4.3.1对数函数的概念常见题型(解析版)
- 格式:doc
- 大小:492.02 KB
- 文档页数:6
对数函数考点与题型归纳一、基础知识1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).y=log a x的3个特征(1)底数a>0,且a≠1;(2)自变量x>0;(3)函数值域为R.2.对数函数y=log a x(a>0,且a≠1)的图象与性质底数a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即恒有log a1=0当x>1时,恒有y>0;当0<x<1时,恒有y<0当x>1时,恒有y<0;当0<x<1时,恒有y>0在(0,+∞)上是增函数在(0,+∞)上是减函数注意当对数函数的底数a的大小不确定时,需分a>1和0<a,<1两种情况进行讨论.3.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.二、常用结论对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,1),⎝⎛⎭⎫1a ,-1,依据这三点的坐标可得到对数函数的大致图象.(2)函数y =log a x 与y =log 1ax (a >0,且a ≠1)的图象关于x 轴对称.(3)当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.考点一 对数函数的图象及应用[典例] (1)函数y =lg|x -1|的图象是( )(2)已知当0<x ≤14时,有x <log a x ,则实数a 的取值范围为________.[解析] (1)因为y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意.(2)若x <log a x 在x ∈⎝⎛⎦⎤0,14时成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,作出图象如图所示.由图象知14<log a 14, 所以⎩⎨⎧0<a <1,a 12>14,解得116<a <1.即实数a 的取值范围是⎝⎛⎭⎫116,1. [答案] (1)A (2)⎝⎛⎭⎫116,1 [变透练清]1.[变条件]若本例(1)函数变为f (x )=2log 4(1-x ),则函数f (x )的大致图象是( )解析:选C 函数f (x )=2log 4(1-x )的定义域为(-∞,1),排除A 、B ;函数f (x )=2log 4(1-x )在定义域上单调递减,排除D.故选C.2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)3.[变条件]若本例(2)变为不等式x 2<log a x (a >0,且a ≠1)对x ∈⎝⎛⎭⎫0,12恒成立,求实数a 的取值范围.解:设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝⎛⎭⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x ) =x 2在⎝⎛⎭⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝⎛⎭⎫0,12上恒成立,需f 1⎝⎛⎭⎫12≤f 2⎝⎛⎭⎫12, 所以有⎝⎛⎭⎫122≤log a 12,解得a ≥116,所以116≤a <1. 即实数a 的取值范围是⎣⎡⎭⎫116,1.考点二 对数函数的性质及应用考法(一) 比较对数值的大小[典例] (2018·天津高考)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 因为c =log 1213=log 23>log 2e =a ,所以c >a .因为b =ln 2=1log 2e <1<log 2e =a ,所以a >b .所以c >a >b . [答案] D考法(二) 解简单对数不等式[典例] 已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.[解析] 原不等式⇔⎩⎪⎨⎪⎧ 0<x <1,2x 2+1>3x >1①或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1②,解不等式组①得13<x <12,不等式组②无解,所以实数x 的取值范围是⎝⎛⎭⎫13,12.[答案] ⎝⎛⎭⎫13,12考法(三) 对数型函数性质的综合问题[典例] 已知函数f (x )=log 4(ax 2+2x +3),若f (1)=1,求f (x )的单调区间. [解] 因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0,得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).[题组训练]1.已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a解析:选C 0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213=log 23>1,∴c >a >b .2.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫12,+∞ D .(0,+∞)解析:选A ∵-1<x <0,∴0<x +1<1.又∵f (x )>0,∴0<2a <1,∴0<a <12.3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________. 解析:要使f (x )=log 3(ax 2-x )在[3,4]上单调递增,则y =ax 2-x 在[3,4]上单调递增,且y =ax 2-x >0恒成立,即⎩⎪⎨⎪⎧12a ≤3,9a -3>0,解得a >13.答案:⎝⎛⎭⎫13,+∞[课时跟踪检测]A 级1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎡⎭⎫23,+∞D.⎝⎛⎭⎫23,+∞解析:选C 由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎨⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log2x B.12xC .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1). ∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x . 3.如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:选D ∵log 12x <log 12y <log 121,∴x >y >1.4.(2019·海南三市联考)函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )解析:选C 函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图象可知选C.5.(2018·惠州调研)若a =20.5,b =log π3,c =log 2sin 2π5,则a ,b ,c 的大小关系为( ) A .b >c >a B .b >a >c C .c >a >bD .a >b >c解析:选D 依题意,得a >1,0<b =log π3<log ππ=1,而由0<sin 2π5<1,2>1,得c <0,故a >b >c .6.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定解析:选A 由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).7.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.解析:设幂函数为f (x )=x α,因为函数y =log a (2x -3)+2的图象恒过点P (2,2),则2α=2,所以α=12,故幂函数为f (x )=x 12.答案:x 128.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________.解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0, 且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧ b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1.答案:19.(2019·武汉调研)函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________. 解析:由函数f (x )=log a (x 2-4x -5),得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞).答案:(5,+∞)10.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.解析:由f (a )>f (-a )得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),即⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ).解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)11.求函数f (x )=log 2x ·log2(2x )的最小值.解:显然x >0,∴f (x )=log 2x ·log2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎫log 2x +122-14≥-14,当且仅当x =22时,有f (x )min =-14. 12.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. B 级1.已知函数f (x )=log a x (a >0,且a ≠1)满足f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,则f ⎝⎛⎭⎫1-1x >0的解集为( ) A .(0,1) B .(-∞,1) C .(1,+∞)D .(0,+∞)解析:选C 因为函数f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为单调函数,而2a <3a 且f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,所以f (x )=log a x 在(0,+∞)上单调递减,即0<a <1,结合对数函数的图象与性质可由f ⎝⎛⎭⎫1-1x >0,得0<1-1x<1,所以x >1,故选C. 2.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析:令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916, 因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 答案:(0,+∞)3.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数, 所以f (x )=f (-x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).。
对数函数的常见问题和答案对数函数是高中数学中比较重要的一种函数,它在数学、物理、工程等领域中应用广泛。
由于对数函数有着自身的独特性质,因此在学习中也容易遇到各种问题与难点。
下面,我们将介绍对数函数的常见问题以及相应的解答。
一、对数函数的定义和性质1. 对数函数的定义是什么?对数函数是指以某个正数为底,使得另一个正数成为这个底数的几次方的值成为自变量,结果是次数的函数。
比如,以底数为2,x为自变量的对数函数就是y=log2x。
2. 对数函数有哪些基本性质?对数函数的基本性质包括:①定义域为正实数集,值域为实数集;②对于任意正数x,y和任意实数a,b,都有以下性质成立:(1)loga(xy)=logax+logay;(2)loga(x/y)=logax-logay;(3)loga xn=nlogax;(4)logax=loga1/x)二、常见问题及解答1. 对数函数和指数函数有何区别?对数函数和指数函数是数学中比较基本的两种函数,但它们的性质是不同的。
指数函数的自变量是底数,常常表示为y=ax,其中a为大于零且不等于1的实数。
对数函数的自变量是指数,常常表示为 y=logax,其中a(a>0,且a!=1)是底数,x是指数。
对数函数和指数函数是互逆函数。
2. 对数函数有什么应用?对数函数在数学中有很多应用。
比如,对数函数可以用来解决幂指数方程及在财务中的利率计算问题;在物理学中,对数函数常用于描述分布趋势及解决物理学中的质量、电势等计算以及存储问题;在工程中,对数函数常用于处理信号和噪声的比较以及平均功率计算等方面。
3. 如何求对数函数的反函数?对于对数函数y=logax,其反函数是指数函数y=ax。
可以通过先将对数函数转化为指数形式,然后将自变量和因变量交换位置并解出自变量来得到对数函数的反函数。
4. 对数函数的定义域和值域?对数函数的定义域为正实数集,值域为实数集。
因为对于任意定义域中的正实数x,对数函数的值均可以用实数表示。
对数函数考点分析及经典例题讲解1. 对数函数的定义:函数 x y a log =)10(≠>a a 且叫做对数函数,定义域是 (0,)+∞a 的取值 0<a <1a >1定义域(0,)+∞图 象图像特征在y 轴的右侧,过定点(1,0)即x =1时,y =0当x>0且x →0时,图象趋近于 y 轴正半轴. 当x>0且x →0时,图象趋近于 y 轴负半轴.值域 R性 质(1)过定点(1,0),(2)在(0,+∞)上是减函数 (2)在(0,+∞)上是增函数 函数值的变化规律当0<x<1时,y ∈(0,+∞)当 x=1 时,y=0; 当 x>1 时, y<0.当 0<x<1 时,y<0;当x=1时, y=0 ; 当x>1时, y>0 .3.对数函数y=logax(a>0,且a ≠1)与指数函数y=ax(a>0,且a ≠1)互为反函数 .它们的图象关于x y =对称.案例分析:考点一、比较大小例1、比较下列各组数中两个值的大小:(1)log 23.4,log 23.8; (2)log 0.51.8,log 0.52.1;(3)log a 5.1,log a 5.9; (4)log 75,log 67.(5)6log ,7log 76; (6)8.0log ,log 23π变式训练:1、已知函数x y 2log =,则当1>x 时,∈y ;当10<<x 时,∈y . 解析:根据对数函数x y 2log =的图像可得当1>x 时,0y >;当10<<x 时,12y <<. 答案:(0,)+∞;(1,2).考点二、求定义域例2、求下列函数的定义域(1)0.2log (4);y x =-; (2)log ay =(0,1).a a >≠;(3)2(21)log (23)x y x x -=-++ (4)y =例3、选择题:若03log 3log <<n m 则m 、n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<m<n<1D 、0<n<m<1例4 、函数)352(log 221++-=x x y 在什么区间上是增函数?在什么区间上是减函数?1、函数f (x )=log a [(a -1)x +1]在定义域上( )A .是增函数B .是减函数C .先增后减D .先减后增解析:选A.当a >1时,y =log a t 为增函数,t =(a -1)x +1为增函数,∴f (x )=log a [(a -1)x +1]为增函数;当0<a <1时,y =log a t 为减函数,t =(a -1)x +1为减函数, ∴f (x )=log a [(a -1)x +1]为增函数 2、方程)13lg()3lg(222+-=x x 的解集是 .3、已知函数f (x )=⎩⎪⎨⎪⎧3x +1x ≤0log 2x x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________.解析:当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0; 当x >0时,log 2x >1⇒x >2,∴x >2,综上所述:-1<x ≤0或x >2. 答案:-1<x ≤0或x >24、若0<)12(log )1(log 22-<+a a ,则实数a 的取值范围是 .解析:本题实际含有两个不等式,即0)1(log 2>+a …①和)12(log )1(log 22-<+a a …②, 由①得0111log )1(log 22>⇒>+⇒>+a a a ; 由②得121-<+a a ,即2>a , 答案:2>a5、方程()lg 3x +-()lg 3x -=()lg 1x -的解是 .解析:根据对数运算法则,方程()lg 3x +-()lg 3x -=()lg 1x -可化为:lg 33xx+-=lg ()1x -, 即33xx+-= 1x -,解得:0x =或5x =,经验证,当5x =时,不满足题意.所以方程的解为:0.考点三、求值域例1、(1)、12);4x -(-x log y 221+=【解析】(1)∵-x 2-4x+12=-(x2+4x)+12=-(x+2)2+16≤16, 又∵-x 2-4x+12>0, ∴0<-x 2-4x+12≤16. ∵x y 21log =在(0,16]上是减函数,∴y ≥16log 21=y =-4. ∴函数的值域为[-4,+∞).(2)、3);-2x -(x log y 221=(3)y=log a (a-a x)(a>1).令u=a-a x,∵u>0,a>1,∴a x<a,x<1,∴y=log a (a-a x)的定义域为{x|x<1}, ∵a x<a,且a x>0,u=a-a x<a,∴y=log a (a-a x)<log a a=1,∴函数的值域为{y|y<1}.1、求下列函数的定义域、值域:⑴41212-=--x y ⑵)52(log 22++=x x y⑶)54(log 231++-=x x y ⑷)(log 2x x y a --=)10(<<a2.、求函数y =log 2(x 2-6x +5)的定义域和值域.[解析] 由x 2-6x +5>0得x >5或x <1因此y =log 2(x 2-6x +5)的定义域为(-∞,1)∪(5,+∞) 设y =log 2t ,t =x 2-6x +5∵x >5或x <1,∴t >0,∴y ∈(-∞,+∞) 因此y =log 2(x 2-6x +5)的值域为R .3、已知x 满足条件09log 9)(log 221221≤++x x ,求函数)4(log )3(log )(22xx x f ⋅=的最大值. 解:令x y 21log =,则09922≤++y y ;解得233-≤≤-y ,即23log 321-≤≤-x ; ∴822≤≤x ,∴]3,23[log 2∈=x t . ∴)2)(log 3log (log )4(log )3(log )(22222--=⋅=x x xx x f 3log 2)3log 2(3log 2log )3log 2()(log 22222222++-=++-=t t x x ; ∴当]3,23[23log 22∈+=t 时,4)23(log )(22min --=x f . 4、已知)23lg(lg )23lg(2++=-x x x ,求222log x 的值。
对数函数常见题型例析对数函数是重要的基本初等函数之一,在近几年的高考中渐渐走红,频频出现在高考试卷与模拟试卷中,主要考查对数函数的图象和性质,本文就对数函数的常见题型归纳如下,供大家参考. 1.求定义域 例1函数3)5lg()(--=x x x f 的定义域为_____.解:要使)(x f 有意义,则⎩⎨⎧≠->-0305x x ,解得5<x ,且3≠x ,∴)(x f 的定义域为5|{<x x ,且}3≠x .点评:求对数定义域切记真数大于零,底数大于零且不等于1,常用方法是列不等式组, 注意求出的定义域要写成集合或区间的形式. 2.比较大小例2设,,a b c 均为正数,且,log221a a=,log)21(21b b = c c2log)21(=,则( )A a b c <<B c b a <<C c a b <<D b a c << 解:由a a21log2=可知0>a 12>∴a ,210,1log21<<∴>a a ;由b b21log)21(=可知1)21(0,0<<∴>b b ,即1log021<<b ,121<<b ;由c c2log )21(=可知21,1log0,02<<∴<<∴>c c c ,从而c b a <<,故选A.点评:本题的关键就是抓住“真数大于零”这一隐含条件,利用指、对函数的性质得出结论. 3.解对数方程例3解方程:0)2(log )12(log 244=--+x x ;解:由已知得)2(log )12(log 244-=+x x ,则2122-=+x x ,即0322=--x x ,解得3=x 或1-=x ,当1-=x 时,对数真数小于零,舍去,故方程的根是3=x . 点评:解对数方程要注意验根,即保证对数的真数大于零. 4.最值问题例4设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( )B 2C 22D 4解:设1a >,函数()log a f x x =在区间[,2]a a 上递增,最大值和最小值 分别为a a aalog,2log,依题意知212loglog2log==-aaaa a ,4=∴a ,故选D.点评:最值问题是高考考查对函数性质的热点题型,解决的关键是根据对数函数单调性求解. 5.求参数范围 例5已知132log<a,则a 的取值范围是( )A ),1()32,0(+∞ B ),32(+∞ C )1,32( D ),32()32,0(+∞解:当10<<a 时,,log132log a aa=<32<∴a ,即320<<a ;当1>a 时,,log132loga aa=<32>∴a ,即1>a .综上所述,a 的取值范围是320<<a 或1>a ,故选A.点评:这类问题一般是根据对数函数的单调性,分10<<a 和1>a 两种情况讨论.。
对数函数经典例题(实用版)目录1.对数函数的定义与性质2.对数函数的图像与性质3.对数函数的运算法则4.对数函数的应用5.经典例题解析正文对数函数是一种重要的数学函数,它被广泛应用于各个领域。
对数函数的定义为:如果,那么我们称 y 为以 a 为底的 x 的对数,记作:x=loga y(a>0,且 a≠1)。
根据这个定义,我们可以得到对数函数的一些基本性质。
首先,对数函数的图像与性质。
对数函数的图像通常为一条斜率为 1,截距为 0 的直线。
其性质包括:当 x=1 时,y=0;当 x>1 时,y>0;当0<x<1 时,y<0;当 x<0 时,y 不存在。
其次,对数函数的运算法则。
对数函数的运算法则包括:loga (xy) = logax + logay;loga (x/y) = logax - logay;loga x^n = nlogax。
再次,对数函数的应用。
对数函数在实际生活中的应用非常广泛,例如在计算机科学中,对数函数被用来表示数据的大小;在经济学中,对数函数被用来表示成本与收益的关系。
最后,让我们来看一些经典的对数函数例题。
例如,如果 a=2,那么log2 8 等于多少?根据对数函数的定义,我们可以得到 log2 8=3。
再比如,如果 a=10,b=100,那么 log10 100 等于多少?根据对数函数的定义,我们可以得到 log10 100=2。
总的来说,对数函数是一种重要的数学函数,它被广泛应用于各个领域。
对数函数的定义、图像、性质、运算法则以及应用,都是我们需要掌握的基本知识。
4.4对数函数(基础知识+基本题型)知识点一 对数函数的概念一般地,我们把函数log (0,a y x a =>且1)a ≠叫做对数函数,其中x 是自变量,函数的定义域是()0,.+∞辨析 (1)对数函数的特征:①log a x 的系数是1;②log a x 的底数是不等于1的正数; ③log a x 的真数仅含自变量.x(2)求对数函数的定义域时,应注意:①对数的真数大于0,底数大于0且不等于1;②对含有字母的式子要分类讨论;③使式子符合实际背景.知识点二 对数函数的图象和性质1.对数函数log (0,a y x a =>且1)a ≠的图象和性质()0,+∞.R 2.对数函数的图象与性质的对应关系①这些图象都位于y 轴右方 ①x 可取任意正数,函数值.y R ∈ ②这些图象都经过点(1,0)②无论a 为任何正数,总有log 10a =③图象可以分为两类:一类图象在区间(0,1)内纵坐标都小于0,在区间()1,+∞内的纵坐标都大于0;另一类图象正好相反③当1a >时01log 0,1log 0;a a x x x x <<⇒<⎧⎨>⇒>⎩ 当01a <<时01log 0,1log 0a a x x x x <<⇒>⎧⎨>⇒>⎩ ④自左向右看,当1a >时,图象逐渐上升;当01a <<时,图象逐渐下降 ④当1a >时,函数log a y x =是增函数; 当01a <<时,函数log a y x =是减函数3.底数对函数图象的影响(1)函数log (0,a y x a =>且1)a ≠的图象无限地靠近y 轴,但永远不会与y 轴相交;(2)在同一平面直角坐标系中,log (0,a y x a =>且1)a ≠的图象与1log (0,ay x a =>且1)a ≠的图象关于x 轴对称.(3)对数函数单调性的记忆口诀:对数增减有思路,函数图象看底数;底数要求大于0,但等于1却不行; 底数若是大于1,函数从左往右增;底数0到1之间,函数从左往右减; 无论函数增和减,图象都过点(1,0).在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)知识点三 指数函数与对数函数的关系指数函数对数函数解析式()10≠>=a a a y x 且)10(log ≠>=a a x y a 且R ()+∞,0①一般地,函数()y f x a b =±±(a 、b 为正数)的图象可由函数()y f x =的图象变换得到。
对数与对数函数题型归纳总结知识梳理 1.对数的概念如果a x =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质(1)对数的性质:①a log aN =N ;②log a a b =b (a >0,且a ≠1). (2)换底公式:log a b =log c blog ca (a ,c 均大于0且不等于1,b >0).利用换底公式推导下面的结论 ①ab b a log 1log =.推广log log log log a b c a b c d d ⋅⋅=. ②b mnb a na m log log =,特例:log log n n a a b b = (3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ).3.函数0(log >=a x y a ,且)1≠a 叫做对数函数,x 是自量,函数定义域是(0,)+∞.注意:(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy =都不是对数函数,而只能称其为对数型函数.(2)对数函数对底数的限制:0(>a ,且)1≠a . 4.对数函数的定义、图象与性质结论1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 结论 2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. 5.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 例题分析题型一 对数的运算例题1: (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=_____;(2)计算:(1-log 63)2+log 62·log 618log 64=___解析:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.例题2: 设x 、y 、z 为正数,且,则x 、y 、z 之间的关系式为 . 解析:设,由知,取以为底的对数可得,所以,,,所以,所以. 变式1: (1)若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于 (2)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =___,b =____ 解析: (1)由题意知lg 2+lg(2x +5)=2lg(2x +1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x =3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,∴t =2,则a =b 2.又a b =b a ,∴b 2b =b b 2,即2b =b 2,又a >b >1,得b =2,a =4. 变式2: 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a =______,b =____ 分析:进行对数运算常用的方法:(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2lg51+=解析:设log ,1b a t t =>则,所以152t t +=,解得2t =,所以2a b =, 于是由b a a b =,得22b b b b =,所以22b b =, 解得2,4b a ==.题型二 对数函数的定义域346x y z==346x y z t ===0x >1t >t log 3log 4log 61t t t x y z ===1log 3t x =1log 4t y=1log 6t z =1111log 6log 3log 2log 422t t t t z x y -=-===1112z x y-=例题3: 函数y =__________.解析:要使()21log 1y x =-+有意义,则()21log 10x -+≥,即()2log 11x +≤,即012x <+≤,即11x -<≤,即函数()21log 1y x =-+的定义域为(]1,1-.变式3: 函数256()lg 3x x f x x -+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 分析:求函数的定义域主要从三个方面考虑:(1)分式中的分母要求不等于0;(2)偶次根式的被开方数要求非负;(3)对数式的真数要求为正数. 解析:由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解得44,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .题型三 对数函数的值域 例题4: 求下列函数的值域:(1)31log y x =-;(2)()212log 23y x x =--.解析:(1)∵31log 0x -≥∴33log 1log 3x ≤=∴0x <<3,函数的定义域为(]0,3x ∈∵31log 0x -≥函数的值域为[)0,y ∈+∞. (2)∵2230x x -->∴3x >或1x -<所以函数的定义域为()(),13,x ∈-∞-+∞因为2230x x -->,即223x x --能取遍一切正实数,所以()212log 23x x R --∈ 所以函数的值域为y R ∈. 题型四 对数函数的奇偶性例题5: 若函数()f x 为奇函数,当0x >时,()2log f x x =,则12f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭() A .2- B .1- C .0 D .1解析:()()2211log 11log 1022f f f f f ⎛⎫⎛⎫⎛⎫==-=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,选C .变式4: 若函数()2lg 2+1f x a x ⎛⎫= ⎪+⎝⎭为奇函数,则实数a =_______.解析:12-题型五 对数函数的对称性例题6: 若1x 满足522=+x x ,2x 满足5)1(log 222=-+x x ,则=+21x x 解析:x x 252-=,x x 25)1(log 22-=-,即x x -=-2521,x x -=-25)1(log 2,作出12-=x y ,x y -=25,)1(log 2-=x y 的图象(如图).由图知12-=x y 与)1(log 2-=x y 的图象关于1-=x y 对称,它们与x y -=25的交点A 、B 的中点为x y -=25与1-=x y 的交点C ,47221=+=x x x C ,∴2721=+x x题型六 对数函数的单调性例题7: 求函数()20.1log 253y x x =--的递减区间. 解析:先求函数的定义域,由22530x x -->,得12x -<,或3x >.令2253u x x =--,0.1log y u =,∵对数的底数0.11<,∴函数0.1log y u =减函数,由复合函数单调性“同增异减”的规律可知,要求原函数的单调间区间,只需求函数2253u x x =--(12x -<,或3x >)的递增区间即可.∵22549253248u x x x ⎛⎫=--=-- ⎪⎝⎭,∴函数2253u x x =--(12x -<,或3x >)的递增区间()3,+∞,所以函数()20.1log 253y x x =--的递减区间为()3,+∞.变式5: 函数()()2log 45a f x x x =--(1a >)的单调递增区间是() A .(),2-∞- B .(),1-∞- C .()2,+∞ D .()5,+∞分析:复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.解析:由函数()()2log 45a f x x x =--得2450x x -->,得1x <-或5x >, 根据题意,设245u x x =--,则()229u x =--,图象开口向上, 因函数()()2log 45a f x x x =--为单调增函数, 由1a >得:()log a f x u =也是增函数,又因245u x x =--在()5,+∞上是增函数,故x 的取值范围是()5,+∞,故选D . 变式6: 已知函数()212log y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值范围是___________.分析:(1)忽视真数要求大于0的条件;(2)只注意真数所对应的二次函数的单调性而忽视外层函数的单调性.解析:令2t x ax a =-+,则有函数()f x 在区间()2,+∞上是减函数,可得函数t 在区间()2,+∞上是增函数,且(2)0t >,所以22(2)420at a ⎧≤⎪⎨⎪=->⎩,解得4a ≤所以实数a 的取值范围是4a ≤变式7: 若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2)..变式8: 已知函数 (a >0,且a ≠1),若在区间[1,2]上恒成立,则实数a 的取值范围是________.()()8a f x log ax =-()1f x >解析:当时,在[1,2]上是减函数,由在区间[1,2]上恒成立,则,解之得。
对数函数及其性质题型总结1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征Error!判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x是对数函数,则实数a =__________.(1)图象与性质a >10<a <1图象(1)定义域{x |x >0}(2)值域{y |y R }∈(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x<1时,y >0性质(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数性质(6)底数与真数位于1的同侧函数值大于0,位于1的俩侧函数值小于0性质(7)直线x =1的右侧底大图低谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.题型一:定义域的求解 求下列函数的定义域.例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);(3).y =在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.题型二:对数值域问题对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.221log 1(4y ax ax R a =++数的定义域为,变式求实数的围。
专题十三 对数函数考点一 对数函数图象辨析 【基本知识】 1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.对数函数的图象在y 轴右侧,过定点(1,0)3.指数函数与对数函数的关系指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.【常用结论】(1)对数函数图象的画法画对数函数y =log a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,0),(a ,1),⎝⎛⎭⎫1a ,-1和一条渐近线x =0.(2)底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.(3)函数y =log a x 与y =log 1ax (a >0,且a ≠1)的图象关于x 轴对称.(4)对数函数的图象与底数大小的比较如图是对数函数(1)y =log a x ,(2)y =log b x ,(3)y =log c x ,(4)y =log d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,对数函数y =log a x (a >0,且a ≠1)的图象越右,底数越大.简称“底大图右”.【方法总结】有关对数函数图象辨析的解题思路(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除. (2)对于有关对数型函数的图象问题,一般是从最基本的对数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)根据对数函数图象判断底数大小的问题,可以通过底大图右进行判断. 【例题选讲】[例1] (1) 函数y =lg|x -1|的图象是( )答案 A 解析 因为y =lg|x -1|=⎩⎪⎨⎪⎧lg(x -1),x >1,lg(1-x ),x <1.当x =1时,函数无意义,故排除B 、D .又当x =2或0时,y =0,所以A 项符合题意.(2) 函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )答案 C 解析 函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图象可知选C .(3) 函数y =log a x 与y =-x +a 在同一坐标系中的图象可能是( )答案 A 解析 当a >1时,函数y =log a x 的图象为选项B 、D 中过点(1,0)的曲线,此时函数y =-x +a 的图象与y 轴的交点的纵坐标a 应满足a >1,选项B 、D 中的图象都不符合要求;当0<a <1时,函数y =log a x 的图象为选项A 、C 中过点(1,0)的曲线,此时函数y =-x +a 的图象与y 轴的交点的纵坐标a 应满足0<a <1,选项A 中的图象符合要求,选项C 中的图象不符合要求.(4) 在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x (a >0且a ≠1)的图象可能是( )答案 D 解析 当a >1时,函数f (x )=x a (x ≥0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a (x ≥0)单调递增,且过点(1,1),函数g (x )=log a x单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知B 错.故选D .(5) (2019·浙江)在同一直角坐标系中,函数 y =1ax ,y =log a ⎝⎛⎭⎫x +12(a >0,且a ≠1)的图象可能是( )答案 D 解析 对于函数y =log a ⎝⎛⎭⎫x +12,当y =0时,有x +12=1,得x =12,即y =log a ⎝⎛⎭⎫x +12的图象恒过定点⎝⎛⎭⎫12,0,排除选项A 、C ;函数y =1a x 与y =log a ⎝⎛⎭⎫x +12在各自定义域上单调性相反,排除选项B ,故选D .【对点训练】1.函数f (x )=2log 4(1-x ),则函数f (x )的大致图象是( )1.答案 C 解析 函数f (x )=2log 4(1-x )的定义域为(-∞,1),排除A 、B ;函数f (x )=2log 4(1-x )在定 义域上单调递减,排除D .故选C . 2.函数y =ln(2-|x |)的大致图象为( )2.答案 A 解析 令f (x )=ln(2-|x |),易知函数f (x )的定义域为{x |-2<x <2},且f (-x )=ln(2-|-x |)= ln(2-|x |)=f (x ),所以函数f (x )为偶函数,排除选项C 、D .由对数函数的单调性及函数y =2-|x |的单调性知A 正确.3.函数f (x )=lg 1|x +1|的大致图象是( )3.答案 D 解析 f (x )=lg1|x +1|=-lg|x +1|的图象可由偶函数y =-lg|x |的图象左移1个单位得到.由y =-lg|x |的图象可知D 项正确.4.已知lg a +lg b =0(a >0,且a ≠1,b >0,且b ≠1),则函数f (x )=a x 与g (x )=-log b x 的图象可能是( )4.答案 B 解析 因为lg a +lg b =0,所以lg (ab )=0,所以ab =1,即b =1a ,故g (x )=-logb x =-log 1ax =log a x ,则f (x )与g (x )互为反函数,其图象关于直线y =x 对称,结合图象知B 项正确.故选B . 5.若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )5.答案 B 解析 若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图象如 选项B 中图所示.考点二 对数函数图象的应用 【方法总结】一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【例题选讲】[例2] (1) 已知当0<x ≤14时,有x <log a x ,则实数a 的取值范围为________.答案 ⎝⎛⎭⎫116,1 解析 若x <log a x 在x ∈⎝⎛⎦⎤0,14时成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,作出图象如图所示.由图象知 14<log a 14,所以⎩⎪⎨⎪⎧0<a <1,a 12>14,解得116<a <1.即实数a 的取值范围是⎝⎛⎭⎫116,1.(2) 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .⎝⎛⎭⎫0,22 B .⎝⎛⎭⎫22,1 C .(1,2) D .(2,2) 答案 B 解析 易知0<a <1,函数y =4x 与y =log a x 的大致图象如图,则由题意可知只需满足log a12>412,解得a >22,∴22<a <1,故选B .(3) 设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( )A .x 1x 2<0B .x 1x 2=0C .x 1x 2>1D .0<x 1x 2<1答案 D 解析 作出y =10x 与y =|lg(-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨令x 1<x 2,则x 1<-1<x 2<0,所以10x 1=lg(-x 1),10x 2=-lg(-x 2),此时10x 1<10x 2,即lg(-x 1)<-lg(-x 2),由此得lg(x 1x 2)<0,所以0<x 1x 2<1,故选D .(4) 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是__________.答案 a >1 解析 问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.(5) (2018·全国Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A .y =ln(1-x ) B .y =ln(2-x ) C .y =ln(1+x ) D .y =ln(2+x )答案 B 解析 易知y =ln x 与y =ln(-x )的图象关于y 轴对称.而y =ln(2-x )=ln[-(x -2)],由此可知y =ln(2-x )的图象只需将y =ln(-x )的图象向右平移2个单位即可得到.因此y =ln x 与y =ln(2-x )的图象关于直线x =1对称.【对点训练】6.已知函数f (x )=ln x ,g (x )=lg x ,h (x )=log 3x ,直线y =a (a <0)与这三个函数图象的交点的横坐标分别是x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 3<x 1B .x 1<x 3<x 2C .x 1<x 2<x 3D .x 3<x 2<x 1 6.答案 A 解析 分别作出三个函数的图象,如图所示,由图可知x 2<x 3<x 1.7.已知函数f (x )=log a 2x +b -1(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A .0<a -1<b <1 B .0<b <a -1<1 C .0<b -1<a <1 D .0<a -1<b -1<17.答案 A 解析 由函数图象可知,f (x )在R 上单调递增,故a >1.函数图象与y 轴的交点坐标为(0,loga b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a<b <1. 8.不等式x 2<log a x (a >0,且a ≠1)对x ∈⎝⎛⎭⎫0,12恒成立,求实数a 的取值范围. 8.答案 ⎣⎡⎭⎫116,1 解析 设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝⎛⎭⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x ) =x 2在⎝⎛⎭⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝⎛⎭⎫0,12上恒成立,需f 1⎝⎛⎭⎫12≤f 2⎝⎛⎭⎫12,所以有⎝⎛⎭⎫122≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是⎣⎡⎭⎫116,1. 9.设f (x )=|ln(x +1)|,已知f (a )=f (b )(a <b ),则( )A .a +b >0B .a +b >1C .2a +b >0D .2a +b >1 9.答案 A 解析 作出函数f (x )=|ln(x +1)|的图象如图所示,由f (a )=f (b ),得-ln(a +1)=ln(b +1),即ab +a +b =0.所以0=ab +a +b <(a +b )24+a +b ,即(a +b )(a+b +4)>0,显然-1<a <0,b >0,∴a +b +4>0.∴a +b >0.故选A . 10.若f (x )=lg x ,g (x )=f (|x |),则g (lg x )>g (1)时,x 的取值范围是( )A .⎝⎛⎭⎫0,110∪(10,+∞)B .[1,2)C .⎝⎛⎦⎤0,110∪[10,+∞) D .(10,+∞) 10.答案 A 解析 作出g (x )的图象如图所示,若使g (lg x )>g (1),则lg x >1或lg x <-1,解得x >10或0<x <110.11.已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( ) A .(22,+∞) B .[22,+∞) C .(3,+∞) D .[3,+∞)11.答案 C 解析 f (x )=|lg x |的图象如图所示,由题知f (a )=f (b ),则有0<a <1<b ,∴f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b ,即-lg a =lg b ,则a =1b ,∴a +2b =2b +1b .令g (b )=2b +1b ,g ′(b )=2-1b 2,显然当b ∈(1,+∞)时,g ′(b )>0,∴g (b )在(1,+∞)上为增函数,∴g (b )=2b +1b>3,故选C .12.设平行于y 轴的直线分别与函数y 1=log 2x 及函数y 2=log 2x +2的图象交于B ,C 两点,点A (m ,n )位于函数y 2=log 2x +2的图象上,如图,若△ABC 为正三角形,则m ·2n =________.12.答案 12 解析 由题意知,n =log 2m +2,所以m =2n -2.又BC =y 2-y 1=2,且△ABC 为正三角形,所以可知B (m +3,n -1)在y 1=log 2x 的图象上,所以n -1=log 2(m +3),即m =2n -1-3,所以2n =43,所以m =3,所以m ·2n =3×43=12. 考点三 对数函数的性质及应用 【基本知识】 对数函数的性质考向1 比较对数式的大小 【方法总结】对数函数值大小比较的方法单调性法:在同底的情况下直接得到大小关系,若不同底,先化为同底.中间量过渡法:寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”图象法:根据图象观察得出大小关系 【例题选讲】[例3] (1) 设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为( ) A .a >c >b B .b >c >a C .c >b >a D .c >a >b答案 D 解析 ∵log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22,∴12<a <1,0<b <12,c >1,∴c >a >b .(2) (2013·全国Ⅲ)设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c答案 D 解析 a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图象,由三个图象的相对位置关系,可知a >b >c ,故选D .(3) (2018·天津)已知a =log 372,b =⎝⎛⎭⎫1413 ,c =log 1315,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b答案 D 解析 因为c =log 1315=log 35>log 372>log 33=1,所以c >a ,又b =⎝⎛⎭⎫1413 <1,所以b <a <c .故选D(4) 设a =0.36,b =log 36,c =log 510,则( )A .c >b >aB .a >c >bC .b >c >aD .a >b >c答案 C 解析 由a =0.36<1,b =lg 6lg 3=1+lg 2lg 3,c =1+lg 2lg 5,又lg 5>lg 3>lg 2,则0<lg 2lg 5<lg 2lg 3,则b >c >1.故b >c >a .故选C .(5) (2016·全国Ⅲ)若a >b >1,0<c <1,则( )A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c答案 C 解析 ∵y =x α,α∈(0,1)在(0,+∞)上是增函数,∴当a >b >1,0<c <1时,a c >b c ,选项A 不正确.∵y =x α,α∈(-1,0)在(0,+∞)上是减函数,∴当a >b >1,0<c <1,即-1<c -1<0时,a c -1<b c -1,即ab c >ba c ,选项B 不正确.∵a >b >1,∴lg a >lg b >0,∴a lg a >b lg b >0,∴a lg b >blg a .又∵0<c <1,∴lg c <0.∴a lg c lgb <b lg clg a,∴a log b c <b log a c ,选项C 正确.同理可证log a c >log b c ,选项D 不正确. 考向2 与对数有关的不等式问题 【方法总结】简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a 的值有关,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.(3)某些对数不等式可转化为相应的函数图象问题,利用数形结合法求解.【例题选讲】[例4] (1) 设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案 C 解析 由题意可得⎩⎪⎨⎪⎧ a >0,log 2a >log 12a ⇒a >1或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a )⇒-1<a <0.故选C .(2) 已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.答案 ⎝⎛⎭⎫13,12 解析 原不等式⇔⎩⎪⎨⎪⎧0<x <1,2x 2+1>3x >1或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1,解得13<x <12,所以实数x 的取值范围为⎝⎛⎭⎫13,12.(3) 已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上单调递增,若f (lg 2·lg 50+(lg 5)2)+f (lg x -2)<0,则x 的取值范围为________.答案 (0,10) 解析 ∵lg 2·lg 50+(lg 5)2=(1-lg 5)(1+lg 5)+(lg 5)2=1,∴f (lg 2·lg 50+(lg 5)2)+f (lg x -2)<0可化为f (1)+f (lg x -2)<0,即f (lg x -2)<-f (1).∵函数f (x )是定义在R 上的奇函数,∴f (lg x -2)<f (-1).又函数f (x )在[0,+∞)上单调递增,∴函数f (x )在R 上也单调递增,∴lg x -2<-1,∴lg x <1,∴0<x <10.(4) 已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为__________.答案 ⎝⎛⎭⎫1,83 解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,因为f (x )>1在[1,2]上恒成立,则f (x )min =log a (8-2a )>1,解得1<a <83;当0<a <1时,f (x )在[1,2]上是增函数,因为f (x )>1在[1,2]上恒成立,则f (x )min =log a (8-a )>1,即a >4,故不存在实数a 满足题意.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. (5) 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0,若|f (x )|≥ax ,则a 的取值范围是__________.答案 [-2,0] 解析 因为|f (x )|=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,ln x +1,x >0,所以由|f (x )|≥ax ,分两种情况:①由⎩⎪⎨⎪⎧x ≤0,x 2-2x ≥ax 恒成立,可得a ≥x -2恒成立,则a ≥(x -2)max ,即a ≥-2;②由⎩⎪⎨⎪⎧x >0,ln x +1≥ax恒成立,并根据函数图象可知a ≤0.综上,得-2≤a ≤0.考向3 与对数有关的复合函数性质应用问题 【方法总结】与对数有关的单调性问题的解题策略(1)求出函数的定义域.(2)判断对数函数的底数与1的关系,当底数是含字母的代数式(包含单独一个字母)时,要考查其单调性,就必须对底数进行分类讨论.(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性. 【例题选讲】[例5] (1) 函数y =log 4(7+6x -x 2)的单调递增区间是__________.答案 (-1,3] 解析 设y =log 4u ,u =g (x )=7+6x -x 2=-(x -3)2+16,则对于二次函数u =g (x ),当x ≤3时为增函数,当x ≥3时为减函数.又y =log 4u 是增函数,且由7+6x -x 2>0得函数的定义域为(-1,7),于是函数f (x )的单调递增区间为(-1,3].(2) 函数f (x )=log a (ax -3)(a >0,且a ≠1)在[1,3]上单调递增,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .⎝⎛⎭⎫0,13 D .(3,+∞) 答案 D 解析 由于a >0,且a ≠1,∴u =ax -3为增函数,∴若函数f (x )为增函数,则f (x )=log a u 必为增函数,因此a >1.又u =ax -3在[1,3]上恒为正,∴a -3>0,即a >3.(3) 若函数f (x )=log a (x 2-ax +5)(a >0且a ≠1)满足对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 2)-f (x 1)<0,则实数a 的取值范围为________.答案 (1,25) 解析 当x 1<x 2≤a2时,f (x 2)-f (x 1)<0,即函数f (x )在区间⎝⎛⎦⎤-∞,a 2上为减函数,设g (x )=x 2-ax +5,则⎩⎪⎨⎪⎧a >1,g ⎝⎛⎭⎫a 2>0,解得1<a <25.(4) 设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为( )A .14B .14或23C .23D .23或34答案 C 解析 作出y =|log a x |(0<a <1)的大致图象如图,令|log a x |=1,得x =a 或x =1a ,又1-a -⎝⎛⎭⎫1a -1=1-a -1-a a =(1-a )(a -1)a <0,故1-a <1a -1,所以n -m 的最小值为1-a =13,即a =23.(5) 已知函数f (x )=ln(x +x 2+1),g (x )=f (x )+2 017,下列命题: ①f (x )的定义域为(-∞,+∞); ②f (x )是奇函数;③f (x )在(-∞,+∞)上单调递增;④若实数a ,b 满足f (a )+f (b -1)=0,则a +b =1;⑤设函数g (x )在[-2 017,2 017]上的最大值为M ,最小值为m ,则M +m =2 017. 其中真命题的序号是________.(写出所有真命题的序号)答案 ①②③④ 解析 对于①,∵x 2+1>x 2=|x |≥-x ,∴x 2+1+x >0, ∴f (x )的定义域为R ,∴①正确.对于②,f (x )+f (-x )=ln(x +x 2+1)+ln(-x +(-x )2+1)=ln[(x 2+1)-x 2]=ln 1=0.∴f (x )是奇函数,∴②正确.对于③,令u (x )=x +x 2+1,则u (x )在[0,+∞)上单调递增.当x ∈(-∞,0]时,u (x )=x +x 2+1=1x 2+1-x ,而y =x 2+1-x 在(-∞,0]上单调递减,且x 2+1-x >0.∴u (x )=1x 2+1-x在(-∞,0]上单调递增,又u (0)=1,∴u (x )在R 上单调递增,∴f (x )=ln (x +x 2+1)在R 上单调递增,∴③正确.对于④,∵f (x )是奇函数,而f (a )+f (b -1)=0,∴a +(b -1)=0,∴a +b =1,∴④正确.对于⑤,f (x )=g (x )-2 017是奇函数,当x ∈[-2 017,2 017]时,f (x )max =M -2 017,f (x )min =m -2 017,∴(M -2 017)+(m -2 017)=0,∴M +m =4 034,∴⑤不正确.【对点题组】13.设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a13.答案 B 解析 ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B .14.已知a =121log 3,b =131log 2,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c 14.答案 A 解析 ∵a =121log 3>1,0<b =131log 2=log 32<1,c =log 2 13=-log 23<0,∴a >b >c .15.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c15.答案 B 解析 因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .16.(2019·天津)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b16.答案 A 解析 因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A .17.函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6] 17.答案 C 解析 由⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,得⎩⎪⎨⎪⎧-4≤x ≤4,x >2且x ≠3,故函数定义域为(2,3)∪(3,4],故选C .18.若log a 23<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝⎛⎭⎫0,23B .(1,+∞)C .⎝⎛⎭⎫0,23∪(1,+∞)D .⎝⎛⎭⎫23,1 18.答案 C 解析 当0<a <1时,log a 23<log a a =1,∴0<a <23;当a >1时,log a 23<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,23∪(1,+∞). 19.设函数f (x )=⎩⎪⎨⎪⎧41-x,x ≤1,1-log 14x ,x >1,则满足不等式f (x )≤2的实数x 的取值集合为__________.19.答案 {x ⎪⎪⎭⎬⎫12≤x ≤4 解析 原不等式等价于⎩⎪⎨⎪⎧x ≤1,41-x ≤2或⎩⎪⎨⎪⎧x >1,1-log 14x ≤2,解得12≤x ≤1或1<x ≤4,即实数x 的取值集合为{x ⎪⎪⎭⎬⎫12≤x ≤4. 20.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)20.答案 A 解析 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,其图象的对称轴为x =a ,要使函数f (x )在(-∞,1]上单调递减,则⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2),故选A . 21.若函数y =log a x 在区间[2,+∞)上总有|y |>1,则实数a 的取值范围是( )A .⎝⎛⎭⎫0,12∪(1,2)B .⎝⎛⎭⎫12,1∪(1,2)C .(1,2)D .⎝⎛⎭⎫0,12∪(2,+∞) 21.答案 B 解析 因为函数y =log a x 在[2,+∞)上总有|y |>1,当0<a <1时,y =log a x 在[2,+∞)上总有y <-1,则a >12,即12<a <1;当a >1时,y =log a x 在[2,+∞)上总有y >1,则a <2,即1<a<2,综上,实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,2).故选B .22.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m=________.22.答案 9 解析 ∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理,若log 3n =2,得n =9,则m =19,此时-log 3m 2=4>2,不满足题意.综上可得nm=9.23.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求实数a 的值.23.解 f (x )=12(log a x +1)(log a x +2)=12[(log a x )2+3log a x +2]=12⎝⎛⎭⎫log a x +322-18. 当f (x )取最小值-18时,log a x =-32.∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴f (x )的最大值必在x =2或x =8处取得.若12⎝⎛⎭⎫log a 2+322-18=1,则a =2-13,此时f (x )取得最小值时,x =(2-13)-23=2∉[2,8],舍去;若12⎝⎛⎭⎫log a 8+322-18=1,则a =12,此时f (x )取得最小值时,x =⎝⎛⎭⎫12-32=22∈[2,8],符合题意.∴a =12.24.已知函数f (x )=log a x +m (a >0且a ≠1)的图象过点(8,2),点P (3,-1)关于直线x =2的对称点Q 在f (x )的图象上.(1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值. 24.解 (1)点P (3,-1)关于直线x =2的对称点Q 的坐标为(1,-1).由⎩⎪⎨⎪⎧ f (8)=2,f (1)=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2, 故函数f (x )的解析式为f (x )=-1+log 2x .(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)]=log 2x 2x -1-1(x >1),∵x 2x -1=(x -1)2+2(x -1)+1x -1=(x -1)+1x -1+2≥2 (x -1)·1x -1+2=4,当且仅当x -1=1x -1,即x =2时,“=”成立,而函数y =log 2x 在(0,+∞)上单调递增,则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1.。
4.4 对数函数1.对数函数的定义一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(1)由于指数函数y=a x中的底数a满足a>0,且a≠1,则对数函数y=log a x中的底数a也必须满足a>0,且a≠1.(2)对数函数的解析式同时满足:①对数符号前面的系数是1;②对数的底数是不等于1的正实数(常数);③对数的真数仅有自变量x.2.对数函数的图象和性质一般地,对数函数y=log a x(a>0,且a≠1)的图象和性质如下表所示:a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数非奇非偶函数3.反函数对数函数y=log a x(a>0,且a≠1)和指数函数y=a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x 对称.4.对数型复合函数的单调性复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)与g(x)的单调性相反,则其复合函数f[g(x)]为减函数.对于对数型复合函数y=log a f(x)来说,函数y=log a f(x)可看成是y=log a u与u=f(x)两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.另外,在求复合函数的单调区间时,首先要考虑函数的定义域.5.对数型复合函数的值域对于形如y=log a f(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:(1)分解成y=log a u,u=f(x)两个函数;(2)解f(x)>0,求出函数的定义域;(3)求u的取值范围;(4)利用y=log a u的单调性求解.题型一 对数函数的判断例1、(1)给出下列函数:①223log y x =;①3log (1)y x =-;①(1)log x y x +=;①log e y x =.其中是对数函数的有( ) A .1个B .2个C .3个D .4个(2)若函数2log 32a y x a a =+-+为对数函数,则a =( )A .1B .2C .3D .4解:(1)①①不是对数函数,因为对数的真数不是仅有自变量x ; ①不是对数函数,因为对数的底数不是常数;①是对数函数.(2)由题可知:函数2log 32a y x a a =+-+为对数函数所以23201a a a -+=⇒=或2a =,又0a >且1a ≠所以2a = 跟踪练习1.下列函数表达式中,是对数函数的有( )①y =log x 2;①y =log a x (a ①R );①y =log 8x ;①y =ln x ;①y =log x (x +2);①y =log 2(x +1). A .1个B .2个C .3个D .4个【解析】形如log a y x =(0a >且1a ≠)的函数为对数函数,故①①为对数函数,所以共有2个. 2.下列函数表达式中,是对数函数的有( )①log 2x y =;①()log a y x a =∈R ;①8log y x =;①ln y x =;①()log 2x y x =+;①42log y x =;①()2log 1y x =+. A .1个 B .2个 C .3个D .4个【解析】由于①中自变量出现在底数上,∴①不是对数函数; 由于①中底数a ∈R 不能保证0a >,且1a ≠,∴①不是对数函数; 由于①①的真数分别为()2x +,()1x +,∴①①也不是对数函数; 由于①中4log x 的系数为2,∴①也不是对数函数; 只有①①符合对数函数的定义.3.(全国高一课时练习)若函数()2()log 45a f x x a a =+--是对数函数,a =_________.【解析】由对数函数的定义可知,245001a a a a ⎧--=⎪>⎨⎪≠⎩,解得5a =.题型二 对数函数的解析式或函数值例2(1)(上海高一专题练习)对数函数的图像过点M (125,3),则此对数函数的解析式为( ) A .y =log 5xB .y =15log xC .y =13log xD .y =log 3x(2)(全国高一课前预习)设()log a f x x =(0a >且1a ≠),若1(2)2f =,则12f ⎛⎫= ⎪⎝⎭( ). A .2B .2-C .12-D .12【解析】(1)设函数解析式为y =log a x (a >0,且a ≠1).由于对数函数的图像过点M (125,3), 所以3=log a 125,得a =5.所以对数函数的解析式为y =log 5x . (2)因为()log a f x x =(0a >且1a ≠),1(2)2f =,所以1(2)log 22a f ==,即122a =,解得4a =, 所以4()log f x x =,所以4111log 222f ⎛⎫==- ⎪⎝⎭.跟踪练习1.若某对数函数的图象过点()4,2,则该对数函数的解析式为( ) A .2log y x =B .42log y x =C .2log y x =或42log y x =D .不确定【解析】设函数为()log 0,1a y x a a =>≠,依题可知,2log 4a =,解得2a =,所以该对数函数的解析式为2log y x =.2.若函数()()lo 1g a f x x =+(0,1)a a >≠的图像过点(7,3),则a 的值为( ) A 2B .2C .22D .12【解析】由题, ()373log 182a a a +⇒=⇒==.题型三 对数函数的定义域例3(1)函数()ln 14x f x x-=-的定义域为( )A .(]1,2B .[]1,4C .()1,4D .[]2,4(2)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是( ) A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .[3,9](3)若函数()lg 1y ax =+的定义域为(),1-∞,则a =( ) A .1 B .-1 C .2D .无法确定【解析】(1)对于函数()ln 14x f x x -=-1040x x ->⎧⎨->⎩,解得14x <<.因此,函数()ln 14x f x x-=-的定义域为()1,4.(2)由[]1,1x ∈-,得1,222x⎡⎤∈⎢⎥⎣⎦,所以31log ,22x ⎡⎤∈⎢⎥⎣⎦,所以3,9x ⎤∈⎦. (3)函数()lg 1y ax =+的定义域为(),1-∞,则10ax +>的解集为(),1-∞, 即0a <,且10ax +=的根11a-=,故1a =-. 跟踪练习1.函数()00.5log 21y x =-⎡⎤⎣⎦的定义域为( )A .1,12⎛⎫⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .()1,11,2⎛⎫+∞ ⎪⎝⎭【解析】要使函数有意义,只需()0.5log 210x -≠,即210211x x ->⎧⎨-≠⎩,解得112x <<或1x >. 2.函数3()log (21)1xf x x x =--的定义域是( ) A .1,12⎛⎤ ⎥⎝⎦B .1,12⎡⎤⎢⎥⎣⎦C .(1,)+∞D .1(,1)2【解析】由已知得1021>0x x ->⎧⎨-⎩,解得112x <<,所以函数()f x 的定义域为112⎛⎫⎪⎝⎭, 3.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],【解析】因为函数(1)f x +的定义域为[0 1],,所以112x ≤+≤,所以1lg 2x ≤≤, 解得:10100x ≤≤,所以(lg )f x 的定义域为[10 100],. 4.求下列函数的定义域 (1)2112y x x=+-- (2)函数221()x f x --=(3)20()(54)lg(43)x f x x x =+-+ 【解析】(1)若要使函数有意义,则22010x x ⎧-≠⎪⎨-≥⎪⎩,解得1≥x 或1x ≤-且2x ≠±,所以该函数的定义域为][)()(,2)(2,11,22,-∞-⋃--⋃⋃+∞;(2)若要使函数有意义,则2210log (1)010x x x ⎧--≥⎪-≠⎨⎪->⎩,解得3x ≥,所以该函数的定义域为[)3,+∞;(3)若要使函数有意义,则lg(43)0430540x x x +≠⎧⎪+>⎨⎪-≠⎩,解得34x >-且12x ≠-,45x ≠,所以该函数的定义域为31144,,,42255⎛⎫⎛⎫⎛⎫--⋃-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.题型四 对数函数的定点例4函数()log 272=+-a y x (0a >,且1a ≠)的图象一定经过的点是( ) A .7,22⎛⎫-- ⎪⎝⎭B .()3,2--C .()3,1--D .()4,2--【解析】令271x +=,3x =-,则2y =-,即函数图象过定点()3,2--. 跟踪练习1.函数()()log 310,1a y x a a =->≠的图象过定点( ) A .2,13⎛⎫ ⎪⎝⎭B .()1,0-C .2,03⎛⎫ ⎪⎝⎭D .()0,1-【解析】对于函数()()log 310,1a y x a a =->≠,令311x -=,可得23x =,则log 10a y ==, 因此,函数()()log 310,1a y x a a =->≠的图象过定点2,03⎛⎫⎪⎝⎭.2.函数()log 1a y x =-的图象必过的点是( ) A .()1,0- B .()1,0C .()0,0D .()2,0【解析】() log 1a y x =-,则当11x -=,即2x =时,0y =是与a 的值无关的定值,故函数()log 1a y x =-的图形必过的点是()20,.3.(湖北高一开学考试)已知函数log (3)2a y x =-+(0a >且1a ≠)的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则lg (4)lg (25)f f +=( ) A .2-B .2C .1D .1-【解析】函数()log 32a y a =-+中,令31x -=,解得4x =,此时log 122a y =+=;所以函数y 的图象恒过定点()4,2P ,又点P 在幂函数()my f x x ==的图象上,所以42m =,解得0.5m =;所以()0.5f x x =,所以()()()()lg 4lg 25lg 425lg101f f f f +=⋅==⎡⎤⎣⎦.题型五 对数函数的值域(最值)例5(1)已知184x ≤≤,则函数2()log f x x =的值域是 。
4.3.1对数函数的概念常见题型
题型一:对数函数的概念
1.下列函数中,与y x =相等的为( )
A .2
x y x = B
.2y = C .lg10x y = D
.y =
2.若函数()2()log 45a f x x a a =+--是对数函数,则=a .
【答案】5
【分析】根据对数函数的定义即可求解.
【详解】解:根据对数函数的定义有245001a a a a ⎧--=⎪>⎨⎪≠⎩
,解得5a =,
故答案为:5.
3.设f (x )=ln
2a x x -+为奇函数,则a =_____.
题型二:判断函数是否为对数函数
1.下列函数是对数函数的是( )
A .()log 2a y x =
B .lg10x y =
C .()2log a y x x =+
D .ln y x = 【答案】D
【分析】根据对数函数的概念即得.
【详解】因为函数log a y x =(0a >且1a ≠)为对数函数,
所以ABC 均为对数型复合函数,而D 是底数为自然常数的对数函数.
故选:D.
2.给出下列函数:
(1)log y x π=;(2)log e y x =;(3)10log y x =;(4)log a y e x =⋅;(5)22log y x =;(6)()2log 1y x =+.其中是对数函数的是______.(将符合的序号全填上) 【答案】(1)(2)(3)
【分析】根据对数函数的定义判断.
【详解】(4)的系数不是1,(5)的真数不是x ,(6)的真数不是x .
故答案为:(1)(2)(3).
题型三:对数函数的解析式
1.若函数()()2log a f x x =+的图象过点()2,0-,则=a ( )
A .3
B .1
C .-1
D .-3 【答案】A
【分析】因为函数图象过一点,代入该点的坐标解方程即得解.
【详解】解:由已知得()()22log 20f a -=-+=,所以21a -+=,解得:3a =, 故选:A .
2.已知()f x 为对数函数,122f ⎛⎫=- ⎪⎝⎭,则f =______.
3.若对数函数log (0a y x a =>且1a ≠)的图象经过点(4,2),则实数=a ______.
【答案】2
【分析】直接将点代入计算即可.
【详解】将点(4,2)代入log a y x =得2log 4a =,解得2a =
故答案为:2.
题型四:对数函数的定义域
1.函数()20225log 13y x x =
+--的定义域为( ) A .()
(),33,-∞+∞ B .()()1,33,⋃+∞ C .()1,+∞
D .()3,+∞
2.已知函数()y f x =的定义域为[1,2]-,则函数()2log y f x =的定义域是( )
A .[]1,2
B .[]0,4
C .(]0,4
D .1,42⎡⎤⎢⎥⎣⎦
3.函数()()lg 2f x x =-定义域为_________. 【答案】()2,+∞
【分析】根据函数定义域的求法求得正确答案.
【详解】依题意21020x x -≥⎧⎨->⎩
,解得2x >, 所以()f x 的定义域为()2,+∞.
故答案为:()2,+∞
4.已知函数()()ln 2f x x =-,则函数()()()210g x f x f x =-+-的定义域为_________ 【答案】()4,8
【分析】首先根据对数函数的真数大于0求出()f x 的定义域,再根据抽象函数的定义域计算规则求出()g x 的定义域.
【详解】解:因为()()ln 2f x x =-,所以20x ->,解得2x >,即()f x 的定义域为()2,+∞,
对于()()()210g x f x f x =-+-,则22102x x ->⎧⎨->⎩
,解得48x ,
所以()()()210g x f x f x =-+-的定义域为()4,8.
故答案为:()4,8 题型五:求反函数
1.与函数14x y ⎛⎫= ⎪⎝⎭
的图象关于直线y x =对称的函数是( ) A .4x y =
B .4x y -=
C .14log y x =
D .4log y x =
【答案】C
【分析】利用函数x y a =与log a y x =(0a >且1a ≠)互为反函数可得出结果.
2.函数2()log (1)f x x x =≥的反函数为______. 【答案】()()20x f x x =≥ 【分析】根据反函数的定义结合指、对数之间的转化运算求解,注意函数的定义域.
【详解】对于2log (1)y x x =≥,则2,0y x y =≥,
故函数2()log (1)f x x x =≥的反函数为()()20x f x x =≥.
故答案为:()()20x f x x =≥. 3.函数1()1
f x x =
-的反函数1()f x -=___________.
4.若函数y =f (x )是函数y =2x 的反函数,则f (2)=______.
【答案】1
【分析】根据反函数的定义即可求解.
【详解】由题知y =f (x )=2log x ,∴f (2)=1.
故答案为:1.
题型6:反函数性质的应用
1.设函数()y f x =的图象与2x a y +=的图象关于直线y x =对称,(2)(4)1f f +=,则=a ( ) A .1-
B .1
C .2
D .4
【答案】B
【分析】利用反函数的知识列方程,化简求得a 的值.
【详解】依题意函数()y f x =的图象与2x a y +=的图象关于直线y x =对称, 221x a x a +=⇒=-,
422x a x a +=⇒=-,
由于(2)(4)1f f +=,
所以1211a a a -+-=⇒=.
故选:B
2.已知()2x f x b =+的反函数为1()f x -,若1()y f x -=的图像经过点(5,2)Q ,则b =_____________.
【答案】1
【分析】利用原函数与反函数的关系直接求得.
【详解】因为1()y f x -=的图像经过点(5,2)Q ,
所以点()2,5落在函数()2x f x b =+的图像上,
代入得:2(2)25f b =+=,解得:1b =.
故答案为:1
3.若函数2()3log ()=-+f x x a 的反函数的图象经过点(1,0),则=a __________.
【答案】4
【分析】由反函数所过点求得()f x 图象所过点,由此求得a 的值.
【详解】依题意函数2()3log ()=-+f x x a 的反函数的图象经过点(1,0), 所以()f x 的图象经过点()0,1,
所以()2203log 1,log 2,4f a a a =-===
故答案为:4。