各种无功补偿装置性能大比较
- 格式:pdf
- 大小:121.96 KB
- 文档页数:2
4.3.4 各种补偿装置的比较1 动态无功补偿效果和应用SVC/STATCOM可以提供动态无功功率用以保证交流电压以满足并网要求,可以在几个周波内对交流电压的变化做出相应。
SVC/STATCOM 的快速响应特性可以减少系统故障时风电场电压跌落,增强了风电场的故障穿越能力;抑制电网故障清除后的过电压,降低由过电压导致的风电场切机的风险。
在正常运行方式下,恒功率因数控制的DFIG变速风电机组的运行特性与定速风电机组类似,只是无功功率需求量小于后者,所以采用SVC/STATCOM调解方案时,与用于图4-18中所示的定速风电机组风电场的调节效果相仿。
SVC/STATCOM等动态无功补偿设备最大的优点在于,电网故障期间可以提供快速无功支持,提高发电机机端电压,改善风电场暂态电压稳定性。
而基于DFIG变速风电机组的风电场也可以通过充分发挥风电机组自身控制系统的作用,改善风电场的暂态电压特性。
通过风电机组自身控制的作用不能满足系统要求时,采用SVC/STATCOM调节方案将具有更积极的作用。
基于永磁直驱(Permanent Magnet Synchronous,PMG)变速风电机组的风电场与基于DFIG变速风电机组的风电场有近似的运行特性,可采用相同的无功电压调节方案。
不过需要注意:PMG只与电网交换有功功率,基于PMG的风电机组与电网的无功功率交换由电网侧变流器完成,因此PMG发电机转速的变化不会对风电场的暂态电压稳定性造成直接影响;电网短路故障可能导致变流器闭锁,并切除风电机组,为了保证电网故障后的不间断运行,需要动态无功补偿设备的快速无功支持。
2 SVC 与STATCOM 的不同特点1)2) 无功功率特性在图4-13中,以补偿装置向系统输出的无功功率为负(即电感状态)时对应的电流为正,并有max max 0,0C L I I >>。
当系统在SVC 或STATCOM 装设点对无功功率的需求在补偿装置的额定容量之内时,SVC 与STATCOM 在功能上无优劣之分。
矿用隔爆型动态无功补偿装置(SVG、TSC)原理介绍及优缺点比较一、原理简介1、静止无功发生器SVG(Static Var Generator)SVG的基本原理是,将电压源型逆变器,经过电抗器并联在电网上。
电压源型逆变器包含直流电容和逆变桥两个部分,其中逆变桥由全控型可关断的半导体器件IGBT组成。
BJS-500/1140型SVG原理简图工作中,通过调节逆变桥中IGBT器件的开关,可以控制直流逆变到交流的电压的幅值和相位,因此,整个装置相当于一个调相电源。
通过检测系统中所需的无功,可以快速发出大小相等、相位相反的无功,实现无功的就地平衡,保持系统实时高功率因数运行。
上图为SVG原理图,将系统看作一个电压源,SVG可以看作一个可控电压源,连接电抗器或者可以等效成一个线形阻抗元件。
表1给出了SVG三种运行模式的原理说明。
表1 SVG的三种运行模式运行模式波形和相量图说明空载运行模式UI = Us,IL = 0,SVG不吸发无功。
容性运行模式UI > Us,IL为超前的电流,其幅值可以通过调节UI来连续控制,从而连续调节SVG发出的无功。
感性运行模式UI < Us,IL为滞后的电流。
此时SVG吸收的无功可以连续控制。
SVG在中低压动态无功补偿与谐波治理领域得到越来越广泛的应用,其具有以下重要功用:● SVG可以补偿基波无功电流,补偿后功率因数可达到0.95以上,使被补偿网络的线电流下降30%以上,大大减小线路损耗,提升移动变压器带载能力,节能效果明显。
● SVG通过补偿基波无功电流,有效降低被补偿网络的无功突变,减小网络电压波动,抑制闪变,使供电电压更加平稳。
● SVG同时也具有有源滤波功能(APF),可对谐波电流进行补偿,能有效抑制被补偿网络中的5、7、11次谐波。
2、晶闸管投切电容器TSC(Thyristor Switched Capacitor)TSC的基本原理是按照一定的寻优模式,设计多组某次或某几次滤波器,基波下各支路呈容性,分级改变补偿装置的无功出力;滤波器某次谐波下调谐,滤该次谐波。
无功补偿装置的性能参数与指标解读无功补偿装置是一种重要的电力设备,用于管理和调整电力系统中的无功功率。
在现代电力系统中,无功功率是不可避免的,并且可能会导致诸多问题,如电压稳定性下降、效率低下、设备损坏等。
因此,无功补偿装置的性能参数与指标对于电力系统的运行和稳定至关重要。
本文将对无功补偿装置的性能参数与指标进行解读。
一、静态无功补偿装置(SVC)的性能参数与指标1. 静态无功补偿装置的基本性能参数包括无功容量、电压调制范围和响应速度等。
无功容量是指装置能够提供的无功功率大小,通常以千伏安(kVar)为单位。
电压调制范围表示装置能够在电力系统中调整电压的程度,一般以百分比表示。
响应速度是指装置从接收命令到实际调整无功功率所需的时间,常以毫秒(ms)为单位。
2. 静态无功补偿装置的指标包括无功补偿率和功率因数。
无功补偿率是指无功补偿装置所提供的无功功率与系统总无功功率的比值,通常以百分比表示。
功率因数是指电力系统中有功功率与视在功率的比值,它反映了电力系统的运行效率。
在静态无功补偿装置的作用下,功率因数可以得到显著改善,提高电力系统的效率。
二、动态无功补偿装置(DSTATCOM)的性能参数与指标1. 动态无功补偿装置的基本性能参数包括无功容量、电压调制范围、响应速度和谐波抑制能力等。
与静态无功补偿装置相比,动态无功补偿装置的无功容量通常更大,能够提供更高的无功功率。
电压调制范围表示装置对电压进行调整的幅度,响应速度表示调整电压所需的时间,谐波抑制能力表示装置对谐波电压的抑制效果。
2. 动态无功补偿装置的指标包括响应时间、跟踪能力和失控保护等。
响应时间是指装置从接收无功功率调整命令到实际调整所需的时间,它反映了装置的调节速度。
跟踪能力是指装置能否实时跟踪电力系统的无功功率需求。
失控保护是一种安全保护机制,用于防止装置失控或发生故障时对电力系统造成不利影响。
三、无功补偿装置的其他性能参数与指标除了上述提及的性能参数与指标外,还有一些其他的重要参数需要关注。
配电网四种无功补偿方式的比较电力系统中的电压与无功功率的状况密切相关,电力系统中的变化,特别是无功功率的变化,会使电力线路和变压器的电压损耗发生变化,并引起各节点电压的变化,随着电力系统装机容量的日益递增,而网络建设尤其是配电网的建设明显滞后,使10KV及以下配电网的损耗问题日益突出。
合理选择无功补偿方案和补偿容量,能有效提高系统的电压稳定性,保证电网的电压质量,提高发、输电设备的利用率,降低有功网损和减少发电费用。
标签:配电网;无功补偿;方式比较1配电及低压系统无功补偿种类无功补偿的补偿方式按照电压等级可分为高压补偿和低压补偿,其中高压补偿又分为一次侧补偿和二次侧补偿,低压补偿分为随机补偿、随器补偿和跟踪补偿。
按照投切方式可以分为静态补偿、动态补偿和动静相结合的补偿方式。
按照补偿地点划分可以分为四种,分别是:变电站高压补偿、线路分布补偿、变压器低压母线补偿和低压用户分散补偿。
每一种补偿方式都有自己的优势,必须结合农网的实际情况,进行综合对比。
按照“分层分区、就地补偿”这一原则,选用合理的无功补偿方案。
1.1变电站高压补偿变电站补偿是将电容器组连接在变电站的二次母线上,大多数采用静态补偿,也有投切方式的电容器组,但比较少。
开关设备主要选用断路器,对电容器组可实现较为完善的保护。
高压断路器的种类有油断路器、空气断路器、六氟化硫断路器、真空断路器和磁吹断路器,目前国内大多采用六氟化硫断路器,因为它的性能好,体积小,而且造价低。
由于农村变电站容量较小,因此,电容器组的安装容量大都在10000kVar以下,布置方式可专设电容器室或室外布置。
变电站补偿对农网的降损作用很小,但在下级补偿不够完善的情况下,它是保证总受电端功率因数达到考核标准的不可缺少的一种补偿方式。
高压补偿是无功平衡的一个重要组成部分,很多企业,尤其是是大中型企业存在很多高压负载,比如高压电动机、变压器、电炉等。
高压补偿的特点是电压高、补偿容量大,是低压的几倍到几十倍之多。
无功补偿的多种方式及各自的优缺点有哪些无功补偿是指通过投入无功功率来改善电力系统的功率因数和电压质量。
无功补偿的多种方式根据实现的方法和装置的种类,可以分为静态无功补偿和动态无功补偿。
下面将对这两种方式及其各自的优缺点进行详细说明。
静态无功补偿常见的方式有电容补偿、电抗补偿和混合补偿等。
电容补偿主要通过并联接入电容器的方式进行,它能够提高电力系统的功率因数,提高电源的容量利用效率,减小线路功率损耗,并改善电压的稳定性。
电容补偿的优点有:1.无需响应时间,能实现快速无功补偿;2.功率因数改善明显,系统稳定性较好;3.维护成本低,装置体积小;4.可靠性高,寿命长。
但电容补偿也存在一些缺点:1.稳态补偿效果受负荷变化的影响较大;2.补偿效果受谐波干扰的限制;3.对电源电压波动敏感,需配合电压调整设备。
电抗补偿主要通过串联电抗器的方式实现,它能够提高电力系统的电压质量,改善电网稳定性,减小潮流损耗,提高电能质量。
电抗补偿的优点有:1.对电源电压波动不敏感,较适合对电力系统进行长距离补偿;2.补偿稳态性能好,可适用于任意负荷;3.能抵抗系统谐波干扰。
电抗补偿的缺点是:1.响应速度较慢,不能实现快速的动态无功补偿;2.在低频部分容易产生谐振问题;3.需要较大的设备体积和投资成本。
混合补偿通常综合了电容补偿和电抗补偿的优点,通过同时串联接入电容器和并联接入电抗器的方式进行补偿。
混合补偿的优点有:1.能够综合利用电容补偿和电抗补偿的优点,使补偿效果更好;2.适用于各种负荷类型和负荷变化的场合;3.能够抑制谐波,提高电压质量;4.稳态和动态补偿效果均较好。
混合补偿的缺点是:1.需要更大的设备容量,增加了投资成本;2.响应时间相对较长。
动态无功补偿是指通过高速的开关装置来实现无功功率的补偿。
常见的动态无功补偿装置包括静态无功发生器(SVG)、静止补偿装置(SSC)和可变补偿器(VSC)等。
动态无功补偿的优点有:1.响应速度极快,可以实现毫秒级的无功补偿;2.能够实现连续调整补偿功率,适应负荷变化;3.能够抑制谐波,提高电压质量;4.对电源电压波动不敏感。
风电场动态无功补偿装置性能分析与比较牛若涛(北京京能新能源有限公司内蒙古分公司,内蒙古呼和浩特 010070) 摘 要:近年来,随着风力发电接入电网规模的逐步扩大,风电场无功补偿装置的补偿能力和响应时间等参数越来越受到各方重视。
同时,随着电力电子技术的快速发展,应用于风电无功补偿装置的新材料新工艺也不断涌现。
文章简要介绍风电场无功补偿装置的发展历史,重点介绍目前常用的各种风电场无功补偿装置的工作原理和系统组成,对各种补偿装置的运行特性、主要参数进行了详细的分析与比较。
关键词:静止型动态无功补偿;SVC;T CR;SVG 中图分类号:T M7 文献标识码:A 文章编号:1006—7981(2012)23—0095—03 2011年是我国陆上风电产业继续发展的一年,仅内蒙古地区就增加吊装容量3736.4M W,累计容量17594.4M W。
随着区域性风电场开发容量的逐渐扩大,风电机组并网对系统造成的影响越来越明显。
国内目前的风电场大多采用感应式异步发电机,并入电网运行时需要吸收系统的无功功率。
在风电场集电线路母线安装无功补偿设备则可以提供异步发电机所需的无功功率,降低电网因输送无功功率造成的电能损耗,改善电网的运行条件。
本文结合目前风电场广泛使用的不同类型无功补偿装置的运行维护经验,从无功补偿装置的原理、系统组成及功能特性等方面进行了对比分析,得出了风电场最优的无功补偿配置方案。
1 无功补偿装置发展风力发电机组多数是异步发电机组,输出有功功率的同时,需要从电网吸收一定的无功功率,容易引起并网点的电压波动,通常采用在风电场集电线路母线上安装静止型无功补偿装置SVC(Static V ar Compensator)的方式进行治理。
SVC的发展历程大体可分为如下三个阶段:第一阶段:早期的并联电容器组静态补偿装置,用电容器补偿容性无功。
后来的磁阀式可控电抗器(M CR),采用直流助磁原理,利用附加直流励磁磁化铁心(自耦电抗器),改变铁心磁导率,实现电抗值的阶段性连续调整。
⽆功补偿SVG-SVC-MCR-TCR-TSC的区别概要⽆功补偿SVG、SVC、MCR、TCR、TSC区别TSC TCR型SVC MCR型SVC SVG吸收⽆功分级连续连续连续响应时间20ms 20ms100ms 10ms运⾏范围容性感性到容性感性到容性感性到容性谐波受系统谐波影响⼤,⾃⾝不产⽣谐波受系统谐波影响⼤,⾃⾝产⽣⼤量谐波受系统谐波影响⼤,⾃⾝产⽣较⼤量谐波受系统谐波影响⼩,可抑制系统谐波受系统阻抗影响⼤⼤⼤⽆损耗⼩⼤较⼤⼩分相调节能⼒有限可以不可可以噪声较⼩较⼩⼩体积(同等容量)⼤⼤较⼤⼩TSC:晶闸管投切电容器,采⽤⽆源器件(电容器)进⾏⽆功补偿,分级补偿,不能实现连续可调。
TCR:晶闸管控制电抗器。
MCR:磁控电抗器,与TCR类似,需要和电容柜配合实现动态⽆功补偿,可实现连续可调。
SVC:静⽌⽆功补偿装置,采⽤⽆源器件进⾏⽆功补偿的技术总称,包括:TSC、TCR等,“静⽌”是与同步调相机对应,⼀般来说将使⽤晶闸管进⾏控制的补偿装置成为“SVC"。
SVG:静⽌⽆功发⽣器,采⽤电能变换技术实现的⽆功补偿。
SVG与其它的最⼤区别在于能主动发出⽆功电流,补偿负载⽆功电流。
⽽其它均为⽆源⽅式,依靠⽆源器件⾃⾝属性进⾏⽆功补偿。
静⽌⽆功补偿器(SVC) 与静⽌⽆功发⽣器(SVG)有什么异同?静⽌⽆功补偿器(SVC)该装置产⽣⽆功和滤除谐波是靠其电容和电抗本⾝的性质产⽣的。
静⽌⽆功发⽣器(SVG)该装置产⽣⽆功和滤除谐波是靠其内部电⼦开关频繁动作产⽣⽆功电流和与谐波电流相反的电流。
相关知识静⽌⽆功补偿器⼜称SVC,传统⽆功补偿⽤断路器或接触器投切电容,SCV⽤可控硅等电⼦开关,没有机械运动部分,所以较静态⽆功补偿装置。
通常的SVC组成部分为1.固定电容器和固定电抗器组成的⼀个⽆功补偿加滤波⽀路该部分适当选择电抗器和电容器容量,可滤除电⽹谐波,并补偿容性⽆功,将电⽹补偿到容性状态。
2.固定电抗器3.可控硅电⼦开关可控硅⽤来调节电抗器导通⾓,改变感性⽆功输出来抵消补偿滤波⽀路容性⽆功,并保持在感性较⾼功率因数。
无功补偿技术的比较研究无功补偿技术是电力系统中常用的一种技术手段,广泛应用于电力传输和分配过程中。
本文将对当前常见的三种无功补偿技术进行比较研究,包括静态无功补偿、动态无功补偿和混合无功补偿技术。
一、静态无功补偿技术静态无功补偿技术是通过静止性电子器件实现的无功补偿。
常见的静态无功补偿技术包括静态无功补偿装置(SVC)和静态同步补偿装置(STATCOM)。
SVC通过可控硅器件来实现电容和电感的不同接入方式,并通过控制这些器件的导通使无功功率补偿装置进行补偿。
STATCOM则通过采集电网电压的信息,在电源侧通过控制逆变器输出的电流来补偿无功功率。
静态无功补偿技术具有调节速度快、无功补偿效果好的特点,尤其适合对系统电压稳定性要求较高的场合。
然而,静态无功补偿技术的造价较高、容量限制较大,因此在大型电力系统中应用较多。
二、动态无功补偿技术动态无功补偿技术是通过旋转机械设备实现的无功补偿。
常见的动态无功补偿技术包括同步电动机无功补偿装置(SVC)和风力发电机组无功补偿装置。
同步电动机无功补偿装置通过调节同步电动机的励磁电流来实现无功功率的补偿。
它具有快速响应、无功补偿效果好等特点,但是同步电动机的容量相对较大,造价较高。
风力发电机组无功补偿装置则通过调节风力发电机组的功率特性,实现无功功率的补偿。
它具有无需外部电源、容量可调节等优点,但在风电系统中的应用场景有限。
三、混合无功补偿技术混合无功补偿技术是将静态和动态无功补偿技术相结合的一种补偿方式。
常见的混合无功补偿技术包括STATCOM与风力发电机组的组合、SVC与同步电动机无功补偿装置的组合等。
混合无功补偿技术通过充分发挥静态和动态无功补偿技术的优势,提高了无功补偿的效果和灵活性。
它既能提供快速响应的能力,又能在容量限制方面更加灵活。
然而,混合无功补偿技术的内部机构复杂,控制难度较大。
总结:静态无功补偿技术、动态无功补偿技术和混合无功补偿技术各有其优缺点。
无功补偿装置几种常见类型① 调压式动态无功补偿装置调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。
根据Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。
该装置为分级补偿方式,容易产生过补、欠补。
由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。
但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。
由于有载调压变压器的阻抗,使得滤波效果差。
虽然价格便宜,占地面积小,维护方便,一般年损耗在0、2%以下。
② 磁控式(MCR型)动态无功补偿装置磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。
磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。
能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。
磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的%~2%,无需串、并联,不容易被击穿,安全可靠。
设备自身谐波含量少,不会对系统产生二次污染。
占地面积小,安装布置方便。
装置投运后功率因数可达0、95以上,可消除电压波动及闪变,三相平衡符合国际标准。
免维护,损耗较小,年损耗一般在0、8%左右。
③相控式动态无功补偿装置(TCR)相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。
相控式原理的可控电抗器的调节原理见下图所示。
通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0~90范围内变化。
无功补偿装置的分类及特点无功补偿装置是电力系统中用来改善功率因数的重要设备之一。
它通过补偿无功功率,提高电力系统的效率和稳定性。
根据不同的工作原理和功能,无功补偿装置可以分为静态无功补偿装置和动态无功补偿装置两大类。
本文将对这两类装置的特点进行探讨。
一、静态无功补偿装置静态无功补偿装置是一种通过静态元件来实现无功功率补偿的装置。
主要有电容补偿装置、电抗补偿装置和混合补偿装置。
1. 电容补偿装置电容补偿装置采用电容器来产生无功电流,补偿电网中的感性无功功率。
它主要可以分为固定电容补偿装置和可变电容补偿装置两种类型。
固定电容补偿装置适用于无功负荷变化不大的场合。
它具有简单、可靠的特点,并且成本较低。
但是,由于负载变化时的固定补偿容量不能适应需求,可能导致补偿效果不佳。
可变电容补偿装置能够根据负荷变化自动调整补偿容量,适用于负荷波动较大的场合。
它通过控制开关和电容器的并联或串联连接来实现不同的电容量组合,从而提供灵活的无功补偿调节。
2. 电抗补偿装置电抗补偿装置主要采用电感器来产生无功电流,补偿电网中的容性无功功率。
它主要包括固定电抗补偿装置和可变电抗补偿装置两种类型。
固定电抗补偿装置适用于容性负荷变化不大的场合。
它能够稳定供电系统电压,改善电网的稳定性和功率因数。
但是由于固定电感器无法应对负荷波动,因此其补偿效果受到一定限制。
可变电抗补偿装置能够根据负荷变化自动调整补偿容量,适用于波动性负荷较大的场合。
它通过调节器件的感应度和接入方式实现电抗的动态调节,以满足不同负荷条件下的无功补偿需求。
3. 混合补偿装置混合补偿装置是将电容补偿装置和电抗补偿装置组合在一起使用的装置。
通过合理地选择电容和电抗的组合方式,可以更精确地对功率因数进行补偿。
这种补偿方式在大型电力系统中应用较多,可以提高电网的功率因数、稳定性和可靠性。
二、动态无功补偿装置动态无功补偿装置是一种根据电网运行状态实时调整补偿容量的装置。
主要包括SVG(Static Var Generator)和SVC(Static Var Compensator)。
无功补偿装置的性能指标与评价方法分析无功补偿装置是一种用于改善电力系统功率因数的设备,广泛应用于电力系统中。
本文将对无功补偿装置的性能指标及其评价方法进行分析,以便读者对该装置有更深入的了解。
一、无功补偿装置的性能指标无功补偿装置的性能指标通常包括补偿效率、动态响应速度、补偿精度以及对系统谐波的抑制等方面。
1. 补偿效率补偿效率是指无功补偿装置补偿实际无功功率与其消耗的有功功率之比。
补偿效率的高低直接影响到装置的节能效果。
一般来说,补偿效率越高,无功补偿装置的能耗越低,节约的电能越多。
2. 动态响应速度动态响应速度是衡量无功补偿装置响应特性的重要指标。
它反映了装置在接收到系统无功功率变化信号后,调节输出补偿无功功率的能力。
快速的动态响应速度可以使无功补偿装置能够在短时间内对系统的无功功率进行补偿,保证系统的功率因数稳定。
3. 补偿精度补偿精度是指无功补偿装置输出的补偿无功功率与系统需要的补偿无功功率之间的偏差。
较高的补偿精度可以减少系统功率因数的波动,提高系统的稳定性。
因此,补偿装置的补偿精度对电力系统的运行非常关键。
4. 对系统谐波的抑制无功补偿装置应具备对系统谐波的抑制能力。
电力系统中存在的谐波会导致电压波动和设备损耗增加,因此,无功补偿装置需要能够有效地抑制谐波的产生,保证系统的稳定性和可靠性。
二、无功补偿装置的评价方法为了准确评估无功补偿装置的性能,可以采用以下方法进行评价。
1. 实验测试法实验测试法是最直观、最常用的评价方法之一。
通过对已安装的无功补偿装置进行实际测试,测量其在不同工况下的补偿效率、动态响应速度、补偿精度以及对系统谐波的抑制情况。
依据实验测试结果,可以评估装置的性能并进行改进。
2. 模拟仿真法模拟仿真法是通过建立适当的电力系统模型,模拟无功补偿装置的工作过程,通过仿真分析来评价装置的性能。
利用计算机软件对模型进行仿真,可以得到补偿效率、动态响应速度、补偿精度以及对系统谐波的抑制等性能指标。
一、风电场无功补偿装置介绍风力发电系统的特点决定风电场必须需要加装无功补偿装置,目前常用的无功补偿装置主要有磁控式电抗器MCR、静止无功补偿器SVC、静止同步补偿器STATCOM。
三种补偿装置的基本功能相似,但其在技术原理、性能指标、实施效果上有较大区别。
MCR属于第二代无功补偿装置,其基本原理是调节磁控电抗器的磁通来调节其输出无功电流,仅采用少量的晶闸管器件。
其优点是:由于仅采用少量的晶闸管,其成本相对较低;关键器件为磁控电抗器,可直挂35kV电网。
其缺点是:响应速度较慢(通常为秒级),输出谐波含量较大且波动范围较大,实际损耗较大(一般大于2%)。
MCR产品在国内出现于上世纪90年代,由于其电抗器制造难度较大、损耗大等缺点,在国内没有得到大规模的推广。
SVC也属于第二代无功补偿装置,其基本原理是调节晶闸管的触发角度来调节串联电抗器的输出感性无功电流,其输出的容性无功电流需要通过并联电容器来解决。
其优点是:技术稍先进,因采用晶闸管器件(半控型器件),响应速度较快,能够迅速连续调节系统无功功率,具有较强的动态无功补偿的能力。
其缺点是:需要采用大量的晶闸管元件,成本较高;谐波含量大且波动范围大,因此需要加装不同次的滤波装置,易与系统发生谐振造成电容器爆炸或电抗器烧毁事件,大量应用易造成系统不稳定;占地面积大,施工周期较长。
STATCOM属于国际上最新的第三代无功补偿装置,其基本原理是以电压型逆变器为核心的一个电压、相位和幅值均可调的三相交流电源,可发出感性或容性无功功率。
其优点是:技术先进,因采用IGBT件(全控型器件)响应速度较快,能够迅速连续调节系统无功功率,能够抑制电压波动和闪变;对系统电压跌落不敏感,可在低电压下稳定运行,具有较强定的低电压穿越能力;谐波含量很小,且不与系统发生谐振,不需要加装滤波装置;占地面积小且施工周期短;运行损耗小(1%左右)。
其缺点是:需要采用大量的IGBT元件(其价格高于晶闸管),成本较高。
现在主要的动态补偿方式为TCR型SVC、MCR型SVC和SVG三种方式,以下分别介绍这三种动态无功补偿方式的原理,并且通过占地面积、响应速度、损耗、噪音等性能指标来论述这三种补偿方式的特点。
一、 MCR型动态无功补偿装置MCR+FC型动态无功补偿装置上世纪60年代由英国GEC公司制成第一台自饱和电抗器型SVC,后期俄罗斯人演变为可控饱和电抗器(CSR)型,也可称为MCR型动态无功补偿装置。
其原理是三相饱和电抗器的工作绕组并联在电网上,通过改变饱和电抗器的直流控制绕组的励磁电流,借以改变铁心的饱和特性,从而改变工作绕组的感抗,达到改变其所吸收的无功功率的目的。
图九 MCR无功补偿原理磁阀式可控电抗器的主铁心分裂为两半(即铁心1和铁心2),截面积为A,每一半铁心截面积具有减小的一段,四个匝数为N/2的线圈分别对称地绕在两个半铁心柱上(半铁心柱上的线圈总匝数为N),每一半铁心柱的上下两绕组各有一抽头比为δ= N2 / N 的抽头,它们之间接有晶闸管KP1 ( KP2 ),不同铁心上的上下两个绕组交叉连接后,并联至电网电源,续流二极管则横跨在交叉端点上。
在整个容量调节范围内,只有小面积段的磁路饱和,其余段均处于未饱和的线性状态,通过改变小截面段磁路的饱和程度来改变电抗器的容量。
在电源的一个工频周期内,晶闸管KP1 、KP2 的轮流导通起了全波整流的作用,二极管起着续流作用。
改变KP1 、KP2 的触发角便可改变控制电流的大小,从而改变电抗器铁心的饱和度,以平滑连续地调节电抗器的容量。
占地面积由于MCR没有像TCR一样采用晶闸管阀组以及空心相控电抗器,而是采用晶闸管控制部分饱和式电抗器,因此,比TCR面积要小。
响应速度MCR型SVC的响应速度一般在100 ~ 300ms之内。
可控式饱和电抗器铁芯内的磁通有惯性,从空载到额定的变化,一般在秒级以上。
虽然现在也可采取一些措施提高MCR型SVC的响应速度,但一般也很难低于150ms。
无功补偿装置的分类及特点分析无功补偿装置是一种用于改善电力系统中电力因数的设备,通过补偿无功功率,提高电力系统的效率和稳定性。
本文将对无功补偿装置进行分类,并分析各类装置的特点。
一、静态无功补偿装置静态无功补偿装置是一种常见的补偿装置,主要通过电容器或电感器实现对无功功率的补偿。
根据功能和性能,静态无功补偿装置可以进一步分为以下几类:1. 电容器补偿装置电容器补偿装置主要通过串联或并联连接电容器来补偿无功功率。
它能够快速响应电力系统对无功功率的需求,并具有较高的效率和可靠性。
电容器补偿装置广泛应用于高电压和中电压电力系统中,并具有容量大、造价低等特点。
2. 电感器补偿装置电感器补偿装置通过串联或并联连接电感器来补偿无功功率。
它主要用于低电压电力系统中,能够提供稳定的无功功率支持,并具有稳定性好、响应速度快等特点。
电感器补偿装置常用于电力变电站、电力电容器组等设备中。
二、动态无功补偿装置动态无功补偿装置相对于静态装置来说,具有更快的响应速度和更高的补偿灵活性。
根据其工作原理和特点,动态无功补偿装置可以分为以下几类:1. SVC(静止无功补偿器)SVC是一种通过控制可变电抗器进行无功功率补偿的装置。
它能够根据电力系统的需求实时调整补偿电抗值,并对系统的电压进行调节。
SVC具有高精度、快速响应的特点,广泛应用于电力系统中。
2. STATCOM(静止同步补偿器)STATCOM是一种利用可控开关器件(如IGBT)控制电流的无功补偿装置。
它能够根据电力系统的需求实时地注入或吸收无功功率,以维持电力系统的电压稳定。
STATCOM具有高动态响应能力、低电压谐振等特点,常用于电力变电站和风电场等场合。
3. DSTATCOM(动态同步补偿器)DSTATCOM是一种集动态无功补偿和无功电流过滤功能于一体的设备。
它通过控制其内部的逆变器,能够实现高精度的无功功率补偿,并减少谐波对电力系统的影响。
DSTATCOM广泛应用于工业电力系统和电力变电站等场合。
一二三各类无功功率补偿设备的简介及比较 电压是衡量电能质量的主要指标,电力系统的运行电压水平与无功功率的平衡密切相关:系统的无功电源比较充足,系统就有较高的运行电压水平,反之,无功不足运行电压水平就会偏低。
因此,应该力求实现在额定电压下的系统无功功率的平衡。
系统拥有的无功功率电源必须满足正常电压水平下的无功需求,并留有适当的备用容量。
当系统出现无功功率过剩时,应适当减少无功电源发出的无功功率;当系统无功功率不足时,应当补充无功功率。
这些能够灵活调节系统无功功率充足性的设备就是无功功率补偿设备,电力传输系统中常见的无功功率补偿设备如下所示。
无功功率补偿设备--发电机 同步发电机是电力系统中的一个重要组成部分,它既是一个有功电源,同时也是最基本的无功电源。
在不影响有功功率平衡的前提下,通过调节发电机励磁电流的大小来改变发电机的功率因数,进而调节无功功率,从而调整系统的运行电压,发电机调节无功功率具有较低的运行费用。
无功功率补偿设备--同步调相机 同步调相机实质上是只发无功功率的同步发电机,它在过励磁运行时向系统供给感性无功功率成为无功电源,在欠励磁运行时从系统吸取感性无功功率成为无功负荷。
因此改变同步调相机的励磁,可以平滑地改变其输出(或吸收)的无功功率,从而平滑地调节所在地区的电压。
同步调相机的有功损耗较大,并且小容量的调相机每kVA容量的建设投资费用也较大,故同步调相机宜于大容量集中使用,常安装在枢纽变电所;同步调相机为旋转机械,运行维护比较复杂。
无功功率补偿设备--静电电容器 静电电容器只能向系统供给感性无功功率,而不能吸收无功功率。
它所供出的感性无功功率与所在节点的电压 的平方成正比,即 式中, 为静电电容器的容抗 静电电容器作为无功功率补偿设备,优点是: (1)静电电容器是根据需要由许多电容器连接组成的,故静电电容器组的容量可大可小,既可集中使用,又可分散使用,使用比较灵活; (2)静电电容器在运行时的功率损耗比较小,约为额定容量的0.3%~0.5%; (3)静电电容器没有旋转部件,维护比较方便。