河北科技大学大学物理答案稳恒磁场
- 格式:doc
- 大小:1001.50 KB
- 文档页数:17
第六章稳恒磁场作业集第37讲毕奥-萨伐儿定律一、Ⅰ类作业:解:根据毕奥萨伐尔定律20sin d 4d r l I B θπμ=,方向由右手定则决定。
(1)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==方向垂直纸面向里(沿z 轴负向)。
(2)00sin d 4sin d 4d 2020=︒==L l I r l I B πμθπμ(3)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==,方向沿x 轴正向。
(4)因为2245sin sin ,2222=︒==+=θL L L r ,所以2020d 82sin d 4d Ll I r l I B πμθπμ==,方向垂直纸面向里(沿z 轴负向)。
37.2教材223页第6.2、6.4、6.6题解:(1)6.2:(2)6.4:(3)6.6:二、Ⅱ类作业:解:根据磁场叠加原理可知,中心点O 的磁感应强度是两根半无限长载流导线的B 和41载流圆弧的B 的矢量和。
即321B B B B ++=其中,半无限长载流导线在其延长线上的031==B B ,41载流圆弧的R I B 802μ=,方向垂直纸面向外。
所以RI B B 802μ==,方向垂直纸面向外第38讲磁场的性质一、Ⅰ类作业:38.1一块孤立的条形磁铁的磁感应线如图所示,其中的一条磁感线用L 标出,它的一部分在磁铁里面,你能根据安培环路定理判断磁铁里面是否有电流吗?如果有穿过L 的电流方向是怎样的?解:因为磁感应强度沿L 的线积分不为零,即环量不为零,根据安培环路定理,有电流穿过环路L 。
根据右手定则,电流是垂直纸面向里。
38.2教材229页6.7、6.9题二、Ⅱ类作业:38.3如图所示,有一根很长的同轴电缆,由两层厚度不计的共轴圆筒组成,内筒的半径为1r 1,外筒的半径为r 2,在这两导体中,载有大小相等而方向相反的电流I ,计算空间各点的磁感应强度.解:该电流产生的磁场具有轴对称性,可用安培环路定理计算磁感应强度。
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
第7章 稳恒磁场一、思考讨论题1、如图4.1所示的电流元Idl 是否在空间所有点的磁感应强度均不为零?请你指出Idl在a 、b 、c 、d 四点产生的磁感应强度的方向。
解:不是,电流元Idl在自身产生的磁感应强度为零。
a 、垂直纸面向外b 、垂直纸面向外c 、垂直纸面向内d 、垂直纸面向内2、分别求图4.2中的三种情况下,通有电流I 的直线电流在图中点产生磁感应强度B 的大小和方向。
解:a 图,()a I cos cos a I B πμπμ823145304--=-=方向垂直纸面向内 b 图,()aIcos cos a I B πμπμ82345604--=-= 方向垂直纸面向内 c 图() 30041cos cos a I B -=πμ () 1806030402cos cos tan c a I B -=πμ aIB B B πμ41312-=-= 方向垂直纸面向内3、电流分布如图4.3所示,分别求出各图中O 点的磁感应强度O B的大小和方向。
图4.1图4.2a图4.2ba图4.2c1 R 3解:a 图, 321B B B B ++=()30060431cos cos cos R IB B -==πμ23601202a I B μ=方向垂直纸面向内b 图, 01=B ,RIR I B 126122μμ==,()2322180150243-=-⋅=R I cos cos R I B πμπμ所以,⎪⎪⎭⎫⎝⎛-+=R R I B πμ432121 方向垂直纸面向内 c 图,RIR I B 834321μμ==,052==B B R I B B πμ16243==,所以,⎪⎪⎭⎫ ⎝⎛+=πμ238R I B 方向垂直纸面向外 4、若空间中存在两根无限长直载流导线,则磁场的分布就不存在简单的对称性,因此:(A )安培环路定理已不成立,故不能直接用此定理计算磁场分布。
(B )安培环路定理仍然成立,故仍可直接用此定理计算磁场分布。
第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB )180cos 150(cos 60cos 400︒︒-=R I πμ )231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里 P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。
第9章 稳恒磁场一、选择题1、一个电流元Id l⃑放在磁场中的某点,当它沿x 轴放置时不受力,如把它转向y 轴正方向时,则受到的力沿z 轴负向,则该点的磁感应强度方向指向( A )(A )x 轴正向 (B )x 轴负向 (C )z 轴正向 (D )z 轴负向 2、两个载有相等电流I 的半径为R 的圆线圈如图,一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心O 处的磁感应强度大小为( C )(A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ3、均匀磁场的磁感应强度B 垂直于半径为r 的圆面,今以该圆面为边界,作以半球面S ,则通过S 面的磁通量的大小为( B )(A )B r 22π (B) B r 2π (C )0 (D )无法确定 4、如图所示,两根相互平行的载流长直导线,通有相同方向、大小相等的电流I 。
矩形线框abcd 与两直线共面,ab ̅̅̅=h ,bc ̅̅̅=l 1,ab 边到左边导线的垂直距离等于cd 边到右边导线的垂直距离,均为l 0,通过此矩形线框的磁通量为( B ) (A )μ0Ih πln l1l 0(B ) 0 (C )μ0Ih πlnl 1+l 0l 0(D )μ0Ihl 1π(l 1+l 0)5、电子以一定的速度通过空间某一区域,则以下说法正确的是( D ) (A )如果电子发生偏转,则该区域一定有磁场 (B )如果电子发生偏转,则该区域一定有电场 (C )如果电子不发生偏转,则该区域一定没有磁场 (D )尽管电子不发生偏转,但该区域可能有磁场存在6、均匀磁场B⃑⃑中,两个面积均为S 且同有同样电流I 的线圈,一个是三角形,另一个是矩形,则关于线圈所受的最大磁力矩以及磁场力之和,以下说法正确的是( A ) (A )两线圈所受最大磁力矩均为BIS ,磁场力之和均为0(B )两线圈所受磁力矩总是为BIS ,磁场力之和不相等 (C )两线圈所受最大磁力矩不相等,磁场力之和也不相等 (D )两线圈所受最大磁力矩不相等,磁场力之和均为0。
第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。
解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。
解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。
)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。
R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。
已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。
解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。
第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。
如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。
解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。
习 题12-1 若电子以速度()()616120103010.m s .m s --=醋+醋v i j 通过磁场()0030.T =-B i ()015.T j 。
(1)求作用在电子上的力;(2)对以同样速度运动的质子重复上述计算。
解:(1)()()kj i j i B v F 136610624.015.003.0100.3100.2-⨯=-⨯⨯+⨯-=⨯-=e e (2)k F 1310624.0-⨯-=12-2 一束质子射线和一束电子射线同时通过电容器两极板之间,如习题12-2图所示。
问偏离的方向及程度有何不同?质子射线向下偏移,偏移量较小;电子射线向上偏移,偏移量较大。
12-3 如习题12-3图所示,两带电粒子同时射入均匀磁场,速度方向皆与磁场垂直。
(1)如果两粒子质量相同,速率分别是v 和2v ;(2)如果两粒子速率相同,质量分别是m 和2m ;那么,哪个粒子先回到原出发点? 解:qBmT π2=(1)同时回到原出发点;(2) 质量是m 先回到原出发点。
12-4 习题12-4 图是一个磁流体发电机的示意图。
将气体加热到很高温度使之电离而成为等离子体,并让它通过平行板电极1、2之间,在这习题12-2图习题12-3图习题12-4图里有一垂直于纸面向里的磁场B 。
试说明这两极之间会产生一个大小为vBd 的电压(v 为气体流速,d 为电极间距)。
问哪个电极是正极? 解:qE qvB =,vB E =,vBd Ed U ==,电极1是正极。
12-5 一电子以713010.m s v -=醋的速率射入匀强磁场内,其速度方向与B 垂直,10T B =。
已知电子电荷191610.C e --=-?。
质量319110.kg m -=?,求这些电子所受到的洛仑兹力,并与其在地面上所受重力进行比较。
解:11719108.410100.3106.1--⨯=⨯⨯⨯⨯==evB F N ,3031109.88.9101.9--⨯=⨯⨯==g m G e N18104.5⨯=GF12-6 已知磁场B 的大小为04.T ,方向在xy 平面内,并与y 轴成3p 角。
试求电量为10pC q =的电荷以速度()7110m s -=?v k 运动,所受的磁场力。
解:j i j i B 2.032.03cos4.06cos4.0+=+=ππ,k 710=v ,()()47121032.02.02.032.0101010--⨯+-=+⨯⨯⨯=j i j i k F N 。
12-7 如习题12-7图所示,一电子在20G B =的磁场里沿半径为20cmR =的螺旋线运动,螺距50.cm h =,如图所示,已知电子的荷质比11117610.C kg e -=醋,求这电子的速度。
习题12-7图解:71141004.71076.120.01020⨯=⨯⨯⨯⨯==-⊥mqBRv m/s v ∥71141028.021076.105.010202⨯=⨯⨯⨯⨯==-ππm q Bh m/s05.71028.004.7722=⨯+=v m/s.12-8 空间某一区域有均匀电场E 和均匀磁场B ,E 和B 方向相同,一电子在这场中运动,分别求下列情况下电子的加速度a 和电子的轨迹。
开始时,(1)v 与E 方向相同;(2)v 与E 方向相反;(3)v 与E 垂直;(4)v 与E 有一夹角q 。
解:(1)()B E F ⨯+-=v q 由于速度与磁场同向,所以洛仑兹里为0。
i i F a m qE e =-=i E a ee m qEm q -=-=,电子的轨迹为沿x 轴的直线。
(2)同理,i E a ee m qEm q -=-=,电子的轨迹为沿x 轴的直线。
(3)设初始时速度沿y 轴,电子的速度可分解为沿x 轴的v ∥和yoz 平面内的⊥v , v ∥导致电子在x 轴方向上做匀变速直线运动,⊥v 的运动使得电子受洛伦兹力在yoz 平面做匀速圆周运动。
a ∥i e m qE -=,em qvBa -=⊥,方向指向圆心。
(3)θsin v v =⊥,使得e sin m qvB a θ-=⊥,a ∥i em qE-=电子在x 轴方向上做匀变速直线运动,平面做匀速圆周运动。
12-9 在空间有相互垂直的均匀电场E 和均匀磁场B ,B 沿x 方向,E 沿z 方向,一电子开始时以速度v 向y 方向前进,问电子运动的轨迹如何? 解:(1)开始时电子受的电场力与磁场力方向相反,若E Bv =,则合力为0,电子将做匀速直向运动;(2)设电子在此S 坐标中某一瞬时速度为v ϖ,则电子受的力为()B v E q F ϖϖϖϖ⨯+-=,令B v E ϖϖϖ⨯=0,则()B v v q F ϖϖϖϖ⨯+-=0,设S '系相对S 系沿y 轴逆向以0v 的速度运动,则在S '系中没有电场,电子的速度v v v ϖϖϖ+='0,受的力()B v v q F ϖϖϖϖ⨯+-=0()B v E q ϖϖϖ⨯+-=与在S 系中受的力相同,初始速度002v v ϖϖ=',在yoz 平面内做匀速圆周运动,所以在S 系看来电子做摆线运动。
12-10 飞行时间谱仪。
歌德斯密特设计过测量重离子质量的准确方法,这个方法是测量重离子在已知磁场中的旋转周期。
一个单独的带电碘离子,在224510.W bm --醋的磁场中旋转7圈所需要的时间约为312910.s -´。
试问这个碘离子的质量有多少千克(近似值)?解:qBm T π2=,2193105.4106.1271029.1---⨯⨯⨯=⨯m π,251011.2-⨯=m kgxyzv ϖB ϖE ϖ12-11 如习题12-11图所示,一个铜片厚度为10.mm d =,放在15.T B =的磁场中,磁场的方向与铜片表面垂直。
已知铜片中自由电子密度为2238410.cm -´,每个电子的电荷为191610.C,e --=-?当铜片中有200A I =的电流时,(1)求铜片两侧的电势差aa j¢;(2)铜片宽度b 对aa j¢有无影响? 为什么?解:3.22100.1106.1104.85.1200131922=⨯⨯⨯⨯⨯⨯==--d IB nq U H V 12-12 一块半导体样品的体积为a b c 创,如习题13-12图所示。
沿x 方向有电流I ,在z 方向加有均匀磁场B 。
这时的试验数据为010.cm a =,035.cm b =,100.cm c =,10.mA I =,03.T B =,样品两侧的电势差655.mV A A j¢=。
(1)问这块半导体是正电荷导电(P 型半导体)还是负电荷导电(N 型半导体)?(2)求载流子浓度(即单位体积内带电粒子数)。
解:(1)N 型半导体;(2)2419331086.2001.0106.11055.63.0100.1⨯=⨯⨯⨯⨯⨯⨯==---a qU IB n H m -3 12-13 一个铜圆柱体半径为a ,长为l ,外面套一个与它共轴且等长的圆筒,筒的内半径为b ,在柱与筒之间充满电导率为g 的均匀导电介质。
求:(1)柱与筒之间电阻;(2)柱与筒之间有电势差j时柱与筒之间的电场强度的习题12-11图习题12-12图分布。
解:(1)abl rl r R baln 212d 1πγπγ==⎰; (2)a b l RI 1ln 2-==ϕπγϕ,E a b r rl I J γϕγπ===-1ln 2,ab r E 1ln 1-=ϕ 12-14 如习题12-14图所示,有一个半径为0r 的半球状电极与大地接触,大地的电阻率为r 。
假定电流通过这种接地电极均匀地向无穷远处流散,试求这种情况下的接地电阻。
解:0222d 0r r r R r πρπρ==⎰∞习题12-14图习题12-15图13-15 一长度为l ,内、外半径分别为1R 和2R 的导体管,电阻率为r 。
求下列三种情况下管子的电阻。
(1)若电流沿长度方向流过;(2)电流沿径向流过;(3)如习题12-15图所示,管子被切去一半,电流沿图示方向流过。
解: (1)()2122R R lR -=πρ(2)12ln 22d 21R Rl rl r R R R πρπρ==⎰(3)12ln d 1121R R l r r l R R R ρππρ==⎰, 121ln R R l R -=ρπ12-16 一铜棒的横截面积为22080mm ´,长为20.m ,两端电势差为50mV 。
已知铜的电导率715710.S m s -=醋,铜内自由电子的电荷密度为10313610.C m -醋。
试求:(1)它的电阻R ;(2)电流I ;(3)电流密度的大小j ;(4)棒内电场强度的大小;(5)所消耗的功率P ;(6)一小时所消耗的能量W ;(7)棒内电子的漂移速度d v 。
解:(1)4671056.40.2101600107.5⨯=⨯⨯⨯==-l S G σS Ω⨯==-51019.21GR (2)341028.2050.01056.4⨯=⨯⨯==GU I A(3)66310425.11016001028.2⨯=⨯⨯==-S I J A/m 2 (4)025.00.2050.0===l U E V/m (5)114050.01028.23=⨯⨯==IU P W (6)4104003600114=⨯==Pt W J(7)4106d 1005.11036.110425.1-⨯=⨯⨯==nq J v m/s 12-17 假定正负电子对撞机的储存环是周长为240m 的近似圆形轨道。
已知电子的速率接近光速,当环中电流强度为8mA 时,问整个环中有多少电子在运行? 解:lNqcT Nq I ==,10819100.4100.3106.1240008.0⨯=⨯⨯⨯⨯==-qc Il N 12-18 一长直导线载有电流50A ,离导线50.cm 处有一电子以速率711010.m s -醋运动。
求下列情况下作用在电子上的洛仑兹力。
(1)设电子的速率v 平行于导线;(2)设v 垂直于导线并指向导线;(3)设v 垂直于导线和电子所构成的平面。
解:(1)1671970100.2100.1106.1050.02501042---⨯=⨯⨯⨯⨯⨯⨯⨯=⨯=πππμqv r I F N,方向垂直于导线; (2)16100.2-⨯=F N,方向平行于导线;(3)0=F12-19 如习题12-19图所示,在无限长的载流直导线AB 的一侧,放着一条有限长的可以自由运动的载流直导线CD ,CD 与AB 相垂直,问CD 怎样运动?解:边向上运动边顺时针旋转,并远离AB ,转置于原方向相反时会受到相反的作用。