半导体激光器稳频技术综述
- 格式:pdf
- 大小:791.27 KB
- 文档页数:9
F—P腔的激光稳频技术探讨作者:史国庆来源:《市场周刊·市场版》2017年第20期摘要:光电子半导体的发展。
半导体激光器凭借着工作效率高,整体结构简单,工作寿命长,机械强度高,光谱范围宽,可与常用探测器相匹配,成本低的特点被大量的应用在通信领域,航天领域,谱线分析领域。
频率的稳定度的成为了衡量半导体激光器发展的层次。
基于F-P腔的半导体激光器能够拥有较强的稳定性和精度,在一定条件下还具有较强的抗干扰能力,使它具有更广阔的发展空间和发展前景。
在此基础上,运用了PDH技术建立了PDH模型,特别的时针对F-P腔的一系列问题进行研究,充分了解到了激光器的主要是受温度和电流的影响很大,并且分析了在不同的条件下,在稳频的状态的时候,半导体激光器的影响和反应。
关键词:F-P腔;半导体激光器;PDH稳频技术一、绪论(一)稳频技术研究状况稳频技术的原理是为了维持穿过谐振腔光程长度的稳定性,稳频技术主要分为被动稳频和主动稳频。
通过调节F-P腔的腔长长度,使激光重新恢复到稳定的频率上去,从而达到稳频的目的。
稳频技术有饱和吸收法;原子光谱Zeeman效应吸收法;相位调制光外差稳频。
(二)F-P腔的优点及研究现状外腔光反馈元件主要有光栅和F-P腔。
光栅光稳定性较差。
而F-P标准具光反馈稳定性能好,结构简单,可以保证激光器的输出波长始终稳定在系统的中心频率上,并且不会出现频率漂移问题。
F-P腔的优点也不是十全十美的,短期稳定性较低。
所以,要采用一些方法抑制其他因素的扰动诱发的频率漂移,才能尽可能的使激光器得到稳定。
因此半导体激光器的频率是关键,有一种是基于光学元件的稳频,这种电子元件的名字叫做F-P腔,它可以不受波段的限制,成为半导体激光器稳频的主要措施,结合F-P腔的这种特点用来把半导体激光器的稳频恰到好处。
(三)半导体激光器的基本特性半导体激光器主要分为三个部分一部分是激光管,一部分是驱动电源,最后一部分是准直支架三大部分构成半导体激光器产生激光需要适应基本的三个条件:(1)粒子数反转。
半导体激光器的工作原理及应用摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。
由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。
从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,是半导体激光器开启了激光应用发展的新纪元。
关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器The working principle of semiconductor lasers and applications ABSTRACT: The machanism of lasing by semiconductor laser,which requires set up specially designated reverse of beam of particles among energy stages,and appropriate optical syntonic coelenteronAs the specificity of structure from semiconductor and moving electrons.something interesting happens.On the one hand,the specific process in producing lase,on the other hand,the beam of light has unique advantages。
As the reasons above,we can easily found it all quartersof the society.From homojunction to heterojunction,from informatics to power,the advantages of laser are in evidence,the wide spectrum,the semiconductor open the epoch in the process of laser. Key worlds: stimulated radiation; optical field; homojunction; heterojunction; high-power semiconductor laser 0 前言半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。
半导体激光的原理和应用引言半导体激光是一种重要的光学器件,具有广泛的应用领域。
本文将介绍半导体激光的工作原理及其在通信、医疗、制造业等领域的应用。
工作原理半导体激光的工作原理基于半导体材料的特性。
当电流通过半导体材料时,会激发出光子并形成发光。
具体工作原理如下:1.pn结构:半导体激光器的基本结构是由p型半导体和n型半导体组成的pn结构。
在pn结构中,p区和n区之间形成空间电荷区,也称为p-n 结。
2.电流注入:当通过pn结施加适当的电压,电子从n区向p区流动,形成电流注入。
这些电子与空穴在p区与n区之间复合,产生光子。
3.光反射:在激光器的两侧,通常会使用反射镜,以确保光子在激光器内部多次反射,增加激射效果。
4.放大效应:在光子多次反射后,激光器中的光子会被放大,形成激光束。
5.激光输出:当光子放大到一定程度时,会通过激光输出端口输出,形成一束聚焦强度高的激光。
应用领域半导体激光广泛应用于下述领域:1. 通信领域•光纤通信:半导体激光器的小体积、高效率和调制速度的优势,使其成为光纤通信中的关键元件。
它们被用于发送和接收信号,实现高速、稳定的数据传输。
•光纤传感器:半导体激光器可以用于光纤传感器中的光源,通过测量光的特性实现温度、压力和应变等参数的监测。
2. 医疗领域•激光眼科手术:半导体激光器可以用于激光眼科手术,如LASIK手术。
它们通过改变角膜的形状来矫正近视、远视和散光等眼科问题。
•激光治疗:半导体激光器可以用于激光治疗,如治疗疱疹病毒感染、减少毛囊炎症等。
3. 制造业领域•材料加工:半导体激光器用于材料加工,如切割、焊接和打孔等。
由于激光束的高能量密度和聚焦性,它们可以实现高精度的材料加工。
•激光制造:半导体激光器可以用于激光制造,如3D打印、激光烧结等。
它们可以实现复杂结构的制造,提高生产效率。
4. 科研领域•光谱分析:半导体激光器可以用于光谱分析,如拉曼光谱和荧光光谱。
它们可以提供高分辨率和高灵敏度的光谱结果,帮助科研人员研究物质的性质。
半导体激光器原理及光纤通信中的应用
半导体激光器是一种利用半导体材料的电子和空穴复合产生光子的器件。
它是一种高效、小型化、低成本的光源,被广泛应用于光通信、激光打印、医疗、材料加工等领域。
半导体激光器的工作原理是利用半导体材料的PN结,在外加电压的作用下,电子和空穴在PN结的结界面处复合,产生光子。
这些光子被反射回来,形成光的共振,从而形成激光。
半导体激光器的优点是功率密度高、发射波长可调、寿命长、体积小、功耗低等。
在光纤通信中,半导体激光器是一种重要的光源。
它可以将电信号转换为光信号,通过光纤传输到接收端,再将光信号转换为电信号。
半导体激光器的发射波长与光纤的传输窗口相匹配,可以实现高速、长距离的光纤通信。
同时,半导体激光器的小型化和低功耗也使得光纤通信设备更加紧凑和节能。
除了光纤通信,半导体激光器还被广泛应用于激光打印、医疗、材料加工等领域。
在激光打印中,半导体激光器可以实现高速、高分辨率的打印,同时也可以实现彩色打印。
在医疗领域,半导体激光器可以用于激光治疗、激光手术等,具有精准、无创、无痛等优点。
在材料加工领域,半导体激光器可以用于切割、焊接、打孔等,具有高效、精准、无污染等优点。
半导体激光器是一种重要的光源,被广泛应用于光通信、激光打印、
医疗、材料加工等领域。
随着科技的不断发展,半导体激光器的性能和应用也将不断提升和拓展。
半导体激光器工作原理及基本结构半导体材料的带隙能级结构:半导体材料有一种特殊的能带结构,即价带和导带之间的能带隙。
在室温下,绝大多数的电子都位于价带中,而导带中的电子很少。
当半导体材料被外加能量(如电子或光子)激发时,部分价带中的电子可以跃迁到导带中,形成电子空穴对(即一个自由电子和一个电子准正空穴)。
基本结构:1.活性层:活性层是半导体激光器中的关键组成部分,由两种不同的半导体材料组成,通常是p型半导体和n型半导体。
活性层的主要作用是在激发能量下产生电子空穴对。
2.限制层:限制层位于活性层的两侧,通过选择性的掺杂和选用合适的材料,限制层能够限定和增强光场在活性层中的传播。
3.p型区和n型区:p型区和n型区分别为半导体激光器提供正负载流子。
其中p型区富含准正空穴,n型区富含自由电子。
这种介质结构导致了在活性层中形成电子与准正空穴的往复跃迁。
工作原理:1.连续工作模式:(1)原始激发:在激光器的活性层中,通过电流或光激励,会使得电子和准正空穴对被激发到导带和价带之间,产生电子空穴对。
(2)产生反映:电子和准正空穴对在原地跃迁,产生辐射效应。
由于受到限制层的调控,只有在活性层的中央区域产生的光才能被放大。
(3)光放大:放大的光通过反射和吸收来回往复传播,不断增强。
当光子数目经过数次放大后超过临界值,就会发生光放大。
(4)光输出:当光子数目增加到一定程度时,会反射出一部分光线,形成输出激光。
2.脉冲工作模式:与连续工作模式相比,脉冲工作模式中,外加的激发电流或光脉冲的时间和强度较短,产生的激光输出也更为短暂和高强度。
脉冲工作模式在通信、医疗和材料加工等领域有广泛应用。
总结:半导体激光器利用半导体材料的带隙能级结构和电子之间的跃迁来产生激光。
其基本结构由活性层、限制层、p型区和n型区组成。
在连续工作模式中,通过激励产生电子空穴对,在活性层中逐渐放大并输出激光。
在脉冲工作模式中,产生的激发脉冲时间短暂,输出的激光也对应短暂和高强度的脉冲。
半导体激光器的发展及在光纤通信中的应用半导体激光器是一种使用半导体材料作为激光产生介质的激光器。
随着科技的不断发展,半导体激光器在各个领域得到了广泛应用,尤其在光纤通信中具有重要作用。
本文将从半导体激光器的发展历程和其在光纤通信中的应用两个方面进行论述。
首先,我们来看半导体激光器的发展历程。
半导体激光器最早是在1962年由美国贝尔实验室的电子学家罗伯特·诺尔表示的。
他利用PN结构的半导体晶体制作出了最早的半导体激光器,此后半导体激光器的研究逐渐成熟。
1970年代,G·奈普舍等人发明了自发辐射增益(MQW)结构,进一步提高了半导体激光器的效率。
1980年代初,人们通过引入量子阱结构,使半导体激光器的发射波长范围得到了拓宽。
1994年,研究者成功实现了垂直腔表面发射激光器(VCSEL),该激光器具有小尺寸、低功耗、易集成等优点,成为半导体激光器研究的重要方向。
其次,半导体激光器在光纤通信领域中有着广泛的应用。
在光纤通信中,半导体激光器主要用于光源和放大器。
作为光源,半导体激光器能够产生高功率、窄谱宽、稳定的激光信号,能够满足光纤通信系统对光源的要求。
除了常用的连续激光器外,脉冲激光器也逐渐得到应用。
脉冲激光器能够产生高峰值功率和短脉冲宽度的激光,用于高速光纤通信系统中的光时钟信号生成和数据调制。
再者,半导体激光器在光纤通信中还广泛应用于放大器。
光纤放大器利用半导体激光器作为光源,将入射的光信号进行放大,提高光纤通信系统的传输距离和传输容量。
其中,掺铒光纤放大器和掺铒光纤激光器以及掺镱光纤激光器是典型的半导体激光器应用于光纤通信放大器的例子。
综上所述,半导体激光器在光纤通信领域中发挥着重要的作用。
随着其发展不断进步,半导体激光器在功率、波长范围、脉冲性能以及功率放大器等方面的性能都得到了极大的提升。
相信在未来的光纤通信中,半导体激光器将继续发挥着重要的作用,推动光纤通信技术的不断进步。
高功率半导体激光器的研发和应用一、引言高功率半导体激光器(HP-SLD)是一种新型的光源,不仅具有高能量、高功率、高光强,能够提供高质量的光束,而且具有良好的稳定性和可靠性,广泛应用于医学、测量、工业制造等领域。
本文主要介绍高功率半导体激光器的研发和应用。
二、高功率半导体激光器的研发1. 材料高功率半导体激光器的材料通常采用Ⅲ-Ⅴ族的半导体材料,如氮化镓(GaN)、氮化铝镓(AlGaN)和磷化铝镓(AlGaInP)等。
这些材料具有高晶格不匹配度、大面密度缺陷和高电阻率等特性,因此需要通过外延生长、薄膜制备、离子注入等技术来制备高质量材料。
2. 结构设计高功率半导体激光器的结构通常采用可调谐反射镜(DBR)、光栅耦合器(GRIN-SCH)、负折射区(RR负折射区)等设计,以实现高质量的光束输出和高效率的光电转换。
其中,DBR能够实现连续的波长调谐,GRIN-SCH能够实现高效的光电转换,RR负折射区则能够提高激光器的功率输出和稳定性。
3. 工艺制备高功率半导体激光器的工艺制备通常包括晶圆制备、薄膜生长、雕刻、注入等工艺过程。
其中,晶圆制备是整个工艺过程的关键,包括选择合适的基片、生长高质量的材料、控制材料的厚度和杂质浓度等。
此外,注入技术也是实现高功率激光器的重要手段,包括电注入、光注入等。
三、高功率半导体激光器的应用1. 医学高功率半导体激光器在医学领域的应用主要体现在激光手术、皮肤治疗、癌症治疗等方面。
其具有高质量的光束、准确的聚焦能力和高能量密度等特点,能够对人体组织进行精细的切割和燃烧作用,达到治疗的效果。
2. 工业制造高功率半导体激光器在工业制造领域的应用主要体现在材料加工、激光印刷、激光电视等方面。
其具有高速、高精度、高效率等特点,能够提高生产效率和产品质量,降低生产成本。
3. 测量在测量领域,高功率半导体激光器的应用主要体现在激光雷达、激光测距、激光扫描等方面。
其具有高效、高精度、高稳定性等特点,能够提高系统的精度和可靠性,适用于测量各种土地、建筑物、交通工具等。
实验报告实验名称:半导体激光器稳频指导教师:姓名:专业:学号:一、实验目的1. 了解光栅外腔反馈半导体激光器的内部结构和基本操作;2. 理解影响半导体激光器频率稳定性的因素;3. 熟悉稳频的基本原理、步骤及操作;4. 掌握标定激光器频率起伏的方法。
二、实验仪器Toptica 光栅外腔反馈式半导体激光器、饱和吸收光谱、锁频模块、示波器三、实验原理稳频的基本思想影响半导体激光器频率稳定性的因素包括LD 温度、注入电流、外腔机械结构等。
因此,对半导体激光器采用恒温、恒流、防震、密封等措施后,其频率稳定度可以提高到一个量级,但再进一步提高,将受温度控制极限的限制。
因此必须采用进一步的稳频措施。
激光稳频技术通常是采用电子伺服系统控制激光的频率抖动。
主要原理是:当激光频率偏离标准频率时,由鉴频器给出误差信号,通过伺服系统和压电元件控制激光器的外腔长,使激光频率自动回到标准频率上。
鉴频原理我们将实验七所得的饱和吸收光谱信号输入到锁频模块中,信号被放大后选择高通滤波,滤去直流部分和电源主频对信号的干扰。
然后锁频模块内置的信号源对激光器的频率进行调制,调制频率记为mod f ,调制幅度记为ω∆。
设激光的初始频率为0ω,那么调制后的激光频率为:)2sin()(mod 0t f t ⨯⨯⨯∆+=πωωω进入探测器的饱和吸收谱信号近似为:)2sin()()(mod 00t f S S t S ⨯⨯⨯∆⨯'+=πωω 这样的信号在锁频模块内部被自己的调制信号进行检波 )4cos()()2sin()(21)]2sin()[()2sin()2sin()(mod 0mod 002mod 0mod 0mod t f S t f S S t f S t f S t f t S ⨯⨯⨯∆⨯'-⨯⨯+∆⨯'⨯=⨯⨯⨯∆'+⨯⨯⨯=⨯⨯⨯πωωπωωπωωππ检波后的信号再送入低通滤波器,目的是滤掉所有与时间有关的高频项。