2018届高三南通一模2018.2.2
- 格式:ppt
- 大小:195.00 KB
- 文档页数:23
南通市2018届高三一模含答案南通市2018届高三第一次调研测试英语第一部分听力 (共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What color is the man’s toothbrush? A. Blue.B. Green.C. Red. 2. What is the man mostly worried about?A. The noisy plane.B. The safety of the airplane.C. The service of the flight attendant. 3. How does the man feel? A. Impatient. B. Helpless. C. Exhausted. 4. When does the girl have to go to bed? A.At 8:00 B. At 9:00 C. At 11:00 5. Where does the conversation take place?A. At a fruit shop.B. At a candyshop.C. At the woman’s house. 第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. What’s the relationship between the speakers?A. Boss and employee.B. Co-workers.C. Classmates.7. Why is Jane unhappy?A. She forgot to answer some emails.B. She talked to angry customers all morning.C. She is usually the first one to take complaints. 听第7段材料,回答第8至10题。
2018年江苏省南通市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1. 已知集合A ={−1, 0, a},B ={0, √a}.若B ⊆A ,则实数a 的值为________.2. 已知复数z =1+4i 1−i,其中i 为虚数单位,则复数z 的实部为________.3. 已知某校高一、高二、高三的学生人数分别为400,400,500.为了解该校学生的身高情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为65的样本,则应从高三年级抽取________名学生.4. 根据如图所示的伪代码,可知输出的结果S 为________.5. 某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,则数学建模社团被选中的概率为________.6. 若实数x ,y 满足{x ≥1y ≤3x −y −1≤0 ,则2x −y 的最大值为________.7. 在平面直角坐标系xOy 中,已知点F 为抛物线y 2=8x 的焦点,则点F 到双曲线x 216−y 29=1的渐近线的距离为________.8. 在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+6a 4,则a 3的值为________.9. 在平面直角坐标系xOy 中,将函数y =sin(2x +π3)的图象向右平移φ(0<φ<π2)个单位长度.若平移后得到的图象经过坐标原点,则φ的值为________.10. 若曲线y =xlnx 在x =1与x =t 处的切线互相垂直,则正数t 的值为________.11. 如图,铜质六角螺帽毛胚是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4cm ,圆柱的底面积为9√3cm 2.若将该螺帽熔化后铸成一个高12. 如图,已知矩形ABCD 的边长AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠PAQ =45∘,则AP →⋅AQ →的最小值为________.13. 在平面直角坐标系xOy 中,已知点A(−4, 0),B(0, 4),从直线AB 上一点P 向圆x 2+y 2=4引两条切线PC ,PD ,切点分别为C ,D .设线段CD 的中点为M ,则线段AM 长的最大值为________.14. 已知函数f(x)={x 2−2ax −a +1,x ≥0ln(−x),x <0 ,g(x)=x 2+1−2a .若函数y =f(g(x))有4个零点,则实数a 的取值范围是________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.)如图,在三棱锥P −ABC 中,AB ⊥PC ,CA =CB ,M 是AB 的中点.点N 在棱PC 上,点D 是BN 的中点.求证:(1)MD // 平面PAC ;(2)平面ABN ⊥平面PMC .在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a 2=b 2+c 2−bc ,a =√152b .(1)求sinB 的值;(2)求cos(C+π12)的值.如图,在平面直角坐标系xOy中,已知椭圆x2a2+y2b2=1(a>b>0)的离心率为√22,两条准线之间的距离为4√2.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A,点M在圆x2+y2=89上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM的面积的2倍,求直线AB的方程.如图,某小区中央广场由两部分组成,一部分是边长为80cm的正方形ABCD,另一部分是以AD为直径的半圆,其圆心为O.规划修建的3条直道AD,PB,PC将广场分割为6个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点P在半圆弧上,AD分别与PB,PC相交于点E,F.(道路宽度忽略不计)(1)若PB经过圆心,求点P到AD的距离;(2)设∠POD=θ,θ∈(0, π2).①试用θ表示EF的长度;②当sinθ为何值时,绿化区域面积之和最大.已知函数g(x)=x3+ax2+bx(a, b∈R)有极值,且函数f(x)=(x+a)e x的极值点是g(x)的极值点,其中e是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1)求b关于a的函数关系式;(2)当a>0时,若函数F(x)=f(x)−g(x)的最小值为M(a),证明:M(a)<−73.若数列{a n }同时满足:①对于任意的正整数n ,a n+1≥a n 恒成立;②对于给定的正整数k ,a n−k +a n+k =2a n 对于任意的正整数n(n >k)恒成立,则称数列{a n }是“R(k)数列”. (1)已知a n ={2n −1,n 为奇数2n,n 为偶数,判断数列{a n }是否为“R(2)数列”,并说明理由;(2)已知数列{a n }是“R(3)数列”,且存在整数p(p >1),使得b 3p−3,b 3p−1,b 3p+1,b 3p+3成等差数列,证明:{b n }是等差数列. 一、【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]如图,已知⊙O1的半径为2,⊙O 2的半径为1,两圆外切于点T .点P 为⊙O 1上一点,PM 与⊙O 2切于点M .若PM =√3,求PT 的长.[选修4-2:矩阵与变换]已知x ∈R ,向量[01]是矩阵A =[1x02]的属于特征值λ的一个特征向量,求λ与A −1.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线y =x 与曲线{x =t −1y =t 2−1 (t 为参数)相交于A ,B 两点,求线段AB 的长.[选修4-5:不等式选讲]已知a >1,b >1,求b 2a−1+a 2b−1的最小值. 【必做题】第25、26题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.如图,四棱锥P −ABCD 中,AP 、AB 、AD 两两垂直,DE // BC ,且AP =AB =AD =4,BC =2.(1)求二面角P −CD −A 的余弦值;(2)已知点H 为线段PC 上异于C 的点,且DC =DH ,求PHPC 的值.(1)用数学归纳法证明:当n∈N∗时,cosx+cos2x+cos3x+...+cosnx= sin(n+12)x2sin12x−12(x∈R,且x≠2kπ,k∈Z);(2)求sinπ6+2sin2π6+3sin3π6+4sin4π6+...+2018sin2018π6的值.参考答案与试题解析2018年江苏省南通市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.【答案】1【考点】集合的包含关系判断及应用【解析】利用子集定义直接求解,【解答】∵集合A={−1, 0, a},B={0, √a}.B⊆A,∴√a=a,且a≠0.解得a=1,∴实数a的值为1.2.【答案】−3 2【考点】复数的运算【解析】直接利用复数代数形式的乘除运算化简得答案.【解答】∵z=1+4i1−i =(1+4i)(1+i)(1−i)(1+i)=−32+52i,∴复数z的实部为−32.3.【答案】25【考点】分层抽样方法【解析】根据题意求出抽样比例值,再计算应从高三年级抽取的学生数.【解答】根据题意,抽样比例为65400+400+500=120,∴应从高三年级抽取500×120=25(名).4.【答案】10伪代码(算法语句) 【解析】模拟程序的运行过程,即可得出程序运行后输出S 的值. 【解答】模拟程序的运行过程,得: S =1,i =1,满足条件i ≤5,执行循环S =1+1=2,i =3 满足条件i ≤5,执行循环S =2+3=5,i =5 满足条件i ≤5,执行循环S =5+5=10,i =7 此时不满足条件i ≤5,退出循环,输出S =10. 5.【答案】12【考点】古典概型及其概率计算公式 【解析】基本事件总数n =C 42=6,数学建模社团被选中包含的基本事件个数m =C 11C31=3,由此能求出数学建模社团被选中的概率. 【解答】解:某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,基本事件总数n =C 42=6,数学建模社团被选中包含的基本事件个数m =C 11C 31=3, ∴ 数学建模社团被选中的概率为p =m n=36=12. 故答案为:12. 6.【答案】 5【考点】简单线性规划 【解析】画出不等式表示的平面区域,z =2x −y 的几何意义是直线y =2x −z 的纵截距的相反数,根据图形可得结论. 【解答】画出不等式表示的平面区域:z =2x −y 的几何意义是直线y =2x −z 的纵截距的相反数,由{y =3x −y −1=0 可得交点坐标为(4, 3),根据图形可知在点(4, 3)处,z =2x −y 取得最大值,最大值为5 7.【答案】 65【考点】求得抛物线的焦点和双曲线的渐近线方程,再由点到直线的距离公式计算即可得到所求值.【解答】抛物线y2=8x的焦点F(2, 0),双曲线x216−y29=1的渐近线方程为y=±34x,即3x±4y=0.则F到双曲线的渐近线的距离为d=22=658.【答案】√3【考点】等比数列的通项公式【解析】利用等比数列的通项公式列出方程组,能求出结果.【解答】∵在各项均为正数的等比数列{a n}中,a2=1,a8=a6+6a4,∴{a1q=1a1q7=a1q5+6a1q3,且q>0.解得q2=3,∴q=√3,∴a3=a1q⋅q=q=√3.9.【答案】π6【考点】函数y=Asin(ωx+φ)的图象变换【解析】直接利用三角函数的平移变换求出结果.【解答】将函数y=sin(2x+π3)的图象向右平移φ(0<φ<π2)个单位长度.得到:y=sin(2x−2φ+π3),平移后得到的图象经过坐标原点,由于:0<φ<π2,则:−2φ+π3=0,解得:φ=π6.10.【答案】e−2【考点】求得函数的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为−1,即可得到所求值. 【解答】y =xlnx 的导数为y′=1+lnx ,可得在x =1与x =t 处的切线斜率分别为1和1+lnt , 由切线互相垂直,可得: 1+lnt =−1, 解得t =e −2. 11.【答案】 2√10 【考点】柱体、锥体、台体的体积计算 【解析】设该正三棱柱的底面边长为xcm ,利用棱柱、圆柱的体积公式列出方程,由此能求出该正三棱柱的底面边长. 【解答】设该正三棱柱的底面边长为xcm ,则12∗x 2∗sin60∘∗6=6×(12×4×4×sin60∘)×4−9√3×4, 解得x =2√10.(cm) 12.【答案】 4√2−4 【考点】平面向量数量积的性质及其运算律 【解析】设∠PAB =θ,则∠DAQ =45∘−θ,分别由解直角三角形可得AQ ,AP 的长,再由向量的数量积的定义,结合三角函数的恒等变化公式,以及余弦函数的最值,即可得到所求最小值. 【解答】设∠PAB =θ,则∠DAQ =45∘−θ, AP →⋅AQ →=|AP →|⋅|AQ →|cos45∘, =2cosθ⋅1cos(45∘−θ)⋅√22, =cosθ∗(√22cosθ+√22sinθ),=2cos 2θ+cosθsinθ, =21+cosθ2+sin2θ2,=√22sin(2θ+45)+12,当且仅当2θ+45∘=90∘,∴ θ=22.5∘时取“=”,当θ=22.5∘时,点P 恰在边BC 上,Q 恰边CD 上,满足条件, 综上所述,AP →⋅AQ →的最小值为4√2−4, 13.【答案】 3√2【考点】圆的切线方程 【解析】由题意可得AB 所在直线方程,设P(x 0, y 0),则y 0=x 0+4,求出CD 所在直线方程为x 0x +y 0y =4,再求出直线OM 的方程x 0y −y 0x =0,联立消去x 0,y 0,可得M 的轨迹方程,数形结合即可求得线段AM 长的最大值. 【解答】 如图,直线AB 的方程为x −y +4=0,设P(x 0, y 0),则y 0=x 0+4,① 以OP 为直径的圆的方程为x 2+y 2−x 0x −y 0y =0,联立{x 2+y 2=4x 2+y 2−x 0x −y 0y =0 ,可得CD 所在直线方程为:x 0x +y 0y =4,② ∵ 线段CD 的中点为M ,则直线OM:x 0y −y 0x =0,③联立①②③消去x 0,y 0,可得M 的轨迹方程为(x +12)2+(y −12)2=12,圆心坐标为(−12, 12),半径r =√22,又A(−4, 0),∴ |AM|max =√14+494+√22=3√2.14. 【答案】(−1+√5, 1)∪(1, +∞) 【考点】函数零点的判定定理 【解析】求出f(x)=0的解,讨论f(x)的零点与g(x)的最小值1−2a 的关系,得出a 的范围. 【解答】当x ≥0时,令f(x)=0得x 2−2ax −a +1=0, △=4a 2−4(1−a)=4(a 2+a −1),方程f(x)=0(x ≥0)无解,由f (g(x))=0可得g(x)=−1,又g(x)为偶函数,故而f (g(x))=0最多只有2解,不符合题意(1)(2)若△=0即a =−1−√52或a =−1+√52时,方程f(x)=0(x ≥0)的解为x =a =−1+√52,而g min (x)=1−2a =2−√5,此时g(x)=−1无解,g(x)=−1+√52只有2解,不符合题意(2)(3)若△>0即a <−1−√52或a >−1+√52时,方程f(x)=0(x ≥0)的解为x 1=a −√a 2+a −1,x 2=a +√a 2+a −1, ①若a <−1−√52,则x 1<0,x 2<0,且g min (x)=1−2a >0,此时f (g(x))=0无解,不符合题意(3)②若−1+√52<a <1,则x 2>x 1>0,而−1<1−2a <2−√5<0,∴ g(x)=x 1和g(x)=x 2各有2解,故f (g(x))=0有4解,符合题意(4)③若a =1,则x 1=0,x 2=2,g min (x)=1−2a =−1,此时g(x)=x 1有2解,g(x)=x 2有2解,g(x)=−1有1解,此时f (g(x))=0有5解,不符合题意(5)④若a >1,则x 2>0,x 1<0,而g min (x)=1−2a <−1,∴ g(x)=x 2有2解,g(x)=−1有2解, 故f (g(x))=0有4解,符合题意. 综上,−1+√52<a <1或a >1.故答案为:(−1+√52, 1)∪(1, +∞).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.)【答案】 证明:(1)在△ABN 中,M 是AB 的中点,D 是BN 的中点, 所以MD // AN .又因为AN ⊂平面PAC ,MD 平面PAC , 所以MD // 平面PAC .(2)在△ABC 中,CA =CB ,M 是AB 的中点, 所以AB ⊥MC .又因为AB ⊥PC ,PC ⊂平面PMC ,MC ⊂平面PMC ,PC ∩MC =C , 所以AB ⊥平面PMC . 又因为AB ⊂平面ABN , 所以平面ABN ⊥平面PMC . 【考点】平面与平面垂直 【解析】 此题暂无解析【解答】证明:(1)在△ABN中,M是AB的中点,D是BN的中点.所以MD // AN.又因为AN⊂平面PAC,MD平面PAC,所以MD // 平面PAC.(2)在△ABC中,CA=CB,M是AB的中点,所以AB⊥MC.又因为AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,所以AB⊥平面PMC.又因为AB⊂平面ABN,所以平面ABN⊥平面PMC.【答案】在△ABC中,利用余弦定理:a2=b2+c2−2bccosA,所以:cosA=b2+c2−a22bc =12.由于:0<A<π,故:A=π3.在△ABC,由正弦定理asinA =bsinB得,sinB=b⋅sinAa =√55.因为a=√15b2>b,所以A,0<B<π3.又sinB=√55,所以cosB=√1−sin2B=2√55.在△ABC中,A+B+C=π.cos(C+π12)=−cos(B+π4)=−(2√55⋅√22−√55⋅√22)=−√1010.【考点】解三角形三角形的面积公式【解析】(1)直接利用已知条件和余弦定理和正弦定理求出结果.(2)利用三角函数关系式的恒等变换求出结论.【解答】在△ABC中,利用余弦定理:a2=b2+c2−2bccosA,所以:cosA=b2+c2−a22bc =12.由于:0<A<π,故:A=π3.在△ABC,由正弦定理asinA =bsinB得,sinB=b⋅sinAa =√55.因为a=√15b2>b,所以A,0<B<π3.又sinB=√55,所以cosB=√1−sin2B=2√55.在△ABC中,A+B+C=π.cos(C+π12)=−cos(B+π4)=−(2√55⋅√22−√55⋅√22)=−√1010.【答案】设椭圆的焦距为2c,由题意得,ca =√22,2a2c=4√2,解得a=2,c=b=√2.∴椭圆的方程为:x24+y22=1.△AOB的面积是△AOM的面积的2倍,∴AB=2AM,∴点M为AB的中点.∵椭圆的方程为:x24+y22=1.∴A(−2, 0).设M(x0, y0),则B(2x0+2, 2y0).由x02+y02=89,(2x0+2)24+(2y0)22=1,化为:9x02−18x0−16=0,−2√23≤x0≤2√23.解得:x0=−23.代入解得:y0=±23,∴k AB=±12,因此,直线AB的方程为:y=±12(x+2).【考点】椭圆的定义【解析】(1)设椭圆的焦距为2c,由题意得,ca =√22,2a2c=4√2,解出即可得出.(2)△AOB的面积是△AOM的面积的2倍,可得AB=2AM,即点M为AB的中点.A(−2, 0).设M(x 0, y 0),利用中点坐标公式可得:B(2x 0+2, 2y 0).由x 02+y 02=89,(2x 0+2)24+(2y 0)22=1,联立解出,即可得出直线AB 的方程.【解答】设椭圆的焦距为2c ,由题意得,ca=√22,2a 2c=4√2,解得a =2,c =b =√2. ∴ 椭圆的方程为:x 24+y 22=1.△AOB 的面积是△AOM 的面积的2倍,∴ AB =2AM , ∴ 点M 为AB 的中点. ∵ 椭圆的方程为:x 24+y 22=1.∴ A(−2, 0).设M(x 0, y 0),则B(2x 0+2, 2y 0).由x 02+y 02=89,(2x 0+2)24+(2y 0)22=1,化为:9x 02−18x 0−16=0,−2√23≤x 0≤2√23. 解得:x 0=−23. 代入解得:y 0=±23, ∴ k AB =±12,因此,直线AB 的方程为:y =±12(x +2).【答案】直线PB 的方程为y =2x ,半圆O 的方程为x 2+y 2=402(y ≥0), 由{y =2xx 2+y 2=402 ,得y =16√5. ∴ 点P 到AD 的距离为16√5m . ①由题意,得P(40cosθ, 40sinθ); 直线PB 的方程为y +80=sinθ+2cosθ+1(x +40), 令y =0,得x E =80cosθ+80sinθ+2−40=80cosθ−40sinθsinθ+2.直线PC 的方程为y +80=sinθ−2cosθ−1(x −40), 令y =0,得x F =80cosθ−80sinθ+2+40=80cosθ+40sinθsinθ+2.∴ EF 的长度为f(θ)=x F −x E =80sinθsinθ+2,θ∈(0, π2). ②区域Ⅳ、Ⅵ的面积之和为: S 1=12×(80−80sinθsinθ+2)×80=6400sinθ+2, 区域Ⅱ的面积为: S 2=12×(80sinθsinθ+2)×40sinθ=1600sin 2θsinθ+2,∴ S 1+S 2=1600sin 2θ+6400sinθ+2(0<θ<π2).设sinθ+2=t ,则2<t <3, S 1+S 2=1600(t−2)2+6400t=1600(t +8t−4)≥1600(2√8−4)=6400(√2−1).当且仅当t =2√2,即sinθ=2√2−2时“=”成立.∴ 休闲区域Ⅱ、Ⅳ、Ⅵ的面积S 1+S 2的最小值为6400(√2−1)m 2. 答:当sinθ=2√2−2时,绿化区域Ⅰ、Ⅲ、Ⅴ的面积之和最大.【考点】函数解析式的求解及常用方法 【解析】以AD 所在直线为x 轴,以线段AD 的中垂线为y 轴建立平面直角坐标系.(1)写出直线PB 的方程与半圆O 的方程,联立求得y 值,即可得到点P 到AD 的距离; (2)①由题意,得P(40cosθ, 40sinθ).写出直线PB 的方程,求得E 的坐标,写出直线PC 的方程,求出F 的坐标,可得EF 的长度为f(θ)=x F −x E =80sinθsinθ+2,θ∈(0, π2). ②求出区域Ⅳ、Ⅵ的面积之和S 1 与区域Ⅱ的面积S 2,作和可得S 1+S 2=1600sin 2θ+6400sinθ+2(0<θ<π2).设sinθ+2=t ,则2<t <3,然后利用基本不等式求最值.【解答】直线PB 的方程为y =2x ,半圆O 的方程为x 2+y 2=402(y ≥0), 由{y =2xx 2+y 2=402 ,得y =16√5. ∴ 点P 到AD 的距离为16√5m . ①由题意,得P(40cosθ, 40sinθ); 直线PB 的方程为y +80=sinθ+2cosθ+1(x +40), 令y =0,得x E =80cosθ+80sinθ+2−40=80cosθ−40sinθsinθ+2.直线PC 的方程为y +80=sinθ−2cosθ−1(x −40), 令y =0,得x F =80cosθ−80sinθ+2+40=80cosθ+40sinθsinθ+2.∴ EF 的长度为f(θ)=x F −x E =80sinθsinθ+2,θ∈(0, π2). ②区域Ⅳ、Ⅵ的面积之和为: S 1=12×(80−80sinθsinθ+2)×80=6400sinθ+2,区域Ⅱ的面积为: S 2=12×(80sinθsinθ+2)×40sinθ=1600sin 2θsinθ+2,∴ S 1+S 2=1600sin 2θ+6400sinθ+2(0<θ<π2).设sinθ+2=t ,则2<t <3, S 1+S 2=1600(t−2)2+6400t=1600(t +8t −4)≥1600(2√8−4)=6400(√2−1).当且仅当t =2√2,即sinθ=2√2−2时“=”成立.∴ 休闲区域Ⅱ、Ⅳ、Ⅵ的面积S 1+S 2的最小值为6400(√2−1)m 2. 答:当sinθ=2√2−2时,绿化区域Ⅰ、Ⅲ、Ⅴ的面积之和最大.【答案】∵ 函数f(x)=(x +a)e x , ∴ f′(x)=e x (x +a +1), 令f′(x)=0,解得x =−a −1,∵ 函数g(x)=x 3+ax 2+bx(a, b ∈R), ∴ g′(x)=3x 2+2ax +b ,∵ 函数g(x)=x 3+ax 2+bx(a, b ∈R)有极值,且函数f(x)=(x +a)e x 的极值点是g(x)的极值点,∴ g′(−a −1)=3(−a −1)2+2a(−a −1)+b =0, 解得b =−a 2−4a −3. 证明:F(x)=f(x)−g(x)=(x +a)e x −x 3−ax 2−bx =(x +a)e x −x 3−ax 2+(a 2+4a +3)x ,F′(x)=(x +a +1)e x −3x 2−2ax +a 2+4a +3 =(x +a +1)e x −(x +a +1)(3x −a −3) =(x +a +1)(e x −3x +a +3),令ℎ(x)=e x −3x +a +3,则ℎ′(x)=e x −3, 令ℎ′(x)=0,得x =ln3,ℎ(ln3)为ℎ(x)最小值,且ℎ(ln3)=6−3ln3+a,∵a>0,∴ℎ(ln3)>0,∴ℎ(x)>0,对于F′(x)=(x+a+1)ℎ(x)=0,有唯一解x=−a−1,当x∈(−∞, −a−1)时,F′(x)<0,当x∈(−a−1, +∞)时,F′(x)>0,∴F(−a−1)为F(x)最小值,M(a)=F(−a−1)=−e−a−1−(a+1)2⋅(a+2),当a>0时,∴M(a)是减函数,M(a)<M(0)=−1e −2<−73,∴M(a)<−73.【考点】利用导数研究函数的极值【解析】(1)推导出f′(x)=e x(x+a+1),令f′(x)=0,得x=−a−1,求出g′(x)=3x2+ 2ax+b,从而g′(−a−1)=3(−a−1)2+2a(−a−1)+b=0,由此能求出b关于a的函数关系式.(2)F(x)=f(x)−g(x)=(x+a)e x−x3−ax2+(a2+4a+3)x,推导出F′(x)= (x+a+1)e x−3x2−2ax+a2+4a+3=(x+a+1)(e x−3x+a+3),令ℎ(x)= e x−3x+a+3,则ℎ′(x)=e x−3,令ℎ′(x)=0,得x=ln3,ℎ(ln3)=6−3ln3+a 为ℎ(x)最小值,推导出F(−a−1)为F(x)最小值,M(a)=F(−a−1)=−e−a−1−(a+1)2⋅(a+2),由此能证明M(a)<−73.【解答】∵函数f(x)=(x+a)e x,∴f′(x)=e x(x+a+1),令f′(x)=0,解得x=−a−1,∵函数g(x)=x3+ax2+bx(a, b∈R),∴g′(x)=3x2+2ax+b,∵函数g(x)=x3+ax2+bx(a, b∈R)有极值,且函数f(x)=(x+a)e x的极值点是g(x)的极值点,∴g′(−a−1)=3(−a−1)2+2a(−a−1)+b=0,解得b=−a2−4a−3.证明:F(x)=f(x)−g(x)=(x+a)e x−x3−ax2−bx=(x+a)e x−x3−ax2+(a2+4a+3)x,F′(x)=(x+a+1)e x−3x2−2ax+a2+4a+3=(x+a+1)e x−(x+a+1)(3x−a−3)=(x+a+1)(e x−3x+a+3),令ℎ(x)=e x−3x+a+3,则ℎ′(x)=e x−3,令ℎ′(x)=0,得x=ln3,ℎ(ln3)为ℎ(x)最小值,且ℎ(ln3)=6−3ln3+a,∵a>0,∴ℎ(ln3)>0,∴ℎ(x)>0,对于F′(x)=(x+a+1)ℎ(x)=0,有唯一解x=−a−1,当x∈(−∞, −a−1)时,F′(x)<0,当x∈(−a−1, +∞)时,F′(x)>0,∴F(−a−1)为F(x)最小值,M(a)=F(−a−1)=−e−a−1−(a+1)2⋅(a+2),当a>0时,∴M(a)是减函数,M(a)<M(0)=−1e −2<−73,∴M(a)<−73.【答案】当n为奇数时,a n+1−a n=2(n+1)−(2n−1)=3>0,所以a n+1≥a n.a n−2+a n+2=2(n−2)−1+2(n+2)−1=2(2n−1)=2a n.当n为偶数时,a n+1−a n=2(n+1)−2n=3>0,所以a n+1≥a n.a n−2+a n+2=2(n−2)+2(n+2)=4n=2a n.所以,数列{a n}是否为“R数列数列”.证明(1)由题意可得:b n−3+b n+3=2b n,则数列b1,b4,b7,…是等差数列,设其公差为d1,数列b2,b5,b8,…是等差数列,设其公差为d2,数列b3,b6,b9,…是等差数列,设其公差为d3,因为b n≤b n+1,所以b3n+1≤b3n+2≤b3n+4,所以b1+nd1≤b2+nd2≤b1+(n+1)d1,所以n(d2−d1)≥b1−b2①,n(d2−d1)≥b1−b2+d1,②.若d2−d1<0,则当n>b1−b2d2−d1时,①不成立;若d2−d1>0,则当n>b1−b2+d1d2−d1时,②不成立;若d2−d1=0,则①和②都成立,所以d1=d2.同理得:d1=d3,所以d1=d2=d3,记d1=d2=d3=d.设b3p−1−b3p−3=b3p+1−b3p−1=b3p+3−b3p+1=λ,则b3p−1−b3p−2=b3p−1−(n−p)d−(b3p+1−(n−p−1)d)=b3p−1−b3p+1+d= d−λ,同理可得:b3n−b3n−1=b3n+1−b3n=d−λ,所以b n+1−b n=d−λ.所以:{b n}是等差数列.【考点】数列递推式【解析】(1)由题意可知根据等差数列的性质,a n−3+a n−2+a n−1+a n+1+a n+2+a n+3= (a n−3+a n+3)+(a n−2+a n+2)+(a n−1+a n+1)=2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n}从第3项起为等差数列,再通过判断a2与a3的关系和a1与a2的关系,可知{a n}为等差数列.【解答】当n为奇数时,a n+1−a n=2(n+1)−(2n−1)=3>0,所以a n+1≥a n.a n−2+a n+2=2(n−2)−1+2(n+2)−1=2(2n−1)=2a n.当n为偶数时,a n+1−a n=2(n+1)−2n=3>0,所以a n+1≥a n.a n−2+a n+2=2(n−2)+2(n+2)=4n=2a n.所以,数列{a n}是否为“R数列数列”.证明(1)由题意可得:b n−3+b n+3=2b n,则数列b1,b4,b7,…是等差数列,设其公差为d1,数列b2,b5,b8,…是等差数列,设其公差为d2,数列b3,b6,b9,…是等差数列,设其公差为d3,因为b n≤b n+1,所以b3n+1≤b3n+2≤b3n+4,所以b1+nd1≤b2+nd2≤b1+(n+1)d1,所以n(d2−d1)≥b1−b2①,n(d2−d1)≥b1−b2+d1,②.若d2−d1<0,则当n>b1−b2d2−d1时,①不成立;若d2−d1>0,则当n>b1−b2+d1d2−d1时,②不成立;若d2−d1=0,则①和②都成立,所以d1=d2.同理得:d1=d3,所以d1=d2=d3,记d1=d2=d3=d.设b3p−1−b3p−3=b3p+1−b3p−1=b3p+3−b3p+1=λ,则b3p−1−b3p−2=b3p−1−(n−p)d−(b3p+1−(n−p−1)d)=b3p−1−b3p+1+d= d−λ,同理可得:b3n−b3n−1=b3n+1−b3n=d−λ,所以b n+1−b n=d−λ.所以:{b n}是等差数列.一、【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]【答案】延长PT,交⊙O2与点C,连结O1P,O2C,O1O2,则O1O2过点T,由切割线定理得:PM2=PC×PT=3.因为∠O1TP=∠O2TC,△O1TP与△O2TC均为等腰三角形,所以△O1TP∽△O2TC,所以PT TC=PO1CO2=2,所以PTPC =23,即PC=32PT.因为PC×PT=32×PT×PT=3,解得PT=√2.【考点】与圆有关的比例线段【解析】延长PT,交⊙O2与点C,连结O1P,O2C,O1O2则O1O2过点T,由切割线定理得:PM2=PC×PT=3.推导出△O1TP∽△O2TC,从而PC=32PT.由此能求出PT.【解答】延长PT ,交⊙O 2与点C ,连结O 1P ,O 2C ,O 1O 2, 则O 1O 2过点T ,由切割线定理得:PM 2=PC ×PT =3. 因为∠O 1TP =∠O 2TC ,△O 1TP 与△O 2TC 均为等腰三角形,所以△O 1TP ∽△O 2TC ,所以PT TC =PO1CO 2=2,所以PT PC =23,即PC =32PT . 因为PC ×PT =32×PT ×PT =3, 解得PT =√2.[选修4-2:矩阵与变换] 【答案】由已知得[1x 02][01]=[x 2]=λ[01], 所以{λ=2x =0 ,所以A =[1002]. 方法一:设A −1=[abcd],则AA −1=[1002][a b c d ]=[1001],即[ab2c 2d]=[1001],.所以a =1,b =c =0,d =12. 所以λ=2,A −1=[10012].方法二:由A =[1002].则|A|=2,则A −1=[10012]. 【考点】特征向量的意义 【解析】根据矩阵的特征向量的定义,即可求得λ及矩阵A , 方法一:设逆矩阵,根据AA −1=E ,即可求得A −1.方法二:求得|A|=2,根据二阶矩阵逆矩阵的求法,即可求得|A|=2, 【解答】由已知得[1x 02][01]=[x 2]=λ[01], 所以{λ=2x =0 ,所以A =[1002]. 方法一:设A −1=[abcd],则AA −1=[1002][a b c d ]=[1001],即[ab2c 2d]=[1001],.所以a =1,b =c =0,d =12.所以λ=2,A−1=[10012].方法二:由A =[1002].则|A|=2,则A −1=[10012]. [选修4-4:坐标系与参数方程] 【答案】曲线{x =t −1y =t 2−1 的普通方程为y =x 2+2x , 联立{y =x y =x 2+2x ,解得{x =0y =0 或{x =−1y =−1, 所以A(0, 0),B(−1, −1),所以AB =√(−1−0)2+(−1−0)2=√2. 【考点】参数方程与普通方程的互化 【解析】将曲线的参数方程化为直角坐标方程,与直线方程联立求出交点坐标,根据两点间距离公式求出线段长度. 【解答】曲线{x =t −1y =t 2−1 的普通方程为y =x 2+2x , 联立{y =x y =x 2+2x ,解得{x =0y =0 或{x =−1y =−1 , 所以A(0, 0),B(−1, −1),所以AB =√(−1−0)2+(−1−0)2=√2. [选修4-5:不等式选讲] 【答案】∵ a >1,b >1;∴ a −1>0,b −1>0; ∴b 2a−1+4(a −1)≥4b ,a 2b−1+4(b −1)≥4a ;两式相加:b 2a−1+4(a −1)+a 2b−1+4(b −1)≥4b +4a ; ∴b 2a−1+a 2b−1≥8; 当且仅当b 2a−1=4(a −1),a 2b−1=4(b −1)时“=”成立;即a =b =2时,b 2a−1+a 2b−1取得最小值8.【考点】基本不等式及其应用 【解析】根据a >1,b >1即可得出b 2a−1+4(a −1)≥4b,a 2b−1+4(b −1)≥4a ,两式相加便可求出b 2a−1+a 2b−1的最小值.【解答】∵ a >1,b >1;∴ a −1>0,b −1>0; ∴b 2a−1+4(a −1)≥4b ,a 2b−1+4(b −1)≥4a ; 两式相加:b 2a−1+4(a −1)+a 2b−1+4(b −1)≥4b +4a ;∴b 2a−1+a 2b−1≥8; 当且仅当b 2a−1=4(a −1),a 2b−1=4(b −1)时“=”成立;即a =b =2时,b 2a−1+a 2b−1取得最小值8.【必做题】第25、26题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 【答案】以AB →,AD →,AP →为正交基底,建立如图所示空间直角坐标系A −xyz . 则A(0, 0, 0),B(4, 0, 0),C(4, 2, 0),D(0, 4, 0),P(0, 0, 4), DP →=(0, −4, 4),DC →=(4, −2, 0). 设平面PCD 的法向量为n →=(x, y, z),则{n →∗DP →=−4y +4z =0n →∗DC →=4x −2y =0 ,令x =1,得n →=(1, 2, 2). 平面ACD 的法向量为m →=(0, 0, 1), ∴ cos <m →,n →>=m →∗n→|m →|∗|n →|=23,∴ 二面角P −CD −A 的余弦值为23.由题意可知,PC →=(4, 2, −4),DC →=(4, −2, 0), 设PH →=λPC →=(4λ, 2λ, −4λ),则DH →=DP →+PH →=(4λ, 2λ−4, 4−4λ),∵ DC =DH ,∴ √(4λ)2+(2λ−4)2+(4−4λ)2=√20, 化简得3λ2−4λ+1=0,解得λ=1或λ=13. 又∵ 点H 异于点C ,∴ λ=13. 故PHPC =13.【考点】二面角的平面角及求法 【解析】(1)以AB →,AD →,AP →为正交基底,建立如图所示空间直角坐标系A −xyz .利用向量法能求出二面角P −CD −A 的余弦值.(2),PC →=(4, 2, −4),DC →=(4, −2, 0),设PH →=λPC →=(4λ, 2λ, −4λ),则DH →=DP →+PH →=(4λ, 2λ−4, 4−4λ),由DC =DH ,能求出PHPC 的值. 【解答】以AB →,AD →,AP →为正交基底,建立如图所示空间直角坐标系A −xyz . 则A(0, 0, 0),B(4, 0, 0),C(4, 2, 0),D(0, 4, 0),P(0, 0, 4), DP →=(0, −4, 4),DC →=(4, −2, 0). 设平面PCD 的法向量为n →=(x, y, z),则{n →∗DP →=−4y +4z =0n →∗DC →=4x −2y =0 ,令x =1,得n →=(1, 2, 2). 平面ACD 的法向量为m →=(0, 0, 1), ∴ cos <m →,n →>=m →∗n→|m →|∗|n →|=23,∴ 二面角P −CD −A 的余弦值为23.由题意可知,PC →=(4, 2, −4),DC →=(4, −2, 0), 设PH →=λPC →=(4λ, 2λ, −4λ),则DH →=DP →+PH →=(4λ, 2λ−4, 4−4λ),∵ DC =DH ,∴ √(4λ)2+(2λ−4)2+(4−4λ)2=√20, 化简得3λ2−4λ+1=0,解得λ=1或λ=13. 又∵ 点H 异于点C ,∴ λ=13. 故PHPC =13.【答案】①当n=1时,等式右边=sin 3x 22sin x2−12=sin(x+x2)−sin(x−x2)2sin x2=sinxcos x2+cosxsin x2−sinxcos x2+cosxsin x22sin x2=cosx=等式左边,等式成立.②假设当n=k时等式成立,即cosx+cos2x+cos3x+...+coskx=sin(k+12)x2sin12x−12.那么,当n=k+1时,有cosx+cos2x+cos3x+...+coskx+cos(k+1)x=sin(k+12)x2sin12x−1+cos(k+1)x=sin(k+12)x+2sin12xcos(k+1)x2sin12x−12=sin(k+1)xcos12x−cos(k+1)xsin12x+2sin12xcos(k+1)x2sin12x−12=sin(k+1)xcos12x+cos(k+1)xsin12x2sin12x−12=sin(k+1+12 )x2sin12x−12.即当n=k+1时等式也成立.根据①和②可知,对任何n∈N∗,等式都成立.由(1)可知,cosx+cos2x+cos3x+...+cos2018x=sin(2018+12)x2sin12x−12,两边同时求导,得−sinx−2sin2x−3sin3x−...−2018sin2018x=(2018+12)cos[(2018+12)xbrack∗sin12x−12sin[(2018+12)xbrackcos12x2sin212x.令x=−π6可得:sin π6+2sin2π6+3sin3π6+4sin4π6+...+2018sin2018π6=(2018+12)cos[(2018+12)∗(−π6)brack∗sin(−π12)−12sin[(2018+12)∗(−π6)brackcos(−π12)2sin2(−π12)=√3−20152.【考点】数学归纳法【解析】(1)先验证n=1结论成立,假设n=k结论成立,验证n=k+1结论是否成立即可;(2)对(1)的结论两边求导,再令x=−π6即可得出答案.【解答】①当n=1时,等式右边=sin 3x 22sin x2−12=sin(x+x2)−sin(x−x2)2sin x2=sinxcos x2+cosxsin x2−sinxcos x2+cosxsin x22sin x2=cosx=等式左边,等式成立.②假设当n=k时等式成立,即cosx+cos2x+cos3x+...+coskx=sin(k+12)x2sin12x−12.那么,当n=k+1时,有cosx+cos2x+cos3x+...+coskx+cos(k+1)x=sin(k+12)x2sin12x−12+cos(k+1)x=sin(k+12)x+2sin12xcos(k+1)x2sin12x−12=sin(k+1)xcos12x−cos(k+1)xsin12x+2sin12xcos(k+1)x2sin12x−12=sin(k+1)xcos12x+cos(k+1)xsin12x2sin12x−12=sin(k+1+12 )x2sin12x−12.即当n=k+1时等式也成立.根据①和②可知,对任何n∈N∗,等式都成立.由(1)可知,cosx+cos2x+cos3x+...+cos2018x=sin(2018+12)x2sin12x−12,两边同时求导,得−sinx−2sin2x−3sin3x−...−2018sin2018x=(2018+12)cos[(2018+12)xbrack∗sin12x−12sin[(2018+12)xbrackcos12x2sin212x.令x=−π6可得:sin π6+2sin2π6+3sin3π6+4sin4π6+...+2018sin2018π6=(2018+12)cos[(2018+12)∗(−π6)brack∗sin(−π12)−12sin[(2018+12)∗(−π6)brackcos(−π12)2sin2(−π12)=√3−20152.。
江苏省南通市、泰州市2018届高三第一次模拟考试地理注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(综合题)两部分。
满分120分,考试用时100分钟。
2. 答题前,请考生务必将自己的学校、班级、姓名写在密封线内。
第Ⅰ卷(选择题共60分)一、选择题:共60分。
(一) 单项选择题:本大题共18小题,每小题2分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
图1图1为“某日地球局部光照图(阴影部分为黑夜)”。
读图,回答12题。
1. 该日,甲地日落时间较乙地约( )A. 晚1小时B. 早2小时C. 早3小时D. 早5小时2. 该日前后,甲、乙两地( )A. 日出、日落方位相似B. 随地球自转的速度相同C. 昼长变化趋势一致D. 正午太阳高度变化趋势一致图2为“2018年1月25日南通天气预报示意图”。
读图,回答34题。
图23. 图3所示甲、乙、丙、丁四图中,符合南通1月3日海平面等压线(hPa)分布状况的是( )甲乙丙丁图3A. 甲B. 乙C. 丙D. 丁图44. 图4为“大气受热过程示意图”,1月4日南通昼夜温差变小,是因为图示的( )A. ①变大、②变小B. ①变小、③变大C. ②变大、③变小D. ③变小、④变大贵州兴义地质公园拟申报世界地质公园。
图5为“贵州兴义地质园某地质景观图”。
读图回答56题。
图55. 构成图示地质构造的( )A. 岩石有气孔或流纹构造B. 岩石直接来自岩石圈底部C. 岩层可能含有煤、石油等矿产D. 岩石在高温高压条件下形成6. 塑造该地貌的地质作用依次是( )A. 水平挤压、侵蚀作用、地壳上升B. 地壳上升、水平挤压、侵蚀作用C. 侵蚀作用、地壳上升、水平挤压D. 水平挤压、地壳上升、侵蚀作用图6图6为“欧洲西南部罗讷河流域地形图”。
读图,回答78题。
7. 图示区域( )A. 地势西高东低B. 植被类型多样C. 国界线沿山脊延伸D. 大陆性气候分布广8. 若阿尔卑斯山森林大面积减少,则该区域( )A. 山地积雪大幅减少B. 罗讷河汛期流量增大C. 年降水总量增大D. 河流封冻期显著缩短表1为“2011—2015年中国和美国人口年龄结构统计表”。
2018届高三年级第一次模拟考试(四) 英语(满分120分,考试时间120分钟) 第一部分听力(共两节,满分20分) 第一节(共5小题;每小题1分,满分5分) 听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
每段对话仅读一遍。
() 1. What color is the man's toothbrush? A. Blue.B. Green.C. Red. () 2. What is the man mostly worried about? A. The noisy plane. B. The safety of the airplane. C. The service of the flight attendant. () 3. How does the man feel? A. Impatient. B. Helpless. C. Exhausted. () 4. When does the girl have to go to bed? A. At 8:00 p.m. B. At 9:00 p.m. C. At 11:00 p.m. () 5. Where does the conversation take place? A. At a fruit shop. B. At a candy shop. C. At the woman's house. 第二节(共15小题;每小题1分,满分15分) 听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟的作答时间。
每段对话或独白读两遍。
秒钟;听完后,各小题将给出5秒钟的作答时间。
2018届高三年级第一次模拟考试(四)英语(满分120分,考试时间120分钟)第一部分听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
( ) 1. What color is the man's toothbrush?A. Blue.B. Green.C. Red.( ) 2. What is the man mostly worried about?A. The noisy plane.B. The safety of the airplane.C. The service of the flight attendant.( ) 3. How does the man feel?A. Impatient.B. Helpless.C. Exhausted.( ) 4. When does the girl have to go to bed?A. At 8:00 p.m.B. At 9:00 p.m.C. At 11:00 p.m.( ) 5. Where does the conversation take place?A. At a fruit shop.B. At a candy shop.C. At the woman's house.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
( ) 6. What's the relationship between the speakers?A. Boss and employee.B. Coworkers.C. Classmates.( ) 7. Why is Jane unhappy?A. She forgot to answer some emails.B. She talked to angry customers all morning.C. She is usually the first one to take complaints.听第7段材料,回答第8至10题。
南通市2018届高三下学期第一次模拟考试数学试题Ⅰ一、 填空题:本大题共14小题,每小题5分,共计70分. 1、已知集合A ={}{}|12,1,0,1x x B -<<=-,则A B =【答案】{}0,1.【命题立意】本题旨在考查集合的概念和交集的运算.考查概念的理解和运算能力,难度较小.【解析】{}{}12,1,0,1A x x B =-<<=-,根据交集定义可得{}0,1AB =.2、若复数2(z a i i =+为虚数单位,a R ∈),满足||3z =,则a 的值为【答案】【命题立意】本题旨在考查复数及模的概念与复数的运算,考查运算求解的能力. ,难度较小.3= ,即25a =,解得a =.3、从1,2,3,4这四个数中一次随机地取2个数,则所取2个数的乘积为偶数的概率是 【答案】56. 【命题立意】本题旨在考查古典概型的求法,枚举法在求古典概型中的应用.考查运算和推理能力,难度较小.【解析】随机地抽取2个数总可能数为6种,两个数之积为偶数的为:1,2;1,4;2,3;2,4;3,4,共有5种,那么所取的2个数之为偶数的概率为56P =. 4、根据下图所示的伪代码,可知输出的结果S 为【答案】21【命题立意】本题旨在考查算法伪代码,考查学生的阅读能力.考查推理运算能力,难度较小。
【解析】模拟执行程序,开始有I=1,S=0,此时满足条件S ≤10;接下来有I=2,S=1,此时满足条件S ≤10;接下来有I=3,S=1+4=5,此时满足条件S ≤10;接下来有I=4,S=5+16=21,此时不满足条件S>10,退出循环,输出S=21.【易错警示】此题容易出错的地方就是循环的结束的确定.5.为了了解居民家庭网上购物消费情况,某地区调查了10000户家庭的月消费金额(单位:元),所有数据均在区间]4500,0[上,其频率分布直方图如下图所示,则被调查的10000户家庭中,有 户月消费额在1000元以下【答案】2000.【命题立意】本题旨在考查统计的概念,直方图.考查概念的理解和运算能力,难度较小.【解析】由题意得,被调查的10000户家庭中,消费额在1000元以下的户数有:(0.0001+0.0003)×500×10000=2000户.6.设等比数列}{n a 的前n 项的和为n S ,若15,342==S S ,则6S 的值为 【答案】63.【命题立意】本题旨在考查等比数列的基本运算,等比数列的求和,考查学生的运算能力,难度中等.【解析】由等比数列前n 项和的性质232,,,n n n n n S S S S S -- 成等比数列,则24264,,S S S S S --成等比数列,()()26153315S -=⨯-,解得663S =.法一:设等比数列{a n }的首项为a 1,公比为q .显然q ≠1,由题意得⎩⎨⎧a 1(1-q 2)1-q =3a 1(1-q 4) 1-q=15.解之得:⎩⎨⎧a 1=1,q =±2.所以,S 6=1-q61-q =63.法二:由等比数列的性质得 q 2=S 4-S 2S 2=4,(下同一) 元消费/法三:由S 2,S 4-S 2,S 6-S 4成等比数列 所以 (S 4-S 2)2=S 2(S 6-S 4),得S 6=63.7.在平面直角坐标系xOy 中,已知双曲线)0,0(12222>>=-b a by a x 过点)1,1(P ,其一条渐近线方程为x y 2=,则该双曲线的方程为【答案】22112x y -=.【命题立意】本题旨在考查双曲线的标准方程,双曲线几何性质,渐近线等概念.考查概念和运算和推理能力,难度中等.【解析】法一:由题意可得22111a b b a⎧-=⎪⎪⎨⎪=⎪⎩ ,解得22121a b ⎧=⎪⎨⎪=⎩.故双曲线的方程为22112x y -=.法二:设所求的双曲线方程为:2x 2-y 2=λ,因为点P (1,1),所以λ=2-1=1.所以,所求的双曲线方程为:2x 2-y 2=1.8.已知正方体1111D C B A ABCD -的棱长为1,点E 是棱B B 1的中点,则三棱锥ADE B -1的体积为【答案】112. 【命题立意】本题旨在考查多面体的概念,三棱锥的体积求法.考查计算能力,难度较小. 【解析】根据等体积法可得1111111132212B ADE D AB E V V --==⨯⨯⨯⨯=. 法一:V B 1-ADE =V D -AB 1E =13×AD ×S △AB 1E =13×1×12×1×12=112.法二:因为AD ⊥B 1E ,所以V B 1-ADE =16×AD ×B 1E ×d ×sin θ=16×1×12×1×1=112.(其中d 为异面直线AD 与B 1E 的距离,θ为异面直线AD 与B 1E 所成的角). 法三:设F 、G 、H 分别为棱CC 1、DD 1、AA 1的中点, 则V B 1-ADE =12V B 1-ADEF =16×V B 1C 1GH -ADEF =112V ABCD -A 1B 1C 1D 1=112.9.若函数⎩⎨⎧<+≥-=0),2(0),()(x x ax x b x x x f )0,0(>>b a 为奇函数,则)(b a f +的值为【答案】1-.【命题立意】考查函数,分段函数的概念,函数的奇偶性,函数的求值等基础知识.考查数形结合的思想方法,考查分析问题、解决问题的能力,难度中等. 【解析】法一:因为函数f (x )为奇函数,所以f (-1)=-f (1),f (-2)=-f (2),即⎩⎨⎧1(1-b )=a (-1+2)2(2-b )=2a (-2+2),解得a =-1,b =2.经验证a =-1,b =2满足题设条件. f (a +b )=f (1)=-1.法二:因为函数f (x )为奇函数,所以f (x )的图象关于原点对称. 当x >0,二次函数的图象顶点为(b 2,- b 24).当x <0,二次函数的图象顶点为(-1,-a ).所以,-b 2=-1,-b 24=a ,解得a =-1,b =2.(下略).10.已知31)6sin(=+πx ,则)3(sin )65sin(2x x -+-ππ的值是 【答案】59. 【命题立意】本题旨在考查三角函数的基本性质,诱导公式,两角和与差三角函数,三角函数的恒等变换,考查运算能力,难度中等. 【解析】225sin sin sin sin 63626x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=+-+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 25sin 1sin 669x x ππ⎛⎫⎛⎫=-++-+= ⎪ ⎪⎝⎭⎝⎭.法一:sin(x -5π6)=sin(x +π6-π)=-sin(x +π6)=-13.sin 2(π3-x )=cos 2(x +π6)=1-sin 2(x +π6)=1-19=89,所以sin(x -5π6)+sin 2(π3-x )=89-13=59.法二:sin(x -5π6)+sin 2(π3-x )=-sin(x +π6)+12-12cos(2π3-2x )=-13+12+12cos(2x +π3)=-13+12+12[1-2sin 2(x +π6)]=59.11.在平面直角坐标系xOy 中,点)0,4(),0,1(B A .若直线0=+-m y x 上存在点P , 使得PB PA 21=,则实数m 的取值范围是【答案】⎡-⎣.【命题立意】本题旨在考查直线与圆的位置关系,点到直线距离.考查学生的运算能力,灵活运用有关知识解决问题的能力.难度中等.【解析】法一:设满足条件PA =2PB 的P 点坐标为(x ,y ),则(x -4)2+y 2=4(x -1)2+4y 2,化简得x 2+y 2=4.要使直线x -y +m =0有交点,则|m| 2≤2.即-2 2≤m≤22. 法二:设直线x -y +m =0有一点(x ,x +m )满足PA =2PB ,则 (x -4)2+(x +m )2=4(x -1)2+4(x +m )2. 整理得2x 2+2mx +m 2-4=0 (*)方程(*)有解,则△=4m 2-8(m 2-4)≥0, 解之得:-2 2≤m ≤22.12.已知边长为6的正三角形ABC,AE BD ==AD 与BE 交点P , 则PD PB ⋅的值为【答案】3.【命题立意】本题旨在考查向量的线性运算,向量的数量积,向量的坐标运算.考查运算能力,推理论证能力及灵活运用数学知识能力.难度中等.【解析】法一:设AB →=→a ,AC →=→b .则→a ·→b =8.设AP →=λAB →+μAE →=λ→a +μ3→b ,AP→=ηAD →=η2→a +η2→b ,又B 、P 、E 三点共线,所以⎩⎪⎨⎪⎧λ=η2μ3=η2λ+μ=1解之得:λ=14,μ=34,η=12. PB →=AB →-AP →=34→a -14→b ,PD →=14→a +14→b ,PB →·PD →=(34→a -14→b )(14→a +14→b )=116(3→a 2+2→a ·→b -→b 2)=3.法二:以BC 为x 轴,AD 为y 轴,建立坐标系,B (-2,0),C (-2,0),A (0,23),E (23,4 33),P (0, 3).所以,PB →·PD →=(-2,- 3)·(0,-3)=3.13.在平面直角坐标系xOy 中,直线l 与曲线)0(2>=x x y 和)0(3>=x x y 均相切, 切点分别为),(11y x A 和),(22y x B ,则21x x 的值是 【答案】43.【命题立意】本题旨在考查导数的概念,函数的切线方程.考查运算能力,推理论证能力及灵活运用数学知识能力,难度中等.【解析】由题设函数y =x 2在A (x 1,y 1)处的切线方程为:y =2x 1 x -x 12, 函数y =x 3在B (x 2,y 2)处的切线方程为y =3 x 22x -2x 23.所以⎩⎨⎧2x 1=3x 22x 12=2x 23,解之得:x 1=3227,x 2=89. 所以 x 1x 2=43.14.已知函数),(32)(2R b a b ax x f ∈+=.若对于任意]1,1[-∈x ,都有1|)(|≤x f 成立,则ab 的最大值是【答案】124.【命题立意】本题旨在考查二次函数、函数性质、基本不等式、绝对值的概念. 考查恒等变换,代换技巧,抽象概括能力和综合运用数学知识解决问题能力,难度中等. 【解析】法一:由|f (x )|≤1,得|2a +3b |≤1, 所以,6ab ≤|2a ·3b |=|2a +3b -3b |·|3b |≤22333()2a b b b +-+≤21(23)4a b +≤14.且当2a =3b =±12时,取得等号.所以ab 的最大值为124.法二:由题设得⎩⎨⎧f (0)=3b f (1)=2a +3b⇒⎩⎨⎧a =12(f (1)-f (0)) b =13f (0),ab =16(f (1)-f (0))f (0)≤16(f (1)2)2≤124. 二、 解答题:本大题共6小题,共计90分.请作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,ab c b a c b a =++-+))((。
南通市2018届⾼三⼀模含答案南通市2018届⾼三第⼀次调研测试英语第⼀部分听⼒ (共两节,满分20分)做题时,先将答案标在试卷上。
录⾳内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第⼀节(共5⼩题;每⼩题1分,满分5分)听下⾯5段对话。
每段对话后有⼀个⼩题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关⼩题和阅读下⼀⼩题。
每段对话仅读⼀遍。
1. What color is the man’s toothbrush?A. Blue.B. Green.C. Red.2. What is the man mostly worried about?A. The noisy plane.B. The safety of the airplane.C. The service of the flight attendant.3. How does the man feel?A. Impatient.B. Helpless.C. Exhausted.4. When does the girl have to go to bed?A. At 8:00 p.m.B. At 9:00 p.m.C. At 11:00 p.m.5. Where does the conversation take place?A. At a fruit shop.B. At a candyshop.C. At the woman’s house.第⼆节(共15⼩题;每⼩题1分,满分15分)听下⾯5段对话或独⽩。
每段对话或独⽩后有⼏个⼩题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独⽩前,你将有时间阅读各个⼩题,每⼩题5秒钟;听完后,各⼩题将给出5秒钟的作答时间。
每段对话或独⽩读两遍。
听第6段材料,回答第6、7题。
6. What’s the relationship between the speakers?A. Boss and employee.B. Co-workers.C. Classmates.7. Why is Jane unhappy?A. She forgot to answer some emails.B. She talked to angry customers all morning.C. She is usually the first one to take complaints.听第7段材料,回答第8⾄10题。
南通市2018届高三第一次调研测试数学Ⅰ一、选择题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}1,0,A a =-,{}0,B a =.若B A ⊆,则实数a 的值为 ▲ .2.已知复数141i z i+=-,其中i 为虚数单位,则复数z 的实部为 ▲ . 3.已知某校高一、高二、高三的学生人数分别为400,400,500.为了解该校学生的身高情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为65的样本,则应从高三年级抽取 ▲ 名学生.4.根据如图所示的伪代码,可知输出的结果S 为 ▲ .5.某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,则数学建模社团被选中的概率为 ▲ .6.若实数,x y 满足1,3,10,x y x y ≥⎧⎪≤⎨⎪--≤⎩则2x y -的最大值为 ▲ .7.在平面直角坐标系xOy 中,已知点F 为抛物线28y x =的焦点,则点F 到双曲线221169x y -=的渐近线的距离为 ▲ .8.在各项均为正数的等比数列{}n a 中,若21a =,8646a a a =+,则3a 的值为 ▲ .9.在平面直角坐标系xOy 中,将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ02πϕ⎛⎫<< ⎪⎝⎭个单位长度.若平移后得到的图像经过坐标原点,则ϕ的值为 ▲ .10.若曲线ln y x x =在1x =与x t =处的切线互相垂直,则正数t 的值为 ▲ .11.如图,铜质六角螺帽毛胚是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4cm ,圆柱的底面积为293cm .若将该螺帽熔化后铸成一个高为6cm 的正三棱柱零件,则该正三棱柱的底面边长为 ▲ cm .(不计损耗)12.如图,已知矩形ABCD 的边长2AB =,1AD =.点P ,Q 分别在边BC ,CD 上,且45PAQ ︒∠=,则AP AQ ⋅u u u r u u u r 的最小值为 ▲ .13.在平面直角坐标系xOy 中,已知点(4,0)A -,(0,4)B ,从直线AB 上一点P 向圆224x y +=引两条切线PC ,PD ,切点分别为C ,D .设线段CD 的中点为M ,则线段AM 长的最大值为 ▲ . 14.已知函数221,0,()ln(),0,x ax a x f x x x ⎧--+≥=⎨-<⎩2()12g x x a =+-.若函数(())y f g x =有4个零点,则实数a 的取值范围是 ▲ .三、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答应写出文字说明、证明过程或演算步骤.)15.如图,在三棱锥P ABC -中,AB PC ⊥,CA CB =,M 是AB 的中点.点N 在棱PC 上,点D 是BN 的中点.求证:(1)//MD 平面PAC ;(2)平面ABN ⊥平面PMC .16.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且222a b c bc =+-,15a =.(1)求sin B 的值;(2)求cos 12C π⎛⎫+ ⎪⎝⎭的值. 17.如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b +=(0)a b >>的离心率为22,两条准线之间的距离为42.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A ,点M 在圆2289x y +=上,直线AM 与椭圆相交于另一点B ,且AOB ∆的面积是AOM ∆的面积的2倍,求直线AB 的方程.18.如图,某小区中央广场由两部分组成,一部分是边长为80cm 的正方形ABCD ,另一部分是以AD 为直径的半圆,其圆心为O .规划修建的3条直道AD ,PB ,PC 将广场分割为6个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点P 在半圆弧上,AD 分别与PB ,PC 相交于点E ,F .(道路宽度忽略不计)(1)若PB 经过圆心,求点P 到AD 的距离;(2)设POD θ∠=,0,2πθ⎛⎫∈ ⎪⎝⎭. ①试用θ表示EF 的长度;②当sin θ为何值时,绿化区域面积之和最大.19.已知函数32()g x x ax bx =++(,)a b R ∈有极值,且函数()()x f x x a e =+的极值点是()g x 的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1)求b 关于a 的函数关系式;(2)当0a >时,若函数()()()F x f x g x =-的最小值为()M a ,证明:7()3M a <-. 20.若数列{}n a 同时满足:①对于任意的正整数n ,1a n a a +≥恒成立;②对于给定的正整数k ,2n k n k n a a a -++=对于任意的正整数()n n k >恒成立,则称数列{}n a 是“()R k 数列”.(1)已知22,2,n n n a n n -⎧=⎨⎩为奇数,为偶数,判断数列{}n a 是否为“(2)R 数列”,并说明理由;(2)已知数列{}n b 是“(3)R 数列”,且存在整数(1)p p >,使得33p b -,31p b -,31p b +,33p b +成等差数列,证明:{}n b 是等差数列.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]如图,已知1O e 的半径为2,2O e 的半径为1,两圆外切于点T .点P 为1O e 上一点,PM 与2O e 切于点M .若3PM =,求PT 的长.B.[选修4-2:矩阵与变换]已知x R ∈,向量01⎡⎤⎢⎥⎣⎦是矩阵102x A ⎡⎤=⎢⎥⎣⎦的属于特征值λ的一个特征向量,求λ与1A -. C.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线y x =与曲线211x t y t =-⎧⎨=-⎩(t 为参数)相交于A ,B 两点,求线段AB 的长.D.[选修4-5:不等式选讲]已知1a >,1b >,求2211b a a b +--的最小值. 【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.如图,在四棱锥P ABCD -中,AP ,AB ,AD 两两垂直,//BC AD ,且4AP AB AD ===,2BC =.(1)求二面角P CD A --的余弦值;(2)已知点H 为线段PC 上异于C 的点,且DC DH =,求PH PC的值. 23.(1)用数学归纳法证明:当*n N ∈时, cos cos2cos3cos x x x nx +++⋅⋅⋅+=1sin 12122sin 2n x x ⎛⎫+ ⎪⎝⎭-(x R ∈,且2x k π≠,k Z ∈); (2)求234sin 2sin 3sin 4sin 6666ππππ++++20182018sin 6π⋅⋅⋅+的值.南通市2018届高三第一次调研测试数学学科参考答案及评分建议一、选择题1.12.32-3.254.105.126.57.6539.6π 10.2e - 11.210 12.424- 13.32 14.()51,11,⎛⎫-+∞ ⎪ ⎪⎝⎭U 二、解答题15.【证明】(1)在ABN ∆中,M 是AB 的中点, D 是BN 的中点,所以//MD AN .又因为AN ⊂平面PAC ,MD ⊄平面PAC , 所以//MD 平面PAC .(2)在ABC ∆中,CA CB =,M 是AB 的中点,所以AB MC ⊥,又因为AB PC ⊥,PC ⊂平面PMC ,MC ⊂平面PMC ,PC MC C =I ,所以AB ⊥平面PMC .又因为AB ⊂平面ABN ,所以平面ABN ⊥平面PMC .16.【解】(1)在ABC ∆中,根据余弦定理及222a b c bc =+-得,2221cos 22b c a A bc +-==. 又因为()0,A π∈,所以3A π=. 在ABC ∆中,由正弦定理sin sin a b A B=得, sin sin b B A a =352515==. (2)因为15a b =>,所以A B >,即得03B π<<.又sin B =,所以cos B ==. 在ABC ∆中,A B C π++=, 所以cos()cos()1212C A B πππ+=--+ cos()4B π=-+ cos cos sin sin 44B B ππ⎛⎫=-- ⎪⎝⎭5252⎛=-- ⎝⎭=17.【解】(1)设椭圆的焦距为2c ,由题意得,2c a =,22a c =解得2a =,c =b =. 所以椭圆的方程为22142x y +=. (2)方法一:因为2AOB AOM S S ∆∆=,所以2AB AM =,所以点M 为AB 的中点. 因为椭圆的方程为22142x y +=, 所以(2,0)A -.设00(,)M x y ,则00(22,2)B x y +. 所以220089x y +=①,2200(22)(2)142x y ++=②, 由①②得200918160x x --=, 解得023x =-,083x =(舍去). 把023x =-代入①,得023y =±, 所以12AB k =±,因此,直线AB的方程为1(2)2y x=±+即22x y++=,220x y-+=.方法二:因为2AOB AOMS S∆∆=,所以2AB AM=,所以点M为AB的中点.设直线AB的方程为(2)y k x=+.由221,42(2),x yy k x⎧+=⎪⎨⎪=+⎩得2222(12)8840k x k x k+++-=,所以22(2)[(12)42]0x k x k+++-=,解得222412Bkxk-=+,所以22(2)4212BMx kxk+--==+,22(2)12M Mky k xk=+=+,代入2289x y+=得22222428()()12129k kk k-+=++,化简得422820k k+-=,即22(72)(41)0k k+-=,解得12k=±,所以,直线AB的方程为1(2)2y x=±+即220x y++=,220x y-+=.18.【解】以AD所在直线为x轴,以线段AD的中垂线为y轴建立平面直角坐标系.(1)直线PB的方程为2y x=,半圆O的方程为22240x y+=(0)y≥,由2222,40(0),y xx y y=⎧⎨+=≥⎩得5y=所以,点P到AD的距离为165m.(2)①由题意,得(40cos ,40sin )P θθ.直线PB 的方程为sin 280(40)cos 1y x θθ++=++, 令0y =,得80cos 8040sin 2E x θθ+=-+80cos 40sin sin 2θθθ-=+. 直线PC 的方程为sin 280(40)cos 1y x θθ-+=--, 令0y =,得80cos 8040sin 2F x θθ-=++80cos 40sin sin 2θθθ+=+. 所以,EF 的长度为()F E f x x θ=-80sin sin 2θθ=+,0,2πθ⎛⎫∈ ⎪⎝⎭. ②区域Ⅳ、Ⅵ的面积之和为1180sin 80802sin 2S θθ⎛⎫=⨯-⨯ ⎪+⎝⎭6400sin 2θ=+, 区域Ⅱ的面积为2140sin 2S EF θ=⨯⨯180sin 40sin 2sin 2θθθ⎛⎫=⨯⨯ ⎪+⎝⎭21600sin sin 2θθ=+, 所以2121600sin 6400sin 2S S θθ++=+(0)2πθ<<. 设sin 2t θ+=,则23t <<,2121600(2)6400t S S t-++=. 81600(4)t t=+-1600(284)≥6400(21)=.当且仅当t =sin 2θ=时“=”成立.所以,休闲区域Ⅱ、Ⅳ、Ⅵ的面积12S S +的最小值为21)m .答:当sin 2θ=时,绿化区域Ⅰ、Ⅲ、Ⅴ的面积之和最大.19.【解】(1)因为'()()x x f x e x a e =++(1)x x a e =++,令'()0f x =,解得1x a =--.列表如下.所以1x a =--时,()f x 取得极小值.因为2'()32g x x ax b =++, 由题意可知'(1)0g a --=,且24120a b ∆=->所以23(1)2(1)0a a a b --+--+=,化简得243b a a =---,由2412a b ∆=-2412(1)(3)0a a a =+++>,得32a ≠-. 所以243b a a =---,32a ⎛⎫≠- ⎪⎝⎭. (2)因为()()()F x f x g x =-32()()x x a e x ax bx =+-++,所以'()'()'()F x f x g x =-2(1)[32(1)(3)]x x a e x ax a a =++-+-++(1)(1)(33)xx a e x a x a =++-++--(1)(33)x x a e x a =++-++记()33x h x e x a =-++,则'()3x h x e =-,令'()0h x =,解得ln3x =.列表如下.所以ln3x =时,()h x 取得极小值,也是最小值,此时,ln3(ln 3)3ln 33h e a =-++63ln3a =-+3(2ln 3)a =-+23(ln )03e a a =+>>. 令'()0F x =,解得1x a =--.列表如下.所以1x a =--时,()F x 取得极小值,也是最小值.所以()(1)M a F a =--=132(1)((1)(1)(1))a a e a a a b a -------+--+--12(1)(2)a e a a --=--++.令1t a =--,则1t <-,记2()(1)t m t e t t =---32t e t t =-+-,1t <-,则2'()32t m t e t t =-+-,1t <-.因为10t e e --<-<,2325t t ->,所以'()0m t >,所以()m t 单调递增.所以17()2233t m t e -<--<--=-, 所以7()3M a <-. 20.【解】(1)当n 为奇数时,12(1)(21)30n n a a n n --=+--=>,所以1n n a a +≥.22n n a a -++=2(2)12(2)12(21)2n n n n a --++-=-=.当n 为偶数时,1(21)210n n a a n n --=+-=>,所以1n n a a +≥.22n n a a -++=2(2)2(2)42n n n n a -++==.所以,数列{}n a 是“(2)R 数列”.(2)由题意可得:332n n n b b b -++=,则数列1b ,4b ,7b ,⋅⋅⋅是等差数列,设其公差为1d ,数列2b ,3b ,8b ,⋅⋅⋅是等差数列,设其公差为2d ,数列3b ,6b ,9b ,⋅⋅⋅是等差数列,设其公差为3d .因为1n n b b +≤,所以313234n n n b b b +++≤≤,所以112211(1)b nd b nd b n d +≤+≤++,所以2112()n d d b b -≥-①,21121()n d d b b d -≤-+②.若210d d -<,则当1221b b n d d ->-时,①不成立; 若210d d ->,则当12121b b d n d d -+>-时,②不成立; 若210d d -=,则①和②都成立,所以12d d =.同理得:13d d =,所以123d d d ==,记123d d d d ===.设31333131p p p p b b b b --+--=-3331p p b b λ++=-=,则31323131()((1))n n p p b b b n p d b n p d ---+-=+--+--3131p p b b d d λ-+=-+=-.同理可得:331313n n n n b b b b d λ-+-=-=-,所以1n n b b d λ+-=-.所以{}n b 是等差数列.【另解】3133p p b b λ--=-23(1)((2))b p d b p d =+--+-23b b d =-+, 3131p p b b λ+-=-1212((1))b pd b p d b b d =+-+-=-+,3331p p b b λ++=-3131()b pd b pd b b =+-+=-,以上三式相加可得:32d λ=,所以23d λ=, 所以321(1)n b b n d -=+-1(321)3d b n =+-+, 312(1)n b b n d -=+-1(1)b d n d λ=+-+-1(311)3d b n =+--, 33(1)n b b n d =+-1(1)b n d λ=++-1(31)3d b n =+-, 所以1(1)3n d b b n =+-,所以13n n d b b +-=, 所以,数列{}n b 是等差数列.21.A.【解】延长PT 交2O e 与点C ,连结1O P ,2O C ,12O O ,则12O O 过点T ,由切割线定理得:23PM PC PT =⨯=.因为12O TP O TC ∠=∠,1O TP ∆与2O TC ∆均为等腰三角形,所以12O TP O TC ∆∆:,所以122PO PT TC CO ==, 所以23PT PC =,即32PC PT =. 因为PC PT ⨯=332PT PT ⨯=,所以2PT =.B.【解】由已知得1002121x x c λ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 所以20x λ=⎧⎨=⎩所以1002A ⎡⎤=⎢⎥⎣⎦. 设1a b A c d -⎡⎤=⎢⎥⎣⎦,则11002a b AA c d -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦1001⎡⎤=⎢⎥⎣⎦即102201a b c d ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦. 所以1a =,0b c ==,12d =. 所以2λ=,110102A -⎡⎤⎢⎥=⎢⎥⎣⎦. C.【解】曲线211x t y t =-⎧⎨=-⎩的普通方程为22y x x =+. 联立2,2,y x y x x =⎧⎨=+⎩解得00x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 所以(0,0)A ,(1,1)B --,所以AB ==D.【解】因为1a >,1b >, 所以24(1)41b a b a +-≥-,24(1)41a b a b +-≥-. 两式相加:224(1)4(1)11b a a b a b +-++-≥--44b a +, 所以22811b a a b +≥--. 当且仅当24(1)1b a a =--且24(1)1a b b =--时“=”成立. 即2a b ==时,2211b a a b +--取得最小值8. 22.【解】以{},,AB AD AP u u u r u u u r u u u r 为正交基底,建立如图所示空间直角坐标系A xyz -. 则(0,0,0)A ,(4,0,0)B ,(4,2,0)C ,(0,4,0)D ,(0,0,4)P(1)由题意可知,(0,4,4)DP =-u u u r ,(4,2,0)DC =-u u u r .设平面PCD 的法向量为1(,,)n x y z =u r ,则1100n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r 即440420y z x y -+=⎧⎨-=⎩令1x =,则2y =,2z =.所以1(1,2,2)n =u r .平面ACD 的法向量为2(0,0,1)n =u u r , 所以1212122cos ,3n n n n n n ⋅<>==u r u u r u r u u r u r u u r , 所以二面角P CD A --的余弦值23.(2)由题意可知,(4,2,4)PC =-u u u r ,(4,2,0)DC =-u u u r, 设(4,2,4)PH PC λλλλ==-u u u r u u u r ,则DH DP PH =+=u u u u r u u u r u u u r (4,24,44)λλλ--, 因为DC DH =222(4)(24)(44)20λλλ+-+-=化简得23410λλ-+=,所以1λ=或13λ=. 又因为点H 异于点C ,所以13λ=. 23. 【解】(1)①当1n =时,等式右边1sin(1)12122sin 2x x +=-11sin(1)sin(1)2212sin 2x x x +--= 1111(sin cos cos sin )(sin cos cos sin )222212sin 2x x x x x x x x x +--= cos x ==等式左边,等式成立.②假设当n k =时等式成立,即cos cos2cos3cos x x x kx +++⋅⋅⋅+1sin()12122sin 2k x x +=-. 那么,当1n k =+时,有cos cos 2cos3cos cos(1)x x x kx k x +++⋅⋅⋅+++1sin()12cos(1)122sin 2k x k x x +=-++ 11sin[sin(1)]2sin cos(1)122122sin 2k x x k x x +-++=- 111sin(1)cos cos(1)sin 2sin cos(1)1222122sin 2k x x k x x x k x x +-+++=- 11sin(1)cos cos(1)sin 122122sin 2k x x k x x x +++=- 1sin(1)12122sin 2k x x ++=- 这就是说,当1n k =+时等式也成立.根据①和②可知,对任何*n N ∈等式都成立.(2)由(2)可知, cos cos2cos3cos2018x x x x +++⋅⋅⋅+=1sin(2018)12122sin 2x x +-, 两边同时求导,得sin 2sin 23sin32018sin 2018x x x x ----⋅⋅⋅-2111111(2018)cos(2018)sin sin(2018)cos 22222212sin 2x x x x x ++-+= 所以232018sin 2sin 3sin 2018sin 6666ππππ----⋅⋅⋅- 21111(2018)cos(2018)sin sin(2018)cos 22612226122sin 12πππππ++-+=20152= 所以2342018sin 2sin 3sin 4sin 2018sin 66666πππππ++++⋅⋅⋅+20152=.。