人教版初中数学第十八章平行四边形知识点汇编
- 格式:docx
- 大小:244.21 KB
- 文档页数:7
一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .43.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 4.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 5.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个6.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组.7.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .48.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个9.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A .2B .2C .3D .510.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠11.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 12.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 13.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③14.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2415.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD .33a 二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)18.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.19.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.20.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.21.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm .22.如图,在正八边形ABCDEFGH 中,AE 是对角线,则EAB ∠的度数是__________.23.如图,菱形ABCD 的对角线相交于点O ,AC =12,BD =16,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE ⊥AC 于E ,PF ⊥BD 于F ,连结EF ,则EF 的最小值等于__________.24.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.25.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).26.如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.三、解答题27.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.28.如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,点E 是边BC 延长线上一点,连结,AE DE 、过点C 作CF DE ⊥于点F ,且DF EF =.(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.29.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.30.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB )顶端有一根绳子(AC ),自然垂下后,绳子底端离地面还有0.7m (即0.7BC =),工作人员将绳子底端拉到离宣传牌3m 处(即点E 到AB 的距离为3m ),绳子正好拉直,已知工作人员身高(DE )为1.7m ,求宣传牌(AB )的高度.。
人教版初中数学第十八章平行四边形知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版初中数学第十八章平行四边形知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版初中数学第十八章平行四边形知识点(word版可编辑修改)的全部内容。
第十八章平行四边形18。
1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形用“□”表示,读作“平行四边形”。
平行四边形ABCD记作“□ABCD”.18。
1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点。
例、已知:□ABCD求证:AD=BC,AB=DC;∠A=∠C,∠B=∠D。
证明:连接AC,//,//AD CD AD BC∴∠=∠∠=∠12,34又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA,∴==∠=∠,,AD CB AB CD B D平行四边形性质1:平行四边形的两组对边分别相等.平行四边形性质2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:四边形ABCD是平行四边形∴ AD=BC,AD∥BC。
∴∠1=∠2,∠3=∠4.∴△AOD≌△COB(ASA).∴ OA=OC,OB=OD。
平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征1:平行线之间的距离处处相等。
平行线之间的距离特征2:夹在两条平行线之间的平行线段相等。
第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质1.定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形用“□”表示,平行四边形ABCD记作“□ABCD”2.平行四边形的性质:(1)平行四边形的对边相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形。
3.两条平行线的距离:两条平行线中,一条直线上任意一点到另一条直线的距离叫做这两条平行线之间的距离。
18.1.2平行四边形的判定1.定义:两组对边分别平行的四边形叫做平行四边形2.判定定理:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。
3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
4.三角形中位线定理;三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
18.2特殊的平行四边形18.2.1矩形1.定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质:①矩形的四个角都是直角②矩形的对角线相等③矩形既是中心对称图形,又是轴对称图形。
3.直角三角形斜边上的中线等于斜边的一半。
4.矩形的判定:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形。
18.2.2菱形1.菱形:有一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;(3)菱形既是轴对称图形,又是中心对称图形。
3.菱形的判定定理:(1)对角线互相垂直的平行四边形是菱形;(2)四条边相等的四边形是菱形。
4.“对角线互相垂直的四边形面积等于两对角线乘积的一半”。
18.2.3正方形1.正方形的四条边都相等,四个角都是直角。
因此,正方形既是矩形,又是菱形。
2.正方形既有矩形的性质,又有菱形的性质。
初中数学知识点总结:平行四边形
知识点总结
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
〔1〕平行四边形的对边平行且相等;
〔2〕平行四边形的邻角互补,对角相等;
〔3〕平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
〔1〕两组对边分别平行的四边形是平行四边形;
〔2〕两组对边分别相等的四边形是平行四边形;
〔3〕一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
〔4〕两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
〔5〕对角线互相平分的四边形是平行四边形
常见考法
〔1〕利用平行四边形的性质,求角度、线段长、周长;〔2〕求平行四边形某边的取值范围;〔3〕考查一些综合计算问题;〔4〕
利用平行四边形性质证明角相等、线段相等和直线平行;〔5〕利用判定定理证明四边形是平行四边形。
误区提醒
〔1〕平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;〔2〕〝一组对边平行且相等的四边形是平行四边形〞错记成〝一组对边平行,一组对边相等的四边形是平行四边形〞后者不是平行四边形的判定定理,它只是个等腰梯形。
平行四边形知识点复习总结四边形按两组对边是否平行可分为普通四边形(两组都不平行)、梯形(一组对边平行,另一组对边不平行)和平行四边形(两组对边分别平行),矩形、菱形、正方形都是特殊的平行四边形。
一、平行四边形1 定义:两组对边分别平行的四边形叫做平行四边形。
2 平行四边形的性质:0平行四边形对边平行1平行四边形的对边相等2平行四边形的对角相等3平行四边形的两条对角线互相平分4平行四边形是中心对称图形,对称中心是两条对角线的交点3 平行四边形的判定(5种判定方法):0两组对边分别平行的四边形是平行四边形1两组对边分别相等的四边形是平行四边形2一组对边平行且相等的四边形是平行四边形3对角线互相平分的四边形是平行四边形4两组对角分别相等的四边形是平行四边形二、矩形1 定义:有一个内角是直角的平行四边形叫做矩形。
2 矩形的性质(矩形是特殊的平行四边形,具有平行四边形的所有性质):1矩形的四个角都是直角。
2矩形的两条对角线相等。
3矩形既是中心对称图形,也是轴对称图形。
对称中心是两条对角线的交点,对称轴是对边的中点的连线所在的直线(有两条)。
3 矩形的判定(3种判定方法):0有一个内角是直角的平行四边形叫做矩形。
(先证平行四边形,再证一个角为直角)1有三个内角是直角的四边形是矩形。
(直接证三个内角是直角)2对角线相等的平行四边形是矩形。
(先证平行四边形,再证对角线相等)三、菱形1 定义:有一组邻边相等的平行四边形叫做菱形。
2 菱形的性质(菱形是特殊的平行四边形,具有平行四边形的所有性质):1菱形的四条边都相等。
2菱形的对角线互相垂直,并且每一条对角线平分一组对角。
3菱形既是中心对称图形,也是轴对称图形。
对称中心是两条对角线的交点,对称轴是对角线所在的直线(有两条)。
3 菱形的判定(3种判定方法):0有一组邻边相等的平行四边形叫做菱形。
(先证平行四边形,再证一组邻边相等)1四条边都相等的四边形是菱形。
(直接证四条边相等)2 对角线互相垂直的平行四边形是菱形。
第1页 共4页 ◎ 第2页 共4页}第十八章 平行四边形知识点总结考点题型分析:证明线段相等:①证明线段所在的两个三角形全等;②在同一个三角形中,利用等角对等边;一.平行四边形1.(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示方法:,平行四边形ABCD 记作,读作“平行四边形ABCD ”.2.性质:(1)角:平行四边形的邻角互补,对角相等;(2)边:两组对边分别平行且相等;(3)对角线:对角线互相平分;(4)面积:①S ==⨯底高ah ;②对角线将四边形分成4个面积相等的三角形. 3.平行四边形的判别及证明四边形是平行四边形:方法有(5种)①定义:两组对边分别平行 ②方法1:两组对角分别相等③方法2:两组对边分别相等 的四边形是平行四边形 ④方法3:对角线互相平分⑤方法4:一组对边平行且相等二、矩形:(1)定义:有一个角是直角 的平行四边形 是矩形。
注意条件:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)矩形性质:①边:对边平行且相等; ②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条). (3)矩形的判定及证明四边形是矩形:方法有(3种)①有一个角是直角的平行四边形;②对角线相等的平行四边形; ③四个角都相等三、菱形:(1)菱形的定义:有一组邻边相等 的平行四边形 是菱形。
注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可. (2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条).(2)(2)菱形的判定及证明四边形是菱形:方法有(3种)①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等.四、正方形:(1)定义:有一组邻边相等且有一个直角 的平行四边形 叫做正方形。
它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(2)正方形性质:①边:四条边都相等; ②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).(3)正方形的判定及证明四边形是正方形:方法有(5种)① 有一组邻边相等 且有一个直角 的平行四边形 ② 有一组邻边相等 的矩形;③ 对角线互相垂直 的矩形. ④ 有一个角是直角 的菱形 ⑤ 对角线相等 的菱形;2.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h +. 五、梯形:(选学)(1)定义:一组对边平行而另一组对边不平行的四边形叫做梯形。
第十八章平行四边形18.1.1平行四边形及其性质1、平行四边形的定义:两组对边分别平行的四边形是平行四边形.注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.2、性质:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等,邻角互补.平行四边形性质3 平行四边形是中心对称图形,两条对角线的交点是对称中心;平行四边形性质4 平行四边形的对角线互相平分.3、两条平行线之间的距离定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。
性质:(1)两条平行线之间的距离处处相等;(2)夹在两条平行线间的平行线段相等。
18.1.2平行四边形的判定判定:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2 两组对边分别平行的四边形是平行四边形平行四边形判定方法3 一组对边平行且相等的四边形是平行四边形平行四边形判定方法4 两组对角分别相等的四边形是平行四边形平行四边形判定方法5 对角线互相平分的四边形是平行四边形。
三角形的中位线定义:连接三角形两边中点的线段(任意一个三角形都有三条中位线)(中位线:中点与中点的连线;中线:顶点与对边中点的连线.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.(三角形的三条中位线把原三角形分成4个全等的小三角形,每个小三角形的周长为原三角形周长的1/2,每个小三角形的面积为原三角形面积的1/4。
18.2.1 矩形矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.直角三角形斜边中线的性质--直角三角形斜边上的中线等于斜边的一半.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.18.2.2 菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.菱形的性质1 菱形的四条边都相等;菱形的性质2 菱形的对角线互相垂直平分,并且每条对角线平分一组对角菱形判定方法1 对角线互相垂直的平行四边形是菱形.菱形判定方法2 四边都相等的四边形是菱形.菱形判定方法3 有一组邻边相等的平行四边形是菱形(1)菱形是轴对称图形,有两条对称轴,是对角线所在的直线。
.学习-----好资料第十八章 平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形 平行四边形用□“ ”表示,读作“平行四边形”.平行四边形 ABCD 记作“□ABCD”.18.1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:□ABCD 求证:AD=BC ,AB=DC ;∠A=∠C ,∠B=∠D.证明:连接 AC ,AD / /CD, AD / / BC∴∠1 = ∠2, ∠3 = ∠4又 AC 是△ABC 和△CDA 的公共边,∴ △ABC ≌△CDA ,∴ AD = CB, AB = CD, ∠B = ∠D平行四边形性质 1:平行四边形的两组对边分别相等.平行四边形性质 2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD 的对角线 AC 、BD 相交于点 O.求证:OA=OC ,OB=OD .证明:四边形 ABCD 是平行四边形∴ AD=BC ,AD ∥BC.∴∠1=∠2,∠3=∠4.∴△AOD ≌△COB (ASA ).∴ OA=OC ,OB=OD .平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征 1:平行线之间的距离处处相等.平行线之间的距离特征 2:夹在两条平行线之间的平行线段相等.平行四边形性质 3:平行四边形的两条对角线互相平分.例、如图,□ ABCD 中,BD ⊥AB ,AB=12cm ,AC=26cm ,求 AD 、BD 长..解:∵四边形 ABCD 是平行四边形,∴AO=CO= 1AC ,OB=OD .2∵BD ⊥AB ,∴在 △Rt A BO 中,AB=12cm ,AO=13cm .∴BO= AO 2 - AB 2 = 5 .∴BD=2B0=10cm .∴在 Rt △ABD 中,AB=12cm ,BD=10cm .∴AD= AB 2 + BD 2 = 2 61 (cm).例、如图,在□ A BCD 中,已知对角线 AC 和 BD 相交于点 △O , AOB 的周长为 25,AB=12,求对角线 AC 与 BD 的和.解:∵△AOB 的周长为 25,∴OA+BO+AB=25,又 AB=12,∴AO+OB=25-12=13,∵平行四边形的对角线互相平分,∴AC+BD=2OA+2OB=2(0A+OB)=2×13=2618.1.2 平行四边形的判定平行四边形判定 1:两组对边分别平行的四边形是平行四边形.平行四边形判定 2:两组对边分别相等的四边形是平行四边形.平行四边形判定 3:两组对角分别相等的四边形是平行四边形.平行四边形判定 4:两条对角线互相平分的四边形是平行四边形.平行四边形判定 5:一组对边平行且相等的四边形是平行四边形.中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半 例、 如图,在□ABCD 中,已知点 E 和点 F 分别在 AD 和 BC 上,且 AE=CF ,连结CE 和 AF ,试说明四边形 AFCE 是平行四边形.证明:∵四边形 ABCD 是平行四边形,∴AD//BC ,∵点 E 在 AD 上,点 F 在 BC 上,∴AE//CF ,E F .又∵AE=CF ,∴四边形 AFCE 是平行四边形.例、如图,E 、F 是四边形 ABCD 的对角线 AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(△1)AFD ≌△CEB .(2)四边形 ABCD 是平行四边形.解:(1)∵DF ∥BE ,∴∠AFD =∠CEB . 又∵AF=CE , DF=BE ,∴△AFD ≌△CEB .(2)由(1)△AFD ≌△CEB 知 AD=BC ,∠DAF =∠BCE , ∴AD ∥BC ,∴四边形 ABCD 是平行四边形.例、如图,平行四边形 ABCD 中, 、 为边 AD 、BC 上的点,且 AE=CF ,连结 AF 、EC 、BE 、DF 交于 M 、N ,试说明:MFNE 是平行四边形.AED解:∵四边形 ABCD 是平行四边形,∴AD ∥BC , AD ∥BC又∵AE=CF ,∴ED=FB ,四边形 AFCE 是平行四边形∴AF ∥EC .同理:BE ∥FD .∴四边形 MFNE 是平行四边形.BMNFC18.2 特殊的平行四边形18.2.1 矩形矩形定义 1:有一个角是直角的平行四边形叫做矩形矩形定义 2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线 矩形性质 1:矩形的四个角都是直角.矩形性质 2:矩形的对角线相等且互相平分.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定 1:有一个角是直角的平行四边形是矩形.矩形判定 2:有三个角是直角的四边形是矩形.矩形判定 3:对角线相等的平行四边形是矩形.例、如图,已知 AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE ,..求证:四边形 BCED 是矩形.证明:在△ABD 和△ACE 中,AB = AC ,AD = AE ,∠BAD = ∠CAE∴△ABD ≌△ACE ,∴BD=CE ,又 DE=BC ,∴四边形 BCED 为平行四边形.在△ACD 和△ABE 中,∵AC=AB ,AB=AE ,∠CAD = ∠CAB +∠ BAD = ∠CAB +∠ CAE = ∠BAE ,∴△ADC ≌△AEB∴CD=BE∴四边形 BCED 为矩形18.2.2 菱形菱形定义 1:有一组邻边相等的平行四边形叫做菱形.菱形定义 2:四条边都相等的四边形叫做菱形.菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线 菱形性质 1:菱形的四条边都相等.菱形性质 2:菱形的对角线互相垂直平分.菱形性质 3:菱形的每一条对角线平分一组对角.菱形的面积:菱形的面积等于对角线乘积的一半.推广:对角线互相垂直的四边形面积等于对角线乘积的一半.菱形判定 1:有一组邻边相等的平行四边形是菱形.菱形判定 2:四条边都相等的四边形是菱形.菱形判定 3:对角线互相垂直的平行四边形是菱形.菱形判定 4:每条对角线平分一组对角的四边形是菱形.18.2.3 正方形正方形定义 1:有一组邻边相等的矩形叫做正方形.正方形定义 2:有一个角是直角的菱形叫做正方形.正方形定义 3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线.正方形性质 1:正方形的四个角都是直角.正方形性质 2:正方形的四条边都相等.正方形性质 3:正方形的两条对角线互相垂直平分且相等.正方形判定 1:有一组邻边相等的矩形是正方形.正方形判定 2:有一个角是直角的菱形是正方形.正方形判定 3:有一组邻边相等并且有一个角是直角的平行四边形是正方形 正方形判定 4:对角线垂直平分且相等的四边形是正方形. 例、如图,四边形 ABCD 是菱形,对角线 AC =8 cm ,BD =6 cm , DH ⊥AB 于 H ,求:DH 的长.∵四边形 ABCD 是菱形,∴ A C ⊥ BD ,OA = OC =∴AB=5cm ,1 2AC = 4cm ,OB = OD = 3cm ,∴ S 菱形ABCD = AC ⋅ BD = AB ⋅ DH ,∴ DH = AC ⋅ BD= 4.8cm .2 A B例、已知:如图,菱形ABCD 的周长为 16 cm ,∠ABC =60°,对角线 AC 和 BD相交于点 O ,求 AC 和 BD 的长.解:∵菱形 ABCD 的周长为 16cm , ∠ABC = 600∴AB=BC=4cm △, ABC 是等边三角形,∴AC=4cm ,∵AC ,BD 互相垂直平分,∴OA=2∴OB = 42 - 22 = 2 3cm∴ BD = 4 3cm例、如图,在正方形 ABCD 中,P 为对角线 BD 上一点,PE ⊥BC ,垂足为 E , PF ⊥CD ,垂足为 F ,学习-----好资料求证:EF=AP证明:连接PC,∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,∠PDA=∠PDC,在△P AD和△PCD中,AD=CD,∠PDA=∠PDC,PD=PD,∴△P AD≌△PCD,∴P A=PC,∴EF=AP,例、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.试说明:DE=DF解:∵AB=AC,∠B=∠C∵DE⊥AB,DF⊥AC∴∠DEB≌DFC=90°∵D是BC的中点∴BD=DC∴△BDE≌△CDF∴DE=DF.例、如图,ABCD中,AE平分∠BAD交BC于E,EF∥AB交AD于F,试问:四边形ABEF是什么图形吗?请说明理由.解:四边形ABEF是菱形.理由:∵四边形ABCD是平行四边形,A F DB E C学习-----好资料∴AD∥BC,∵EF∥AB,∴四边形ABEF是平行四边形,∵AE平分∠BAD,∴∠BAE=∠FAE,∵AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴ABEF是菱形.。