乘法运算定律
- 格式:pptx
- 大小:1.73 MB
- 文档页数:12
乘法的运算律
乘法的运算律
乘法运算定律有乘法交换律、乘法结合律、乘法分配律。
字母公式:
1、乘法交换率:a×b=b×a。
2、乘法结合律:(a×b)×c=a×(b×c)。
3、乘法分配率:(a-b)×c=a×c+b×c。
乘法交换律:乘法交换律是两个数相乘,交换因数的位置,它们的积不变。
乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
乘法分配律:两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,和不变。
实数和纯虚数的积等于纯虚数。
实数和实数的和等于实数,纯虚数和纯虚数的和等于纯虚数,实数加纯虚数等于复数。
1。
加法运算定律和乘法运算定律
加法运算定律和乘法运算定律分别有:
1.加法运算定律。
加法交换律:两个数相加,交换加数的位置,和不变;
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;
连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
2.乘法运算定律。
乘法交换律:两个数相乘,交换两个因数的位置,积不变;
乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变;
乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
乘除法的运算定律
乘除法是基础数学中的重要概念,它是完成简单的四则运算的基础。
想要掌握乘除法的规则,首先要对它的运算定律有清楚的了解。
乘除法的运算定律是:
乘法分配律:给定的乘数分别乘以加数和被加数,所得的积是最后的结果,即a * (b + c) = a * b + a * c。
除法分配律:给定的除数分别除以被除数和余数,所得的商是最终的结果,即a / (b + c) = a / b + a / c。
乘法交换律:乘积的顺序可以任意改变,但结果是一样的,即a * b = b * a。
除法交换律:商的顺序可以更改,但结果是一样的,即a / b = b / a。
乘法结合律:乘数组合,结果也是可以组合的,即a * (b * c) = (a * b) * c。
除法结合律:除数组合,结果也是可以组合的,即a / (b / c) = (a / b ) / c。
以上就是乘除法的运算定律,它们都非常重要,在每一个四则运算中都有体现。
要想更好地掌握乘除法,需要在反复实践中,多加理解和运用,才能深入了解它们的特点和用法。
乘法的意义和运算定律1. 乘法的意义乘法是数学中的一种基本运算,主要用于表示重复相加的数量或增长的数量。
乘法在现实生活中有着广泛的应用,例如计算面积、体积、速度、旅行时间等等。
乘法的意义可以用以下例子来说明:1.1 计算面积在几何学中,面积可以通过乘法来计算。
例如一个长方形的面积可以通过将它的长度乘以宽度来得到。
假设一个长方形的长度为5米,宽度为3米,那么它的面积就是5米乘以3米,结果为15平方米。
1.2 计算体积乘法也可以用于计算物体的体积。
例如一个立方体的体积可以通过将它的边长相乘来得到。
假设一个立方体的边长为2米,那么它的体积就是2米乘以2米乘以2米,结果为8立方米。
1.3 计算速度乘法还可以用于计算速度。
速度可以定义为单位时间内所走过的距离。
例如一辆汽车以每小时60公里的速度行驶,那么在2小时内它将行驶120公里,计算方法就是将速度60公里/小时乘以行驶时间2小时。
2. 乘法运算定律乘法运算有一些重要的运算定律,它们有助于简化计算和解决问题。
以下是一些常见的乘法运算定律:2.1 乘法交换律乘法交换律指出,两个数相乘的结果与顺序无关。
即a × a = a × a。
例如,2 × 3 = 3 × 2 = 6。
2.2 乘法结合律乘法结合律指出,三个数相乘的结果与计算次序无关。
即(a × a) × a = a × (a × a)。
例如,(2 × 3) × 4 = 2 × (3 × 4) = 24。
2.3 乘法分配律乘法分配律指出,一个数与两个数的和相乘的结果等于这个数与每个数分别相乘的结果的和。
即a × (a + a) = (a × a) + (a × a)。
例如,2 × (3 + 4) = (2 × 3) + (2 × 4) = 14。
四则运算的运算定律
(一)加法运算定律:
1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b) +c=a+(b+c)
(二)乘法运算定律:
1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a
2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c 拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b。
乘法的意义和乘法的运算定律讲义乘法是数学运算中的一种基本运算。
它表示将一个数与另一个数相乘的操作。
乘法有着广泛的应用领域,在日常生活、科学研究、经济学、工程学等许多领域都有重要作用。
1.表达重复的加法:乘法可以被理解为将一个数复制若干次并相加的操作。
例如,2×4表示将2加上自己4次:2+2+2+2=8、这种重复的加法在计算中有着重要的作用,可以非常方便地完成大量的计算工作。
2.表示数量的关系:乘法可以用来表示两个数的数量关系。
例如,3×4表示其中一个数是另一个数的4倍。
这种数量关系的表示在实际问题中具有很强的指示作用,能够帮助我们理解和解决许多实际问题。
3.解决分组问题:乘法还可以用来解决分组问题。
例如,有12个学生,每个学生需要6个橙子,那么总共有多少个橙子?可以将问题表示为12×6,将12个学生分成6个一组,得到的结果就是总共需要的橙子数。
乘法的运算定律主要包括以下几个方面:1.乘法的交换律:对于任意的实数a和b,a×b=b×a。
换句话说,两个数的乘积不受乘法因子的顺序影响。
例如,2×3=3×2=62.乘法的结合律:对于任意的实数a、b和c,(a×b)×c=a×(b×c)。
换句话说,多个数相乘的结果不受乘法因子的结合顺序影响。
例如,(2×3)×4=2×(3×4)=243.乘法的分配律:对于任意的实数a、b和c,a×(b+c)=(a×b)+(a×c)。
换句话说,将一个数与两个数的和相乘,等于分别将这两个数与该数相乘后再相加。
例如,2×(3+4)=(2×3)+(2×4)=144.乘法的单位元素:对于任意的实数a,a×1=1×a=a。
换句话说,任何数与1相乘所得的结果仍为该数本身。
1.乘法分配律两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。
a×(b+c) =a×b+a×c2.乘法结合律是是三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
乘法运算的一种运算定律.(a×b)×c=a×(b×c),它可以改变乘法运算当中的运算顺序。
3.乘法交换律: 两个因数相乘,交换因数的位置,积不变。
a×b=b×a4.一个数乘以一个小于1的数,乘积比原数小,一个数乘以一个大于1的数,乘积比原数大;但一个数除以一个小于1的数,商比原数大,一个数除以一个大于1的数,商比原数小。
5.一个真分数的分子和分母同时加上一个非零的自然数,得到的新分数比原数大;反之,一个假分数的分子和分母同时加上一个非零的自然数,得到的新分数比原数小。
2×6=12 2×7=14 7×9=63 2×5=10 3×9=27 3X3=92×11=22 3×8=24 4×4=16 3×7=21 3×6=18 7X7=494×8=32 4×6=24 2×8=16 9X9=81 2×9=18 2X25=503×14=42 6×9=54 4×9=36 7X13=91 4×7=28 5×10=506×7=42 4×11=44 6X6=36 11×11=121 6×8=48 5×12=604×13=52 8×8=64 7X8=56 5×13=65 4X12=48 4X15=608×9=72 4×16=64 8X12=96 2×14=284×18=72 7×12=84 3×15=45 5×14=706×17=102 8×13=104 8×15=120 8X25=2007×16=112 9×16=144 4×17=68 5×16=808×14=112 12×12=144 5×17=85 6×18=108 7×18=126 18×18=3243×19=57 4×19=76 5×18=90 6×19=114 7×25=175 4×25=1005×19=95 6×25=15011×11=121 12×12=144 13×13=169 14×14=196 15X15=22516×16=256 17X17=289 18X18=324 19X19=36125X25=625 35x35=1225 45x45=2025 55x55=302565x65=4225 75x75=5625 85X85=7225。
乘、除法的速算与巧算姓名:-----------1、乘法运算定律(3个):☆乘法交换律:两个数相乘,交换因数的位置,积不变。
即:a × b = b × a☆乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
即:(a × b) × c = a × (b × c)连乘的简便计算方法:看到25想到4是100;看到125想到8 是1000;125与80 是10000 等等。
④常用口算:2×5=10;4×25=100;8×125=1000;80×125=10000;625×16=10000;25×8=200;75×4=300;375×8=3000。
连乘的简便计算例题:25 × 56 × 4 99×125×8 25×125×4×8 125×32×25☆乘法分配律:两个数的和(或差)与一个数相乘,可以先把它们与这个数分别相乘,再把所得的积相加(或相减)。
即:(a ± b) × c = a × c ± b × c注:乘法分配律的逆用:a × c ± b × c = (a ± b) × c乘法分配律的理解:利用乘法的意义进行理解:a+b个c等于a个c加上b个c,而不能单纯地依靠记忆,只有这样才能在运算中熟练运用,减少失误。
乘法分配律简算应用:①类型一:(a+b)×c= a×c+b×c (a-b)×c= a×c-b×c②类型二:a×c+b×c=(a+b)×c a×c-b×c=(a-b)×c③类型三: a×99+a = a×(99+1) a×b-a = a×(b-1)④类型四: a×99 a×102= a×(100-1) = a×(100+2)= a×100-a×1 = a×100+a×2乘法分配律简算举例:分解式: 25 × (40+4) 合并式:135×12-135×2特殊1: 99 × 256 + 256 特殊2:45 × 102特殊3: 99×26 特殊4:35×8 + 35×6-4×35★乘法结合律与乘法分配律的区别:乘法结合律的特征是几个数连乘。