八年级最短路径问题归纳
- 格式:docx
- 大小:3.78 KB
- 文档页数:3
八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。
以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。
解题方法:直接连接A和B,线段AB的长度即为最短距离。
2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。
解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。
3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。
解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。
解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。
5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。
解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。
6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。
7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。
解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。
在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。
原创不容易,【关注】店铺,不迷路!2019年中考数学大结局分析——最短路径问题4:费马点费马点问题一个等边三角形是在三角形的三条边的每一条边上向外形成的。
三个等边三角形的外接圆相交于一点T,称为托里切利点,而三个等边三角形的外接圆称为托里切利圆。
在一定条件下,托里切利点与等中心和费马点相同。
托里切利点是意大利物理学家托里切利发现的。
这个问题是费马(1601-1665)向意大利物理学家托里切利(1608-1647)提出的,作为一个著名的“寻找一个点使它到三角形三个顶点的距离最小”的极值问题,托里切利解决了这个问题。
当三角形的内角都小于120时,K为期望点,所以K称为托里切利点,也称为费马点。
后来德国的施泰纳(1796-1863)独立提出并推广,所以也叫施泰纳问题。
本篇文章中介绍的问题主要是以大家熟知的费马点为背景。
平时大家一听这名字感觉很神奇,学过之后可能感觉也就那回事。
很多数学问题、数学知识都是经历几代数学家的努力之后的成果。
除了做题,有空的时候可以多了解一些数学文化、数学史,领略数学的魅力。
话不多说,直接上题。
【题1】(武汉,2019)问题背景:如图1所示,绕a点逆时针转动ABC,得到ADE,其中DE和BC在p点相交,可以推导出结论:paPC=PE。
解题:如图2,在MNG中,Mn=6,m=75,mg=42。
如果点o是MNG中的一个点,则从点o到MNG三个顶点的距离之和的最小值为。
回答之前,可以先看一下前面的文章:旋转结构的几何最大值【分析】三角形内确定一点到三个顶点的距离和最小值,就是我们前面说的问题。
上辅助线先。
怎么做,圆内任取一点并连接三个顶点,再将其中一个三角形如MOG绕点M 逆时针旋转60度得MOG,连接OO。
易得四点共线时距离和最小。
点G是定点,所以NG的长度为定值。
NMG为135,所以容易求得NG为229。
(备注:过点G作MN的垂线即可解得。
)下面是菁优网的答案。
29。
下面是陕西省的中考压轴题【题2】(2018陕西)问题提出(1)如图所示,在ABC中,a=120,ab=AC=5,那么ABC的外接圆半径r为。
八年级上册最短路径知识点在学习数学中,最短路径是一个重要的概念。
在八年级上册中,我们会学习到最短路径的相关知识。
本文将系统地介绍最短路径的概念、算法和应用。
1、最短路径的概念最短路径是指从一个起点到达一个目标点的路径中,使得路径上的边权值之和最小的路径。
在最短路径的计算中,边权值常常代表距离或花费等。
最短路径可以用图表示,通常被称为权重图。
在权重图中,每个节点代表一个地点,每条边代表两个地点之间的路径。
边上的权重可以是任何非负实数。
2、最短路径算法在计算最短路径时,存在多种算法可供选择。
以下是几种较常见的最短路径算法:A、Dijkstra算法:Dijkstra算法通过计算起点到其他点的最短路径,找到整个图的最短路径。
该算法适用于边权值为非负数的图。
B、Bellman-Ford算法:Bellman-Ford算法通过对边进行松弛操作,多次更新起始点到其他点的最短路。
该算法适用于边权值非负的图。
C、Floyd算法:Floyd算法通过迭代计算任意两点之间的距离来找到最短路径。
该算法适用于边权值可以是任何实数的图。
3、最短路径的应用最短路径的应用十分广泛,以下是几个实际应用场景的例子:A、导航:最短路径可用于帮助我们规划驾车或步行路线。
例如,谷歌地图利用最短路径算法帮助用户寻找最合适的路线。
B、运输:最短路径可用于计算货车或船只的最佳路线。
例如,国家邮政公司使用最短路径算法优化邮递路线。
C、电器布线:最短路径可帮助我们规划电气线路。
例如,一个高层建筑物中,我们需要通过最短路径算法来找到电路的最佳路径。
D、金融:最短路径可用于计算银行间的最佳借贷路线。
例如,银行可以使用最短路径算法来计算最优的借贷方案。
4、总结最短路径是一个十分有用的数学概念,可以应用于各个领域。
在八年级上册,我们学习了最短路径的定义、计算方法和应用场景。
希望本文能够帮助大家更好地理解最短路径的相关知识。
八年级数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题-即已知起始结点,求最短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址” ,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短” ,“三角形三边关系”,“轴对称” ,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十二个基本问题】【问题1】作法图形原理A Al连 AB,与 l 交点即为 P.Pl两点之间线段最短.B PA+PB 最小值为 AB.B在直线 l 上求一点P,使PA+PB 值最小.【问题 2】“将军饮马”作法图形原理A AB 作 B 关于 l 的对称点 B' B 两点之间线段最短.l连 A B ',与 l 交点即为 P.l PA+PB 最小值为 A B'.P在直线 l 上求一点P,使B'PA+PB 值最小.【问题3】作法图形原理l 1 P' l1P分别作点 P 关于两直线的M两点之间线段最短.对称点 P'和 P',连 P'P',PM +MN +PN 的最小值为l2 P在直线 l1、 l 2上分别求点与两直线交点即为 M, N.N l2线段 P'P''的长.M 、 N,使△ PMN 的周长P''最小.【问题4】作法图形原理l 1lQ' 1Q分别作点 Q 、P 关于直线P MQ 两点之间线段最短.l 1、 l 2的对称点Q'和P'l2 P 四边形 PQMN 周长的最小连 Q'P',与两直线交点即l 2 值为线段 P'P''的长.在直线 l1、 l 2上分别求点为 M , N.NM 、 N ,使四边形PQMN P'的周长最小.【问题 5】“造桥选址”作法图形原理- 1 -AM Nmn将点 A 向下平移MN 的长度单位得A',连 A'B,交 nAA' M 两点之间线段最短.mB直线 m ∥ n ,在 m 、 n ,上分别求点 M 、N,使 MN ⊥m ,且 AM+ MN+ BN 的值最小.【问题 6】ABlM a N在直线 l 上求两点M、N(M 在左),使 MN a ,并使AM + MN+ NB 的值最小.【问题 7】l1Pl 2在l 1上求点A,在 l 2上求点 B,使 PA+ AB 值最小.于点 N,过 N 作 NM ⊥ m 于M.作法将点 A 向右平移 a 个长度单位得 A',作 A'关于l的对称点 A',连 A'B,交直线l 于点N,将N点向左平移a 个单位得 M.作法作点 P 关于l1的对称点P ',作 P'B⊥l2于 B,交l2于A.AM +MN +BN 的最小值为NnA'B+MN .B图形原理A A'B两点之间线段最短.lM N AM +MN +BN 的最小值为A'B+ MN.A''图形原理l1P'P 点到直线,垂线段最短.APA+ AB 的最小值为线段P'l 2 B的长.B【问题 8】作法l 1NAMl2 作点 A 关于l2的对称点BA ',作点B 关于l1的对称A 为l1上一定点,B 为l2上点 B',连 A'B'交l2于 M,一定点,在 l 2上求点M,交 l 1 于 N.在 l 1 上求点N ,使AM + MN+ NB 的值最小.【问题 9】作法图形原理B'l 1N两点之间线段最短.AAM +MN +NB 的最小值为M B l 2线段 A'B'的长.A'图形原理ABl在直线l 上求一点 P,使 PA PB 的值最小.连AB ,作 AB 的中垂线与直线 l 的交点即为 P.A垂直平分上的点到线段两B端点的距离相等.lP PA PB = 0.【问题 10】作法图形原理- 2 -A三角形任意两边之差小于A Bl作直线 AB ,与直线 l 的交第三边. PA PB ≤AB .B点即为 P .l在直线 l 上求一点 P ,使PPA PB 的最大值 = AB .PA PB 的值 最大 .【问题 11】作法 图形原理AAl 作 B 关于 l 的对称点 B ' B'B作直线 A B ',与 l 交点即lP为 P .B在直线 l 上求一点 P ,使PA PB 的值 最大 .三角形任意两边之差小于第三边. PA PB ≤ AB '.PA PB 最大值 = AB '.【问题 12】“费马点”作法图形原理ABC所求点为“费马点” ,即满足∠ APB =∠ BPC =∠APC = 120 °.以 AB 、 ACDAE两点之间线段最短.为边向外作等边△ ABD 、PPA+ PB+ PC 最小值 = CD .△ ABC 中每一内角都小于120°,在△ ABC 内求一点P ,使 PA+PB+PC 值最小.△ ACE ,连 CD 、 BE 相交于 P ,点 P 即为所求.BC【精品练习 】 1.如图所示,正方形ABCD 的面积为 12,△ ABE 是等边三角形,点一点 P ,使 PD +PE 的和最小,则这个最小值为( )A . 23 B . 2 6C . 3D . 62.如图,在边长为 2 的菱形 ABCD 中,∠ ABC = 60 °,若将 △ ACD交于点 E 、 F ,则 △ CEF 的周长的最小值为( )E 在正方形 ABCD 内,在对角线 AC 上有ADPEB C绕点 A 旋转,当 AC ′、 AD ′分别与 BC 、 CDA . 2B . 2 3C . 2 3D . 4- 3 -3.四边形 ABCD 中,∠ B=∠ D = 90 °,∠ C= 70 °,在 BC 、 CD 上分别找一点M、 N,使△ AMN 的周长最小时,∠ AMN + ∠ ANM 的度数为()A DA . 120°B. 130°C.110 °D. 140 °NBMC 4.如图,在锐角△ ABC 中, AB = 4 2 ,∠ BAC = 45 °,∠ BAC 的平分线交 BC 于点D , M、 N 分别是 AD 和 AB上的动点,则 BM +MN 的最小值是C.DMAN B5.如图, Rt△ ABC 中,∠ C= 90 °,∠ B= 30 °,AB= 6,点 E 在 AB 边上,点 D 在 BC 边上(不与点B、C 重合),且 ED = AE,则线段AE 的取值范围是.AEC D B 6.如图,∠AOB = 30 °,点 M、 N 分别在边OA、 OB 上,且OM = 1, ON= 3,点 P 、 Q 分别在边OB、 OA 上,则 MP + PQ+ QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即 Rt△ABC 中,∠ C= 90°,则有AC 2BC 2AB2)7.如图,三角形△ ABC中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B( 6 3 , 0).OC 平分∠ AOB ,点 M 在 OC 的延长线上,点N 为边 OA 上的点,则MA + MN 的最小值是 ______.- 4 -8.已知 A( 2, 4)、 B (4, 2). C 在y轴上, D 在 x 轴上,则四边形ABCD 的周长最小值为,此时 C、 D 两点的坐标分别为.yABO x 9.已知A( 1, 1)、 B (4, 2).y( 1) P 为 x 轴上一动点,求PA+PB 的最小值和此时P 点的坐标;BAO x( 2) P 为 x 轴上一动点,求PA PB 的值最大时P 点的坐标;yBAO x( 3) CD 为 x 轴上一条动线段, D 在 C 点右边且CD = 1,求当AC+ CD+ DB 的最小值和此时 C 点的坐标;yBAO C D x10 .点 C 为∠ AOB 内一点.( 1)在 OA 求作点 D , OB 上求作点 E ,使△ CDE 的周长最小,请画出图形;( 2)在( 1)的条件下,若∠AOB = 30°, OC= 10,求△ CDE 周长的最小值和此时∠DCE 的度数.ACO B- 5 -11.( 1)如图①,△ ABD 和△ ACE 均为等边三角形,BE、 CE 交于 F,连 AF,求证: AF +BF +CF = CD ;( 2)在△ ABC 中,∠ ABC = 30°, AB= 6, BC= 8,∠ A ,∠ C 均小于 120°,求作一点 P,使 PA+PB+PC 的值最小,试求出最小值并说明理由.DAAEFB C图①B C图②12 .荆州护城河在CC'处直角转弯,河宽相等,从 A 处到达 B 处,需经过两座桥DD '、 EE ',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使 A 到 B 点路径最短?- 6 -。
八年级数学最短路径问题一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。
三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小.练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。
练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?提高训练一、题中出现一个动点。
1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值.例:如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。
二、题中出现两个动点。
当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。
例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求C、D的坐标。
练习1如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.三、题中出现三个动点时。
三角形第3节多边形及其内角和【知识梳理】路径最短问题:运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解。
所以最短路径问题,需要考虑轴对称。
典故:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.这个问题提炼出数学问题为:设C 为直线l上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小(如图)作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 交于点C.则点C 即为所求.证明:如图,在直线l上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC ′=B′C′.∴ AC +BC = AC +B′C = AB′,AC ′+BC′= AC′+B′C′.在△AB′C′中,AB ′<AC′+B′C′,∴ AC +BC <AC′+BC′.即 AC +BC 最短.预备知识:在直角三角形中,三边具有的关系如下:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+【诊断自测】1、如图,直线l 是一条河,A 、B 两地相距5km ,A 、B 两地到l 的距离分别为3km 、6km ,欲在l 上的某点M 处修建一个水泵站,向A 、B 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )A .B .C .D .2、如图所示,四边形OABC 为正方形,边长为3,点A ,C 分别在x 轴,y 轴的正半轴上,点D 在OA 上,且D 的坐标为(1,0),P 是OB 上的一动点,则“求PD+PA 和的最小值”要用到的数理依据是( )A .“两点之间,线段最短”B.“轴对称的性质”C.“两点之间,线段最短”以及“轴对称的性质”D.以上答案都不正确3.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.【考点突破】例1、如图,在矩形ABCD中,点E为BC的中点,点F在CD上,要使△AEF的周长最小时,确定点F的位置的方法为.答案:作点E关于DC的对称点E′,连接AE′交CD于点F.解析:根据题意可知AE的长度不变,△AEF的周长最小也就是AF+EF有最小值.作点E关于DC的对称点E′,连接AE′交CD于点F.故答案为:作点E关于DC的对称点E′,连接AE′交CD于点F.例2、如图所示,点P在∠AOB的内部,点M,N分别是点P关于直线OA,OB的对称点,线段MN交OA,OB于点E,F.(1)若MN=20 cm,求△PEF的周长;(2)若∠AOB=35°,求∠EPF的度数.答案:见解析解析:(1)∵M与P关于OA对称∴OA垂直平分MP.∴EM=EP.又∵N与P关于OB对称∴OB垂直平分PN.∴FP=FN.∴△PEF的周长=PE+PF+EF=ME+EF+FN=MN=20(cm).(2)连接OM,ON,OP,∵OA垂直平分MP,∴OM=OP.又∵OB垂直平分PN,∴ON=OP.∴△MOE≌△POE(SSS),△POF≌△NOF(SSS).∴∠MOE=∠POE,∠OME=∠OPE,∠POF=∠NOF,∠OPF=∠ONF.∴∠MON=2∠AOB=70°∴∠EPF=∠OPE+∠OPF=∠OME+∠ONF=180°-∠MON=110°.例3、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是()A.2B. C.20 D.2答案:A解析:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==2.故选:A.例4、如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°答案:D解析:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.例5、如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.4 D.4答案:B解析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选B.例6、如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD′E′EB的路程最短,这个最短路程是多少米?答案:见解析。
八年级数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .B .C .3 D2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32A DEPB CC .32+D .43.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. EABCABN8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求P A +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?需要word文档请加!全国初中数学资料群群号:101216960。
专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。
图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。
八年级直角坐标系中最短路径问题1.概述直角坐标系作为数学中的基础知识,是学生在数学学习中所必须掌握的概念之一。
在直角坐标系中,我们常常需要求解从一个点到另一个点的最短路径,这在实际生活中也有着广泛的应用。
本文将从八年级数学角度出发,探讨直角坐标系中最短路径问题。
2.定义直角坐标系是由横轴和纵轴组成的平面直角坐标系。
在直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横轴的坐标,y表示纵轴的坐标。
而最短路径问题则是指在直角坐标系中,从一个点到另一个点的路径中,所经过的路程最短的路径。
3.求解方法一般情况下,我们可以利用勾股定理求解直角坐标系中最短路径问题。
以(0,0)点和(x₁,y₁)点为例,要求(0,0)点到点(x₁,y₁)的最短距离,我们可以利用勾股定理进行求解:设最短路径的长度为d,则有:d² = x₁² + y₁²即d = √(x₁² + y₁²)所以最短路径的长度即为√(x₁² + y₁²)。
4.实例分析点A(-1,2)和点B(3,4)在直角坐标系中,要求从点A到点B的最短路径。
根据上述求解方法,我们有:AB的最短路径长度= √((3-(-1))² + (4-2)²) = √(4² + 2²) = √(16 + 4) = √20 = 2√5点A到点B的最短路径长度为2√5。
5.拓展在实际生活中,直角坐标系中最短路径问题有着广泛的应用。
例如在地图导航中,我们常常需要求解两个地点之间的最短路径,这就涉及到直角坐标系最短路径问题。
在交通运输、物流配送等领域中,直角坐标系中最短路径问题也有着重要的应用价值。
6.结论直角坐标系中的最短路径问题是数学中一个重要且有实际应用的问题,通过勾股定理以及直角坐标系的坐标关系,我们能够有效地求解最短路径长度。
在教学中,可以通过实际例子和练习题目来帮助学生理解和掌握这一概念,在学生的数学学习中起到了重要的作用。
八年级物理最短路径问题
最短路径问题是物理中的一个重要概念,也是许多实际应用中常遇到的问题。
在八年级物理课程中,我们将探讨最短路径问题以及与之相关的概念和算法。
什么是最短路径问题?
最短路径问题指的是在一个图中寻找两个节点之间的最短路径的问题。
在物理中,这个概念很常见,在实际生活中我们常常需要寻找最短路径,比如寻找最短路线去学校或商店。
如何解决最短路径问题?
解决最短路径问题有多种算法,其中最常用且简单的算法是迪杰斯特拉算法(Dijkstra's algorithm)。
该算法通过逐步扩展当前已找到的最短路径集合,最终找到两个节点之间的最短路径。
迪杰斯特拉算法的基本思想是从起始节点开始,逐步扩展已找到的最短路径集合。
每次选择一个距离起始节点最近的节点,并计
算从起始节点到该节点的距离。
然后再从这个节点出发,继续选择距离最近的节点,并计算新的最短路径。
重复执行这个过程直到找到目标节点或无法再找到新的最短路径为止。
实际应用
最短路径问题在实际应用中有许多应用场景。
例如,交通规划中的最短路径问题可以帮助我们找到最短的路线从一个地点到另一个地点。
另外,最短路径问题也可以应用于网络路由、物流运输等领域,帮助优化资源利用和减少成本。
总结
最短路径问题是物理中的一个重要概念,通过算法可以找到两个节点之间的最短路径。
在实际应用中,最短路径问题有广泛的应用场景,为我们的生活提供了方便和效率。
如果您对八年级物理最短路径问题还有其他问题或者需要进一步了解,请随时与我联系。
八年级上册最短路径难题讲解
八年级上册最短路径问题是一个重要的数学问题,涉及到图论和几何知识。
以下是几个经典的最短路径问题及相应的解题思路:
1. 将军饮马问题:两个将军分别在河的两岸,他们想要到河的对面饮马。
河水流速很快,不能逆流而上。
他们应该选择怎样的路径才能使其中一位将军到河对岸的总时间最短?
解题思路:在这种情况下,两个将军都可以选择直接过河,但是这样会花费较长的时间。
为了使总时间最短,他们可以选择在河岸的某一位置相遇,然后一起走到河对岸。
这样,他们可以节省掉单独过河的时间。
2. 造桥选址问题:有两个人分别在河的两岸,他们想要通过建造一座桥来互相通行。
为了使造桥的成本最低,他们应该选择怎样的桥址?
解题思路:在这种情况下,最短的路径就是直接在两岸之间建造一座桥。
因此,他们应该选择在河的中心建造桥,这样可以使得桥的长度最短,同时也可以节省造桥的成本。
3. 费马点问题:在三角形中,任意选取三个点,要求找到一个点到其他三个点的距离之和最短的位置。
解题思路:首先,我们可以将这个问题转化为求三角形三个顶点的中点。
然后,我们可以利用三角形的性质来证明这个结论。
具体来说,我们可以证明任意一个点到其他三个点的距离之和都大于等于三角形三个顶点的中点到其他三个点的距离之和,当且仅当这个点是三角形三个顶点的中点时取等号。
因此,三角形的费马点就是其三个顶点的中点。
以上是最短路径问题的几个经典例子及相应的解题思路。
通过这些例子,我们可以了解到最短路径问题的基本概念和方法,以及如何利用几何和图论的知识来解决这些问题。
八年级地理最短路径问题
最短路径问题是地理学中一个重要的概念。
它主要用于确定两个地点之间的最短距离,以便为旅行和导航提供指导。
问题描述
最短路径问题可以用以下方式描述:给定一个地理区域,其中包含多个地点和连接这些地点的道路或路径,我们需要找到从起点到终点的最短路径。
解决方法
解决最短路径问题的方法有很多。
其中一个常用的方法是使用迪杰斯特拉算法。
该算法通过计算每个节点到起点的最短距离,并通过比较不同路径的距离来更新最短路径。
最终得到的最短路径将是从起点到终点的路径。
另一个解决最短路径问题的方法是使用弗洛伊德算法。
该算法通过计算任意两个节点之间的最短距离来解决问题。
它采用动态规划的策略,逐步更新路径的长度,直到找到最短路径。
应用
最短路径问题在实际生活中有广泛的应用。
例如,在导航系统中,我们经常使用最短路径算法来找到从起点到终点的最短驾驶路线。
在物流中,最短路径算法可以用于优化货物运输路线,减少运输成本。
此外,在城市规划中,最短路径问题也可以被用来确定最佳的交通路线规划。
总结
八年级地理最短路径问题是一个重要的地理学概念。
通过使用迪杰斯特拉算法或弗洛伊德算法等解决方法,可以找到起点到终点的最短路径。
最短路径问题在实际应用中具有广泛的用途,包括导航系统、物流和城市规划等领域。
八年级最短路径问题归纳
最短路径问题是图论中的一个经典问题,也是计算机科学中的重要研究领域之一。
在八年级的学习中,我们也会接触到最短路径问题,并且通过一些简单的算法来解决这个问题。
本文将对八年级最短路径问题进行归纳总结,希望能够帮助大家更好地理解和应用这个问题。
一、最短路径问题的定义
最短路径问题是指在一个给定的图中,找出两个顶点之间的最短路径,即路径上的边权之和最小。
其中,图由顶点和边组成,顶点表示路径中的点,边表示路径中的通路或连接。
二、最短路径问题的应用
最短路径问题在生活中有着广泛的应用,比如导航系统中的最短路径规划、货物运输中的最短路径选择等等。
通过寻找最短路径,可以帮助我们节省时间和资源,提高效率。
三、最短路径问题的解决方法
1. 迪杰斯特拉算法
迪杰斯特拉算法是解决最短路径问题的一种常用算法。
该算法通过不断更新起点到各个顶点的最短路径,直到找到终点的最短路径为
止。
迪杰斯特拉算法的具体步骤如下:
- 初始化起点到各个顶点的距离为无穷大,起点到自身的距离为0;- 选择一个未访问的顶点,更新起点到其他顶点的距离;
- 重复上述步骤,直到找到终点的最短路径或所有顶点都被访问过。
2. 弗洛伊德算法
弗洛伊德算法是解决最短路径问题的另一种常用算法。
该算法通过不断更新任意两个顶点之间的最短路径,直到更新完所有顶点对之间的最短路径为止。
弗洛伊德算法的具体步骤如下:
- 初始化任意两个顶点之间的距离,如果两个顶点之间有直接的边,则距离为边的权值,否则距离为无穷大;
- 选择一个顶点作为中转点,更新任意两个顶点之间的距离;
- 重复上述步骤,直到更新完所有顶点对之间的最短路径。
四、最短路径问题的注意事项
在解决最短路径问题时,需要注意以下几点:
1. 图的表示方式:可以使用邻接矩阵或邻接表来表示图,根据具体的问题选择合适的表示方式。
2. 边的权值:边的权值可以表示两个顶点之间的距离、时间、花费等等,根据具体的问题选择合适的权值。
3. 起点和终点:确定问题中的起点和终点,以便找到起点到终点的最短路径。
五、最短路径问题的例题分析
下面通过一个例题来分析最短路径问题的解题过程:
例题:在一个有向图中,求出顶点A到顶点B的最短路径。
解题步骤:
1. 确定图的表示方式,选择邻接矩阵来表示图。
2. 初始化起点到各个顶点的距离,起点到自身的距离为0,其他顶点的距离为无穷大。
3. 选择一个未访问的顶点,更新起点到其他顶点的距离。
4. 重复上述步骤,直到找到终点的最短路径或所有顶点都被访问过。
5. 输出顶点A到顶点B的最短路径。
六、总结
最短路径问题是图论中的一个重要问题,通过寻找最短路径可以帮助我们节省时间和资源。
在八年级的学习中,我们介绍了最短路径问题的定义、应用、解决方法和注意事项,并通过一个例题进行了分析。
希望通过本文的归纳总结,大家能够更好地理解和应用最短路径问题。