十二次费马点及拓展PPT课件
- 格式:ppt
- 大小:2.28 MB
- 文档页数:7
费马点就是指在三角形所在的平面内,到三角形三个顶点的距离的和最小的点.回答者:幽幽¢晴空- 初入江湖二级7-12 20:59 浅谈三角形的费马点法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.本文试以课本上的习题、例题为素材,根据初中学生的认知水平,针对这个问题拟定一则思维训练材料,引导学生通过自己的思维和学习,初步了解这个问题的产生、形成、推理和论证过程及应用.1.三角形的费马点已知:如图1,ΔABD、ΔAEC都是等边三角形.求证:BE=DC.这个题目证明比较容易,下面提几个问题供同学们思考.思考1 在ABC的BC边再作等边三角形BCF,并连接AF如图2,可得到什么结论?是否有(1)BE=CD=AF?(2)BE、CD、AF三线交于一点O?(3)∠AOB=∠BOC=∠COA=120°?思考2 如将原题的图1改成图3,并连接DE,还能得到什么结论?(1)原题的结论仍然成立:BE=CD.(2)若∠ADC=120°,则D点在等边ΔAEC的外接圆上.D、B、E共线,由BE=CD有:AD+CD=DE;若∠ADC≠120°,易证AD +DC>DE.得到下列命题.定理1 等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.思考3 根据上述定理,在图2中还有(1)OA+OB+OC=AF.(2)在ΔABC内另取一点O,总有O′A+O′B+O′C>AF,即OA+OB+OC<O′A+O′B+O′C.(3)点O是ΔABC所在平面上到三个顶点距离之和为最小的点.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.2.水管线路最短问题如图4,要在河边修建一个水泵站,分别向张村、李庄供水,修在河边什么地方,可使所用水管最短?这是一个很有意义的应用题,在公路,自来水或煤气管道线路设计等方面都有一定价值.假如不是由水泵站C直接向A、B两地供水,那么本例用“对称点”方法所确定的线路CA+CB并不是最短线路.易知当A、B、C三点所确定的三角形各角都小于120°时,在该三角内必存在费马点O有OA+OB+OC<CA+CB,可见水管总长还可以更小一些.于是水管线路最短问题即为A、B两点在直线L同侧,点C为L上一个动点的费尔马问题,下面分两类情况讨论这个问题.(1)AB与L的夹角小于30”.如图5,以AB为一边作正三角形ABM,并作ΔABM的外接圆.当所作外接圆与直线L相离或相切时,从M点作直线L的垂线,交圆于O点,垂足为C.C即为水泵站位置,先把水引到O点,再从O点分别向A、B两地供水,此时点O 更短,即在L上另选一点都不会改进.优的了,因为∠ABC≥120°,费马点就是点C也就是在C建水泵站直接向A、B两地供水.如果水泵站C选在P点的左侧,如图7,此时△ABC的费马点O必在在点P上,故L上点P的左侧不会有更好的点可选,同理Q点的右边也找不出更好的点.(2)AB与L的夹角不小于30°.如图8,若A点离直线L较近,作AC⊥L交于C,点C为水泵站位置,因为∠CAB≥120°,点A即为ΔABC的费马点,此时水管总长为CA+AB.在L上任意另取一点都不会再有改进.显然在点C的左侧取一点C′时,ΔABC′的费马点仍在A点,易知弧上(因为ΔABM的外接圆不会与L相交或相切),故必有;O′A+O′B+O′C=O′M+O′C>CA+AM=CA+AB.综上所述水管的最短线路有三种分别为“Y”字型“V”字型及“厂”字型.3.两个应用题文(4)谈到95年全国高考命题组,对应用题选编时曾考虑过如下两个题目:(1)一条河宽1km,两岸各有一座城市A与B,A与B的直线距离是4km,今须铺设一条电缆连A与B,已知地下电缆修建费用为2万元/km,水下电缆为4万元/km,假定河两岸是直线,问应如何架设电缆方可使总施工费用达到最小?(2)有四个点位于一个正方形的四个顶点上,须用线将它们连成一个网络(即从任何一点出发,可沿此网络中的线达到别的点),问此网络应以什么方式连接这四个点,方可使所用的线总长最小?汤建新,赵汉群曾在《中学数学》(湖北)1997.10月刊上发文(5)对(1)题作了详细讨论,并给出一个很巧妙的解答,使初中学生可以理解.用费马点也可这样去解,因为水底电缆每千米修建费为地下的两倍,如图9,实际上即为在河岸直线L上找一点C使AC +2BC最小,取B点关于L的对称点B′,因为BC=B′C故所求点C(电缆的下水点)即为ΔABB′的费马点,取∠BCA=120°即得.关于(2)题如图10,易知不论如何连接,所求的网络必通过正方形中心O点,问题转化为ΔABO与ΔDCO的费马问题,也可以转化为问题(1),详细解答请同学们考虑费马点编辑本段费马点定义在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。
费马点费马(Pierre de Fermat,1601--1665)法国业余数学家,拥有业余数学之王的称号,生于博蒙德罗曼。
其父曾任法国图卢兹地方法院的法律顾问。
本人身为律师,曾任图卢兹议会的顾问30多年。
他的一系列重要科学研究成果,都是利用业余时间完成的。
他是解析几何的发明者之一.在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。
他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。
他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。
费马还研究了对方程221yax=+整数解的问题。
得出了求导数所有约数的系统方法。
所谓的“费马点”就是法国著名数学家费马在给数学朋友的一封信中提出关于三角形的一个有趣问题:“在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.”让人家想,并自称已经证明了。
这是费马通信的一贯作风。
当时欧洲所有数学家对他都十分头疼的。
人们称这个点为“费马点”。
还有象著名的费马大定理也是这样,给欧拉的信中提出的,自称已经“有了非常巧妙的证明”。
可到死也没告诉人家这个所谓证明。
结果困扰世界数学界一百多年。
直到去年才解决。
著名的费马大定理是费马提出的至今尚未解决的问题。
1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不可能把任一个次数大于2的方幂表示成两个同方幂的和。
” 即:)3(,2≥=+nzyx nn无整数解。
1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。
费马在光学方面,确立了几何光学的重要原理,命名为费马原理。
这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。