第三章 立体2
- 格式:ppt
- 大小:2.18 MB
- 文档页数:14
第2课时原子晶体[学习目标定位] 1.知道原子晶体的概念,能够从原子晶体的结构特点理解其物理特性。
2.学会晶体熔、沸点比较的方法。
一、原子晶体的概念、结构及其性质1.概念及组成(1)概念:相邻原子间以共价键相结合形成的具有空间立体网状结构的晶体,称为原子晶体。
(2)构成微粒:原子晶体中的微粒是原子,原子与原子之间的作用力是共价键。
2.两种典型原子晶体的结构(1)金刚石的晶体结构模型如图所示。
回答下列问题:①在晶体中每个碳原子以4个共价单键对称地与相邻的4个碳原子相结合,形成正四面体结构,这些正四面体向空间发展,构成彼此联结的立体网状结构。
②晶体中相邻碳碳键的夹角为109°28′,碳原子采取了sp3杂化。
③最小环上有6个碳原子,晶体中C原子与C—C键个数之比为1∶2。
④晶体中C—C键键长很短,键能很大,故金刚石的硬度很大,熔点很高。
(2)二氧化硅晶体结构模型如图所示。
回答下列问题:①每个硅原子都采取sp3杂化,以4个共价单键与4个氧原子结合,每个氧原子与2个硅原子结合,向空间扩展,构成空间网状结构。
②晶体中最小的环为6个硅原子、6个氧原子组成的12元环,硅、氧原子个数比为1∶2。
3.特性由于原子晶体中原子间以较强的共价键相结合,故原子晶体:①熔、沸点很高,②硬度大,③一般不导电,④难溶于溶剂。
4.常见的原子晶体:常见的非金属单质,如金刚石(C)、硼(B)、晶体硅(Si)等;某些非金属化合物,如碳化硅(SiC)、氮化硼(BN)、二氧化硅(SiO2)等。
原子晶体的结构特点(1)构成原子晶体的微粒是原子,其相互作用力是共价键。
(2)原子晶体中不存在单个分子,化学式仅仅表示的是物质中的原子个数比关系,不是分子式。
例1下列物质的晶体直接由原子构成的一组是()①CO2②SiO2③晶体Si④白磷⑤氨基乙酸⑥固态HeA.①②③④⑤⑥B.②③④⑥C.②③⑥D.①②⑤⑥【考点】原子晶体【题点】原子晶体的一般性质及判断答案C解析CO2、白磷、氨基乙酸、固态He是分子晶体,其晶体由分子构成,稀有气体He由单原子分子构成;SiO2、晶体Si属于原子晶体,其晶体直接由原子构成。
立体几何中的向量方法【教学目标】1. 向量运算在几何证明与计算中的应用;2. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题。
【导入新课】 复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a ba b⋅⋅,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ⇔a ·b =0可以解决线段或直线的垂直问题; ⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题。
新授课阶段例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥。
证明:·OC AB =·()OC OB OA - =·OC OB -。
∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =。
∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥ 例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D间的距离。
解:由AC α⊥,可知AC AB ⊥。
由'30DBD ∠=可知,<,CA BD >=120,∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD )=22222cos120b a b b +++=22a b +。
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
3.2.2 空间线面关系的判定设空间两条直线l 1,l 2的方向向量分别为e 1,e 2,两个平面α1,α2的法向量分别为n 1,n 2,则有下表:思考:否垂直?[提示] 垂直1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交B [∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α.]2.已知不重合的平面α,β的法向量分别为n 1=⎝ ⎛⎭⎪⎫12,3,-1,n 2=⎝ ⎛⎭⎪⎫-16,-1,13,则平面α与β的位置关系是________.平行 [∵n 1=-3n 2,∴n 1∥n 2,故α∥β.]3.设直线l 1的方向向量为a =(3,1,-2),l 2的方向向量为b =(-1,3,0),则直线l 1与l 2的位置关系是________.垂直 [∵a·b =(3,1,-2)·(-1,3,0)=-3+3+0=0,∴a⊥b ,∴l 1⊥l 2.] 4.若直线l 的方向向量为a =(-1,2,3),平面α的法向量为n =(2,-4,-6),则直线l 与平面α的位置关系是________.垂直 [∵n =-2a ,∴n ∥a ,又n 是平面α的法向量,所以l ⊥α.]利用空间向量证明线线平行【例1】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.[证明] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1→=⎝ ⎛⎭⎪⎫0,1,12,AF→=⎝ ⎛⎭⎪⎫0,1,12, ∵AE →=FC 1→,EC 1→=AF →, ∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直. 1.长方体ABCD A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝⎛⎭⎪⎫a ,b 3,23c . ∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.利用空间向量证明线面、面面平行[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理? 提示:可设几何体的棱长为1或a ,再求点的坐标.【例2】 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .[思路探究][证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →.即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 1.本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1),又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1.2.若本例换为:在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .向量法证明垂直问题【例3】 如图所示,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE . [思路探究] 建系→求相关点的坐标→求相关向量的坐标→判断向量的关系→确定线线、线面关系[证明] AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, ∴△ABC 为正三角形,∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE . ∵AB →=(1,0,0),∴PD →·AB →=0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面ABE .法二:AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE . 1.证明线线垂直常用的方法证明这两条直线的方向向量互相垂直. 2.证明线面垂直常用的方法(1)证明直线的方向向量与平面的法向量是共线向量; (2)证明直线与平面内的两个不共线的向量互相垂直. 3.证明面面垂直常用的方法 (1)转化为线线垂直、线面垂直处理; (2)证明两个平面的法向量互相垂直.2.在例3中,平面ABE 与平面PDC 是否垂直,若垂直,请证明;若不垂直,请说明理由.[解] 由例3,可知CD →=⎝ ⎛⎭⎪⎫-12,36,0,PD →=⎝ ⎛⎭⎪⎫0,233,-1,设平面PDC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CD →=-12x +36y =0,m ·PD →=233y -z =0,令y =3,则x =1,z =2,即m =(1,3,2),由例3知,平面ABE 的法向量为n =(0,2,-3), ∴m·n =0+23-23=0,∴m⊥n . 所以平面ABE ⊥平面PDC .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).3.(1)证明线面垂直问题,可以利用直线的方向向量和平面的法向量之间的关系来证明. (2)证明面面垂直问题,常转化为线线垂直、线面垂直或两个平面的法向量垂直. 1.判断(正确的打“√”,错误的打“×”)(1)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (3)若一直线与平面垂直,则该直线的方向向量与平面内所有直线的方向向量的数量积为0.( )(4)两个平面垂直,则其中一个平面内的直线的方向向量与另一个平面内的直线的方向向量垂直.( )[答案] (1)√ (2)√ (3)√ (4)×2.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx,5=λy , ∴x =6,y =152.]3.已知平面α和平面β的法向量分别为a =(1,2,3),b =(x ,-2,3),且α⊥β,则x =________.-5 [∵α⊥β,∴a ⊥b , ∴a ·b =x -4+9=0, ∴x =-5.]4.在正方体ABCD A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . [证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B1BD的法向量为n2=(1,-1,0),由n1·n2=0,知n1⊥n2,∴平面B1DE⊥平面B1BD.。
3.2空间向量的坐标[读教材·填要点]1.定理1设e1,e2,e3是空间中三个两两垂直的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.定理2(空间向量基本定理)设e1,e2,e3是空间中三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.3.空间向量运算的坐标公式(1) 向量的加减法:(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2),(x1,y1,z1)-(x2,y2,z2)=(x1-x2,y1-y2,z1-z2).(2)向量与实数的乘法:a(x,y,z) =(ax,ay,az).(3)向量的数量积:(x1,y1,z1)·(x2,y2,z2)=x1x2+y1y2+z1z2.(4)向量v=(x,y,z)的模的公式:|v|=x2+y2+z2.(5)向量(x1,y1,z1),(x2,y2,z2)所成的角α的公式:cos α=x1x2+y1y2+z1z2x21+y21+z21x22+y22+z22.4.点的坐标与向量坐标(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(2)两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)的距离d AB 为:d AB =x 2-x 12+y 2-y 12+z 2-z 12.(3)线段的中点坐标,等于线段两端点坐标的平均值.[小问题·大思维]1.空间向量的基是唯一的吗?提示:由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一组基,所以空间的基有无数个,因此不唯一.2.命题p :{a ,b ,c }为空间的一个基底;命题q :a ,b ,c 是三个非零向量,则命题p 是q 的什么条件?提示:p ⇒q ,但qp ,即p 是q 的充分不必要条件.3.空间向量的坐标运算与坐标原点的位置是否有关系?提示:空间向量的坐标运算与坐标原点的位置选取无关,因为一个确定的几何体,其线线、线面、面面的位置关系是固定的,坐标系的不同,只会影响其计算的繁简.4.平面向量的坐标运算与空间向量的坐标运算有什么联系与区别?提示:平面向量与空间向量的坐标运算均有加减运算,数乘运算,数量积运算,其算理是相同的.但空间向量要比平面向量多一竖坐标,竖坐标的处理方式与横、纵坐标是一样的.空间向量基本定理的应用空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA ―→=a ,OB ―→=b ,OC ―→=c ,试用向量a ,b ,c 表示向量OG ―→和GH ―→.[自主解答] ∵OG ―→=OA ―→+AG ―→, 而AG ―→=23AD ―→,AD ―→=OD ―→-OA ―→.∵D 为BC 的中点, ∴OD ―→=12(OB ―→+OC ―→)∴OG ―→=OA ―→+23AD ―→=OA ―→+23(OD ―→-OA ―→)=OA ―→+23·12(OB ―→+OC ―→)-23OA ―→=13(OA ―→+OB ―→+OC ―→)=13(a +b +c ). 而GH ―→=OH ―→-OG ―→,又∵OH ―→=23OD ―→=23·12(OB ―→+OC ―→)=13(b +c )∴GH ―→=13(b +c )-13(a +b +c )=-13a .∴OG ―→=13(a +b +c );GH ―→=-13a .本例条件不变,若E 为OA 的中点,试用a ,b ,c 表示DE ―→和EG ―→. 解:如图,DE ―→=OE ―→-OD ―→=12OA ―→-12(OB ―→+OC ―→) =12a -12b -12c . EG ―→=OG ―→-OE ―→=13(OA ―→+OB ―→+OC ―→)-12OA ―→ =-16OA ―→+13OB ―→+13OC ―→=-16a +13b +13c .用基表示向量时:(1)若基确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及数乘向量的运算律进行.(2)若没给定基时,首先选择基,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.1.如图所示,已知平行六面体ABCD A 1B 1C 1D 1,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP ―→;(2)AM ―→. 解:连接AC ,AD 1, (1)AP ―→=12(AC ―→+AA 1―→)=12(AB ―→+AD ―→+AA 1―→) =12(a +b +c ). (2)AM ―→=12(AC ―→+AD 1―→)=12(AB ―→+2AD ―→+AA 1―→) =12a +b +12c . 空间向量的坐标运算已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB ―→,b =AC ―→.(1)设|c |=3,c ∥BC ―→,求c .(2)若ka +b 与ka -2b 互相垂直,求k .[自主解答] (1)∵BC ―→=(-2,-1,2)且c ∥BC ―→, ∴设c =λBC ―→=(-2λ,-λ,2λ). ∴|c |=-2λ2+-λ2+2λ2=3|λ|=3.解得λ=±1,∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB ―→=(1,1,0),b =AC ―→=(-1,0,2), ∴ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4). ∵(ka +b )⊥(ka -2b ),∴(ka +b )·(ka -2b )=0.即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0. 解得k =2或k =-52.本例条件不变,若将(2)中“互相垂直”改为“互相平行”,k 为何值? 解:∵ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4),设ka +b =λ(ka -2b ),则⎩⎪⎨⎪⎧k -1=λk +2,k =λk ,2=-4λ,∴k =0.已知两个向量垂直(或平行)时,利用坐标满足的条件可得到方程(组)进而求出参数的值.这是解决已知两向量垂直(或平行)求参数的值的一般方法.在求解过程中一定注意合理应用坐标形式下的向量运算法则,以免出现计算错误.2.若a =(1,5,-1),b =(-2,3,5).分别求满足下列条件的实数k 的值: (1)(ka +b )∥(a -3b ); (2)(ka +b )⊥(a -3b ).解:ka +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)若(ka +b )∥(a -3b ), 则k -27=5k +3-4=-k +5-16,解得k =-13.(2)若(ka +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0, 解得k =1063.点的坐标与向量坐标在直三棱柱ABO A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO ―→,A 1B ―→的坐标.[自主解答] (1)∵DO ―→=-OD ―→=-(OO 1―→+O 1D ―→) =-⎣⎢⎡⎦⎥⎤OO 1―→+12(OA ―→+OB ―→)=-OO 1―→-12OA ―→-12OB ―→.又|OO 1―→|=4,|OA ―→|=4,|OB ―→|=2, ∴DO ―→=(-2,-1,-4).(2)∵A 1B ―→=OB ―→-OA 1―→=OB ―→-(OA ―→+AA 1―→) =OB ―→-OA ―→-AA 1―→.又|OB ―→|=2,|OA ―→|=4,|AA 1―→|=4, ∴A 1B ―→=(-4,2,-4).用坐标表示空间向量的方法步骤为:3.如图所示,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1.试建立适当的空间直角坐标系,求向量MN ―→的坐标.解:∵PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , ∴AB ―→,AD ―→,AP ―→是两两垂直的单位向量.设AB ―→=e 1,AD ―→=e 2,AP ―→=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz .法一:∵MN ―→=MA ―→+AP ―→+PN ―→=-12AB ―→+AP ―→+12PC ―→=-12AB ―→+AP ―→+12(PA ―→+AC ―→)=-12AB ―→+AP ―→+12(PA ―→+AB ―→+AD ―→)=12AD ―→+12AP ―→=12e 2+12e 3, ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.法二:如图所示,连接AC ,BD 交于点O . 则O 为AC ,BD 的中点,连接MO ,ON , ∴MO ―→=12BC ―→=12AD ―→,ON ―→=12AP ―→,∴MN ―→=MO ―→+ON ―→ =12AD ―→+12AP ―→ =12e 2+12e 3. ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.解题高手多解题条条大路通罗马,换一个思路试一试已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且PM ―→=2MC ―→,N 为PD 的中点,求满足MN ―→=x AB ―→+y AD ―→+z AP ―→的实数x ,y ,z 的值.[解] 法一:如图所示,取PC 的中点E ,连接NE ,则MN ―→=EN ―→-EM ―→.∵EN ―→=12CD ―→=12BA ―→=-12AB ―→,EM ―→=PM ―→-PE ―→=23PC ―→-12PC ―→=16PC ―→,连接AC ,则PC ―→=AC ―→-AP ―→=AB ―→+AD ―→-AP ―→, ∴MN ―→=-12AB ―→-16(AB ―→+AD ―→-AP ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.法二:如图所示,在PD 上取一点F ,使PF ―→=2FD ―→,连接MF , 则MN ―→=MF ―→+FN ―→, 而MF ―→=23CD ―→=-23AB ―→,FN ―→=DN ―→-DF ―→=12DP ―→-13DP ―→=16DP ―→=16(AP ―→-AD ―→), ∴MN ―→=-23AB ―→-16AD ―→+16AP ―→.∴x =-23,y =-16,z =16.法三:MN ―→=PN ―→-PM ―→=12PD ―→-23PC ―→=12(PA ―→+AD ―→)-23(PA ―→+AC ―→) =-12AP ―→+12AD ―→-23(-AP ―→+AB ―→+AD ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.[点评] 利用基向量表示空间中某一向量的方法步骤为: ①找到含有空间向量的线段为一边的一个封闭图形;②结合平行四边形法则或三角形法则,用基向量表示封闭图形的各边所对应的向量; ③写出结论.1.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→B.14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→)D.16OB ―→+13OA ―→+13OC ―→ 解析:如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→) =14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 答案:B2.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3)解析:b =(a +b )-a=(-1,2,-1)-(1,-2,1)=(-2,4,-2). 答案:B3.a =(2x,1,3),b =(1,-2y,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32解析:∵a =(2x,1,3)与b =(1,-2y,9)共线,故有2x 1=1-2y =39,∴x =16,y =-32.答案:C4.已知点A (-1,3,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________. 解析:设点P (x ,y ,z ),则由AP ―→=2PB ―→, 得(x +1,y -3,z -1)=2(-1-x,3-y,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3), 则|PD ―→|=-1-12+3-12+3-12=12=2 3. 答案:2 35.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB ―→与CA ―→的夹角θ的大小是________.解析:AB ―→=(-2,-1,3),CA ―→=(-1,3,-2),cos 〈AB ―→,CA ―→〉=-2×-1+-1×3+3×-214·14=-714=-12, ∴θ=〈AB ―→,CA ―→〉=120°. 答案:120°6.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的三等分点且|PN ―→|=2|NC ―→|,|AM ―→|=2|MB ―→|,PA =AB =1,求MN ―→的坐标.解:法一:∵PA =AB =AD =1,且PA 垂直于平面ABCD ,AD ⊥AB ,∴可设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k为单位正交基底建立如图所示的空间直角坐标系.∵MN ―→=MA ―→+AP ―→+PN ―→ =-23AB ―→+AP ―→+23PC ―→=-23AB ―→+AP ―→+23(-AP ―→+AD ―→+AB ―→)=13AP ―→+23AD ―→=13k +23(-DA ―→) =-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.法二:设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系,过M 作AD 的平行线交CD 于点E ,连接EN .∵MN ―→=ME ―→+EN ―→=AD ―→+13DP ―→=-DA ―→+13(DA ―→+AP ―→)=-i +13(i +k )=-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.一、选择题1.已知a ,b ,c 是不共面的三个向量,则能构成空间的一个基的一组向量是( ) A .3a ,a -b ,a +2b B .2b ,b -2a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c解析:对于A ,有3a =2(a -b )+a +2b ,则3a ,a -b ,a +2b 共面,不能作为基;同理可判断B 、D 错误.答案:C2.以正方体ABCD A 1B 1C 1D 1的顶点D 为坐标原点,如图建立空间直角坐标系,则与DB 1―→共线的向量的坐标可以是( )A .(1,2,2)B .(1,1,2)C .(2,2,2)D .(2,2,1)解析:设正方体的棱长为1,则由图可知D (0,0,0),B 1(1,1,1), ∴DB 1―→=(1,1,1),∴与DB 1―→共线的向量的坐标可以是(2,2,2). 答案:C3.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .答案:B4.若a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255D .2或-255解析:因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ.解得λ=-2或255.答案:C 二、填空题5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 解析:∵a +b =(-2,1,x +3), ∴(a +b )·c =-2-x +2(x +3)=x +4. 又∵(a +b )⊥c , ∴x +4=0,即x =-4. 答案:-46.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a ,b ,c 三个向量共面,则实数λ=________.解析:由a ,b ,c 共面可得c =xa +yb , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:107.若a =(x,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值X 围是________. 解析:a ·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cosθ=a ·b|a ||b |<0,又|a |>0,|b |>0,所以a ·b <0,即2x +4<0,所以x <-2,所以实数x 的取值X 围是(-∞,2).答案:(-∞,-2)8.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2―→=4MM 2―→,则向量OM ―→的坐标为________.解析:设M (x ,y ,z ),则M 1M 2―→=(1,-7,-2),MM 2―→=(3-x ,-2-y ,-5-z ).又∵M 1M 2―→=4MM 2―→,∴⎩⎪⎨⎪⎧1=43-x ,-7=4-2-y ,-2=4-5-z ,∴⎩⎪⎨⎪⎧x =114,y =-14,z =-92.答案:⎝⎛⎭⎪⎫114,-14,-92三、解答题9.已知△ABC 三个顶点的坐标分别为A (1,2,3),B (2,-1,5),C (3,2,-5). (1)求△ABC 的面积; (2)求△ABC 中AB 边上的高.解:(1)由已知得AB ―→=(1,-3,2),AC ―→=(2,0,-8), ∴|AB ―→|= 1+9+4=14, |AC ―→|=4+0+64=217,AB ―→·AC ―→=1×2+(-3)×0+2×(-8)=-14,cos 〈AB ―→,AC ―→〉=AB ―→·AC ―→|AB ―→|·|AC ―→|=-1414×217=-14217,sin 〈AB ―→,AC ―→〉=1-1468=2734. ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=12×14×217×2734=321. (2)设AB 边上的高为CD , 则|CD ―→|=2S △ABC |AB ―→|=3 6.10.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是⎝⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD ―→的坐标;(2)设向量AD ―→和BC ―→的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin 30°=32. OE =OB -BD ·cos 60°=1-12=12,∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即向量OD ―→的坐标为⎝ ⎛⎭⎪⎫0,-12,32.(2)依题意:OA ―→=⎝ ⎛⎭⎪⎫32,12,0,OB ―→=(0,-1,0),OC ―→=(0,1,0). 所以AD ―→=OD ―→-OA ―→=⎝ ⎛⎭⎪⎫-32,-1,32,BC ―→=OC ―→-OB ―→=(0,2,0). 设向量AD ―→和BC ―→的夹角为θ,则 cos θ=AD ―→·BC―→|AD ―→|·|BC ―→|=⎝ ⎛⎭⎪⎫-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫322·02+22+02=-210=-105.∴cos θ=-105.。