
摘要:在分子中,原子固定在其平衡位置上,其空间排列是个对称的图像,利用对称性原理探讨分子的结构和性质,是人们认识分子的重要途径,是了解分子结构和性质的重要方法。
分子对称性是联系分子结构和分子性质的重要桥梁之一。
它能简明地表达分子的构型,指导化学合成工作,帮助正确地了解分子的性质,可简化分子构型的测定二作。
关键词:分子对称性对称元素对称操作对称点群群论
对称性描述分子的对称性表现并根据分子的对称性对分子作分类。
分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和它的光谱学数据(以拉波特规则之类的选择定则为基础)。
在大学程度的物理化学、量子化学与无机化学教科书中,都有关于对称性的章节。
分子对称性的研究是取自于数学上的群论。
一、对称元素
分子对称性可分成5种对称元素。
旋转轴:分子绕轴旋转度角后与原分子重合,此轴也称为n重旋转轴,简写为Cn。
例如水分子是C2而氨是C3。
一个分子可以拥有多个旋转轴;有最大n 值的称为主轴,为直角坐标系的z轴,较小的则称为副轴。
n≥3的轴称高次轴。
对称面:一个平面反映分子后和原分子一样时,此平面称为对称面。
对称面也称为镜面,记为σ。
水分子有两个对称面:一个是分子本身的平面,另一个是垂直于分子中心的平面。
包含主轴,与分子平面垂直的对称面称为垂直镜面,记为σv;而垂直于主轴的对称面则称为水平镜面,记为σh。
等分两个相邻副轴夹角的镜面称等分镜面,记作σd。
一个对称面可以笛卡尔坐标系识别,例如(xz)或(yz)。
对称中心:从分子中任一原子到分子中心连直线,若延长至中心另一侧相等距离处有一个相同原子,且对所有原子都成立,则该中心称为对称中心,用i表示。
对称中心可以有原子,也可以是假想的空间位置。
二、对称操作
这5种对称元素都有其对称操作。
对称操作为了与对称元素作区别,通常但不绝对的,会加上脱字符号(caret)。
所以?n是一个分子绕轴旋转,而Ê;为其恒等元素操作。
一个对称元素可以有一个以上与它相关的对称操作。
因为C1 与E、S 与σ 、S 与i相等,所有的对称操作都可以分成真转动或非真转动(proper or improper rotations)。
三、对称点群
点群是一组对称操作(symmetry operation),符合数论中群的定义,在群中的所有操作中至少有一个点固定不变。
三维空间中有32组这样的点群,其中的30组与化学相关。
它们以向夫立符号为分类基础。
四、群论
一个对称操作的集合组成一个群,with operator the application of the operations itself,当:
连续使用(复合)任两种对称操作的结果也在群之中(封闭性)。
对称操作的复合符合乘法结合律:A(BC)= AB(C)群包含单位元操作,符号E,例如AE = EA = A对于群中的任何操作A。
在群中的每个操作,都有一个相对应的逆元素A,而且AA = AA = E
群的阶为该群中对称操作的数目。
例如,水分子的点群是C2v,对称操作是E,C2,σv 和σv’。
它的顺序为4。
每一个操作都是它本身的相反。
以一个例子做结,在一个σv反射后做再一个C2旋转会是一个σv’ 对称操作(注意:”在B后做A操作形成 C 记作BA = C”):
σv*C2 = σv’
五、表示
对称操作可用许多方式表示。
一个方便的表征是使用矩阵。
在直角坐标系中,任一个向量代表一个点,将其以对称操作转换左乘(left-multiplying)得出新的点。
结合操作则为矩阵的乘法:C2v 的例子如下:
像这样的表示虽然存在无限多个,但是群的不可约表示(或irreps)被普遍使用,因为所有其他的群的表示可以被描述为一个不可约表示的线性组合。
六、特征表
对每个点群而言,一个特征表汇整了它的对称操作和它的不可约表示(irreducible representations)的资料。
因为它总是与不可约表示的数量和对称操作的分类相等,所以表格都是正方形。
表格本身包含了当使用一个特定的对称操作时,特定的不可约表示如何转换的特征。
在一个分子点群中的任一作用于分子本身的对称操作,将不会改变分子点群。
但作用于一般实体,例如一个向量或一个轨域,这方面的需求并非如此。
矢量可以改变符号或方向,轨域可以改变类型。
对于简单的点群,值不是 1 就是?1:1表示符号或相位(矢量或轨域)在对称操作的作用下是不变的(对称),
而-1表示符号变成(不对称)
根据下列的规定标示表征:
A,绕主轴旋转后为对称B,绕主轴旋转后为不对称E 和T 分别代表二次和三次退化表征当点群有对称中心,符号的下标g (德语:gerade 或even)没有改变,符号的上标u (ungerade或uneven)依反转而改变。
点群C∞v和D∞h的符号借用角动量的描术:Σ,Π,Δ.
表中还记录如下的资料:笛卡尔矢量及其如何旋转,和它的二次方程的如何用群的对称操作来转换,特别是以相同方法转换不可约表示。
这些资料一般显示在表格的右边。
这些资料是有用的,因为分子中的化学重要轨道(特别是p 和 d 轨道)具有相同的对称性。
承接C2v的例子,考虑水分子中氧原子的轨域:2px垂直于分子平面,且以一个C2 与一个σv’(yz)操作改变符号,但与其他两个操作仍保持不变(显而易见的,恒等操作的特征恒为+1)。
因此这个轨域的特征集合为(1,-1,1,-1),与B1不可约表示相符合。
同样地,2pz轨域被认为有A1不可约表示的对称性,2py B2,和3dxy轨域A2。
这些分配和其他的都在表格最右边的两个字段中注明。
七、结束语
自然界普遍存在着对称性,从宏观到微观世界都存在着对称性,利用对称性概念及有关原理和方法去解决我们遇到的问题,可以使我们对自然现象及其运动发展规律的认识更加深入。
参考文献:
[1]阎西林. 晶体物理学[M]. 电子工业出版社,1995
[2]何福城;朱正和结构化学1980
[3]谢有畅;邵美成无机化学1979
[4]林琼桂,Clebsch-Gordan 系数的对称性,大学物理28 (2)(2009)1-2.。