第4章 盾构法隧道衬砌结构设计
- 格式:ppt
- 大小:67.00 KB
- 文档页数:11
盾构掘进隧道工程施工及验收规范篇一:盾构工程验收表格第四章盾构工程4.1工程概况1、盾构区间结构形式和施工方法盾构法是一种技术先进的施工方法,特别适合在松软含水地层或城市地下管线密布,施工条件困难地段施工。
南京地铁盾构区间隧道采用单圆盾构法装配式砼衬砌结构。
过江盾构隧道:内径10200mm,衬砌厚度50cm,环宽2000m;其它盾构隧道:内径5500mm,衬砌厚度35cm,环宽1200m。
环与环、块与块间采用螺栓连接。
横通道(横通道与泵房结合设置),多采用类矿山法施工。
根据隧道运营通风需要,对隧道较长,具备施工条件的区间,设置风井,多采用明挖法施工。
2、验收标准盾构工程验收依据主要参照《地下铁道工程施工及验收规范》(GB 50299-1999)(2003版)编制,考虑到盾构工程施工工序,并结合南京地铁管片生产的特点和在建工程施工经验,确定了盾构工程分部、分项、检验批划分的标准。
其中,成品管片、成型隧道的主要项目、指标参照《盾构掘进隧道工程施工及验收规范》(GB 50446-2008)进行调整。
3、参考规范目录(1)地下铁道工程施工及验收规范 GB 50299-1999(2003版)(2)地下防水工程质量验收规范 GB 50208-2002 (3)混凝土结构工程施工质量验收规范 GB 50204-2002 (4)盾构掘进隧道工程施工及验收规范 GB 50446-2008 (5)矿山井巷工程施工及验收规范 GBJ 213-19904.2 分部、分项工程划分盾构工程划分表注:1、盾构隧道区间验收标准主要参照一号线的内容,并根据《地下铁道工程施工及验收规范》进行编制的。
2、竖井的分项工程可参照地下车站的内容进行确定。
3、联络通道(泵房)防水见矿山法区间隧道。
4、洞门工程的分项工程可参照地下车站的内容进行确定。
5、土体加固除冷冻法加固是参照《矿山井巷工程施工及验收规范》进行编制的,其他处理方法见地下车站的相关内容。
盾构区间隧道衬砌结构的抗震计算作者:江国仲来源:《城市建设理论研究》2013年第31期摘要:横通道施工是隧道工程中常见的施工项目,其施工对主隧道有很大影响,盾构是在软岩和土体中进行隧道施工的专门机具,使用盾构机开挖隧道的方法称为盾构法。
所以对隧道结构受力特征计算和盾构工程风险控制进行研究,对于保证隧道施工的安全性有重要意义,本文就盾构区间隧道衬砌结构的抗震计算进行了简要分析。
关键词:盾构;隧道;衬砌结构;抗震计算中图分类号:U45 文献标识码:A1、盾构区间隧道衬砌结构施工技术概述1.1、盾构隧道法使用现状盾构是在软岩和土体中进行隧道施工的专门机具,使用盾构机开挖隧道的方法称为盾构法,盾构隧道法的施工,在近几年的城市隧道建设中得到越来越广泛的应用,盾构法隧道前进是依靠设在盾尾的一组千斤顶克服盾构机重和周围土体产生的正面和侧壁的摩阻力,千斤顶支撑在已拼装好的环形隧道衬砌上,每拼装一环管片,千斤顶向前推进一个衬砌环间宽度,在施工过程中,衬砌管片的投资通常达到总投资额的40%,因此,正确合理的衬砌结构计算方法不仅是制约隧道安全性的重要影响因素,更大大决定着隧道投资额的数目。
1.2、盾构掘进适应性分析根据施工盾构区间周边条件、工程地质、水文地质情况,选用土压平衡盾构。
鉴于盾构经过地段主要为膨胀土地层,渗透系数小,泥质含量较高,遇水软化,极易发生“泥饼”现象,将极大的影响盾构掘进。
因此,在选用土压平衡盾构时要对盾构刀盘、刀具方面进行盾构机的适应性分析:(一)盾构刀盘开口率是决定刀盘拓扑结构的关键参数,在刀盘的设计中具有重要的作用。
当刀盘开口率在30%~40%范围时,刀盘的支护压力与膨胀土地层所对应的地应力较为接近,对开挖面的稳定较为有利。
故盾构采用35%的开口率。
盾构刀具排布以铲刀和刮刀为主,辅以单双刃滚刀,为了方便对损坏及磨损严重的刀具进行更换,滚刀采用较为可靠的楔形安装方式且为背装式。
面板刮刀布置在面板开口槽两侧,随刀盘旋转对开挖面土体产生轴向剪力和径向切削力,从而对土体进行有效切削。
第五章程序的界面处理f3)提供了易学易用的应用程序集成开发环境;(4)结构化的程序设计语言;(5)支持多种数据库系统的访问;(6)支持动态数据交换、动态链接库和对象的链接与嵌入技术(7)完备的Help联机帮助功能。
5.2程序的界面处理隧道管片衬砌内力计算程序界面处理的思路是:通过界面将数据输入,并写入到FORTRAN程序中的数据文件,以便运行执行文件时调入;之后激活MS.DOS窗口,进入到编译连接得到的执行文件所在的子目录下,运行执行文件;在计算程序中将盾构隧道衬砌各截面的内力及位移写入到输出文件:在后处理时将输出文件的数据读入并绘成内力图形。
卜IAl介绍盾构隧道管片衬砌内力计算程序的界衄。
首先,点击由VisualBasic形成的执行文件,弹出图5-1所示的窗口。
图5-1欢迎窗口点击“继续”按纽,弹出图5-2所示的窗口。
如选择均质圆环计算方法,将出现5—3所示窗口,提示均质圆环计算方法的数据文件路径及数据文件名。
第五章程序的界面处理图5-2选择计算方法窗口图5-3均质圆环数据文件路径及文件名窗口在“数据文件路径”下输入计算程序的数据文件所处的路径。
在“数据文件名”下输入数据文件名。
这一步是确保程序执行过程中的输入输出正常进行。
然后,点击“确定”按纽,弹出图5—4所示的“均质圆环数据输入窗口”。
图5-4均质圆环数据输入窗口在图5—4中,可以输入程序执行过程中所需要的数据。
前三个按钮分别为“管片尺寸及地层参数”、“配筋参数”、“千斤顶参数”的数据输入按钮。
第四个按钮为“数据文件写入”按钮。
单击“管片尺寸及地层参数”按钮,弹出“管片尺寸及地层参数卡”,如图5.5所示。
其上有“覆土厚度”、“地下水位”、“管片外径“、管片宽度”、管片厚度“、土容重”、“混凝土容重”、“土的粘接力”、“土的内摩擦角”、“地面附加压力”、“地基反力系数”、“侧向土压系数”、“刚度调整系数”、“弯矩增一39—第五章程序的界面处理图5-5管片尺寸及地层参数窗口大系数”、“混凝土的弹模”、“钢筋的弹模”、“内力计算角度增量”、“钢筋允许拉应力”、“钢筋允许压应力”、“混凝土允许压应力”。
盾构法隧道管片式衬砌结构盾构法隧道管片式衬砌结构是目前在城市地下管道建设中最常见的一种衬砌结构方式。
它以钢管和混凝土管片为衬砌构件,通过地下盾构机械的推进运行,在地下将空洞逐渐变成完整的管道。
下面将详细介绍盾构法隧道管片式衬砌结构。
盾构法隧道管片式衬砌结构由几个主要部分组成:盾构机械、加固千斤顶、进口锁扣和管片。
盾构机械是推进盾构的核心设备,通常由控制室、切土头、推进腔、环片衬砌机、螺旋输送机和尾部推进装置等部分组成。
加固千斤顶用于支撑周围土体,保证施工现场的稳定性。
进口锁扣是一种连接管片的装置,通过进口锁扣可以将各个管片连接在一起形成一个完整的管道。
管片是构成衬砌结构的最主要组成部分,一般由预制的沟槽混凝土组成,具有一定的强度和刚度。
首先,盾构机械进入施工现场,通过切土头将地下土壤切割成碎土,然后通过推进腔将碎土推出机械。
同时,加固千斤顶支撑周围土体,保持施工现场的稳定。
接下来,盾构机械在推进的同时,衬砌机将管片放置在推进腔后部,通过液压机构将管片推送到前部,与前一节管片连接。
随着盾构机械的推进,衬砌机不断放置新的管片,衬砌结构不断延伸。
在衬砌结构施工过程中,需要保证衬砌的质量和密实度。
一般采用现场加压灌浆的方法进行,即在管片周围的空隙中注入水泥浆料,通过固化形成一个坚固的衬砌结构。
这种方法可以提高管片和土体之间的粘结力,增加整个结构的稳定性。
1.施工快速:盾构机械可以同时进行切土、推进和衬砌,施工速度快,能够适应快节奏的城市建设需求。
2.施工质量好:通过现场加压灌浆和管片连接技术,可以保证衬砌的质量和稳定性。
3.对环境的影响小:盾构法施工可以实现无开挖施工,对地表影响小,在城市建设中更加适用。
4.适用范围广:盾构法适用于各种地质条件的隧道施工,可以施工直径较大的隧道,适用范围广泛。
盾构法隧道管片式衬砌结构在城市地下管道建设中具有重要的应用价值。
随着城市化进程的加快,盾构法的应用将会越来越广泛。
地下隧道衬砌盾构法隧道应用最多的是圆形断面,其衬砌结构有单层结构和双层结构。
单层结构多用装配式管片构筑,如图6.21(a)所示;双层结构是在管片衬砌(一次衬砌)内再整体套砌一层混凝土(二次衬砌),如图 6.21(b)所示。
盾构法隧道一般无需设置二次衬砌,只有当隧道功能有特殊要求时方采用双层结构,如穿越松软含水层时为防水防蚀、增加衬砌强度和刚度等。
图6.21 盾构隧道衬砌结构一般来说,一次衬砌是将称称作管片的预制件用螺栓等连接物拼装而成,二次衬砌是在一次衬砌的内侧现浇混凝土构成。
采用拼装式衬砌时,一次衬砌到隧道轴向(纵向)一定长度(通常1.0~2.0 m)的一段环状物称为管环;把管环沿周向分割成若干块弧形状板块,该弧状板块即称为管片。
为了提高盾构隧道的施工速度,管片事先在工厂采用设计的材料预制而成构件,构筑隧道时运至现场拼装为管环进而串接成一次衬砌。
一、管片的类型管片作为盾构开挖后的一次衬砌,它支撑作用于隧道上的土压和水压,防止隧道土体坍塌、变形及渗漏水,是隧道永久性结构物并且要承受盾构机推进时的推力以及其他荷载。
管片按位置不同有标准管片(A型管片,平面形状为矩形)、邻接管片(B型管片,平面形状为半梯形)和封顶管片(C型管片,有的称为K型管片,平面形状为梯形)三种。
直线段采用标准环管片,曲线施工和纠偏时将使用楔形环(分左转弯环和右转弯环)管片;按其形状分为板形管片和箱形管片,如图6.22所示;按制作材料分有球墨铸铁管片、钢管片、复合管片和钢筋混凝土管片等。
箱形管片是由主肋和接头板或纵向肋构成的凹形管片的总称。
平板形管片指具有实心断面的弧板状管片,一般由钢筋混凝土制作。
球墨铸铁管片强度高、质量轻、搬运安装方便、防水性能好,但加工设备要求高、造价大,不宜承受冲击荷载,已较少采用。
钢管片用型钢或钢板焊接加工而成,其强度高、延性好、运输安装方便,但易变形、易锈蚀、造价高,采用的也不多,仅在如平行隧道的联络通道口部的临时衬砌等特殊场合使用。
城市轨道交通工程盾构法按支护地层的形式分类,主要分为自然支护式、机械支护式、压缩空气支护式、泥浆支护式、土压平稳支护式5种类型、按开挖面是否封闭划分,可分为密闭式和敞开式两类。
按平衡开挖面土压与水压的原理不同,密闭式盾构又分为土压式(常用泥土压式)和泥水式两种。
盾构的刀盘主要由刀盘体、刀具、磨损检测器、搅拌棒、泡沫及膨润土管路等零部件组成。
刀盘体由钢结构焊接而成,刀具可分为:滚刀、切刀、边缘刮刀、仿形刀、保径刀、先行刀、中心刀等。
刀盘具有三大功能:开挖功能、稳定功能、搅拌功能。
土压平衡盾构的刀盘有两种形式:面板式和辐条式。
盾构法施工条件1.适用地层范围:除硬岩外的相对均质的地质条件。
2.隧道埋深:隧道应有足够的埋深,覆土深度不宜小于1D(洞径)。
3.地下水防治:采用密闭式盾构时,除了始发和接收区以及开仓换刀时需要之外,一般不需要辅助施工法。
4.截面形状:标准形状为圆形。
也可采用异形截面。
5.对环境的影响:接近既有建(构)筑物施工时,有时需要辅助措施;盾构施工现场布置:在施工用地范围内,对施工现场的道路交通、材料仓库、材料堆场、临时房屋、大型施工设备、集土(泥)坑、拌浆系统、临时水电管线、消防器材垂直运输设备等做出合理的规划布置。
盾构施工一般分为始发、正常掘进和接收三个阶段。
始发是指盾构自始发工作井内盾构基座上开始掘进,到完成初始掘进(通常50~100m)止。
始发结束后要拆除临时管片、临时支撑和反力架,分体始发时还要将后续台车移入隧道内,以便后续正常掘进。
接收是指自掘进距接收工作井100m到盾构到达接收工作井内接收基座上止。
常用洞口土体加固方法:化学注浆法、砂浆回填法、深层搅拌桩法、高压旋喷注浆法、冷冻法等。
冻结法有造价高、解冻后存在沉降等缺点,旗喷桩加固虽然效果好,但其造价远高于深层桩。
所以,除工作井较深、洞门处土层为水头较高的承压水层外,洞门土体加固较为广泛采用的是深层搅拌法、并在搅拌桩加固体与连续墙间无法加固的间隙处用旋喷法进行补充加固。
第一章工程概况第二章工程地质和水文地质第三章隧道设计第1节主要设计标准第2节盾构隧道线路的拟合第3节管片构造形式第4节管片结构设计第5节管片防水设计第6节联络通道和洞门设计第四章结论与建议目录2...2.3..3..3..5..7..8..1..0...1..1.第一章工程概况越—三区间属于广州地铁二号线工程的的北段,由越秀公园站—火车站、火车站—三元里站两个双孔区间隧道和两个联络通道及泵房组成。
工程起于越秀区的地铁越秀公园站,向北下穿人民北路、环市西路到达地铁广州火车站;然后,线路从地下穿过广州火车站南站房等建筑群向西北延伸,最后下穿广花路到达地铁三元里站。
区间全长3926 单线延米,曲线半径为600m 和400m 两种。
区间纵坡均为“ V”形坡,最大坡度为30 %。
,最小竖曲线半径为3000m。
线路沿线地形起伏较大隧道最小覆土厚度为9m ,最大覆土厚度为26m。
第二章工程地质和水文地质区间的地层岩性在上部为:人工填土层,流塑—软塑状淤积层,海陆交互淤积层,冲、洪积砂层,冲、洪积土层,残积土层。
下部为:全风化、强风化、中等风化和微风化带的泥质粉砂岩。
区间隧道穿越地层大部分是岩层,少部分为残积土层和断裂破碎带。
隧道所处的地层为上软下硬,软硬岩互层现象特征明显。
本段地下水主要为第四系孔隙水和基岩裂隙水两种。
第四系孔隙水主要赋存在淤泥质砂层和冲积—洪积砂层内。
基岩裂隙水多属承压水,但富水性较小,透水性多较弱。
第三章隧道设计第1节主要设计标准(1) 结构的安全等级为一级。
(2) 区间隧道的抗震按7 度设计,人防按6 级考虑。
(3) 防水标准:隧道整体为二级;隧道上半部A 级;隧道下半部、洞门及联络通道 B 级。
(4) 结构最大裂缝允许宽度: 管片内侧0. 3 mm , 外侧0. 2 mm。
(5) 地表沉隆控制标准:-30/+ 10mm;建筑物倾斜控制标准:框架结构2 %。
,砖混结构1.5 %°。
第4章隧道结构构造公路隧道结构构造,由主体构造物和附属构造物两大类组成。
主体构造物通常指洞身衬砌和洞门构造物。
洞身衬砌的平、纵、横断面的形状由道路隧道的几何设计确定,衬砌断面的轴线形状和厚度由衬砌计算决定。
附属构造物是主体构造物以外的其它建筑物,是为了运营管理、维修养护、给水排水、供蓄发电、通风、照明、通讯、安全等而修建的构造物。
4.1 洞身衬砌4.1.1 衬砌结构的类型出现各种适应不同的地质条件的结构类型,大致有下列几类。
1.直墙式衬砌。
直墙式衬砌型式通常用于岩石地层垂直围岩压力为主要计算荷载、水平围岩压力很小的情况。
一殷适用于V,IV类围岩,有时也可用于III类围岩。
对于道路隧道,直墙式衬砌结构的拱部,可以采用割圆拱、坦三心圆拱或尖三心圆拱。
三心圆拱指拱轴线由三段圆弧组成,其轴线形状比较平坦(r1> r2)时称为坦三心圆拱,形状较尖(r2< r1)时称为尖三心圆拱,若r1=r2=r 时即为割圆拱(见图4.1.1)。
图4.1.1直墙式衬砌图4.1.2 连拱边墙或柱式边墙如果围岩完整性比较好的V~VI类围岩中,边墙可以采用连拱或柱,称为连拱边墙或柱式边墙,见图4.1.2。
为了节省圬工,也可以采用大拱脚薄边墙衬砌,见图 4.1.3。
如果具备喷混凝土条件时,边墙可以用喷混凝土代替。
该法是个有局限性的方法,最大的问题是大拱脚支座施工困难,在非均质岩层中很难用钻爆法做出整齐稳定的支座。
所以在这种较好围岩中,不如优先考虑喷锚支护。
2.曲墙式衬砌。
通常在III类以下围岩中,水平压力较大,为了抵抗较大的水平压力把边墙也做成曲线形状。
当地基条件较差时,为防止衬砌沉陷,抵御底鼓压力。
使衬砌形成环状封闭结构,可以设置仰拱,见图4.1.4。
3.喷混凝土衬砌、喷锚衬砌及复合式衬砌。
要求用光面爆破开挖,使洞室周边平顺光滑,成型准确,减少超欠挖。
适当的时间喷混凝土,即为喷混凝土衬砌。
根据实际情况,需要安装锚杆的则先装设锚杆,再喷混凝土,即为喷锚衬砌。