基于51单片机的频率计
- 格式:doc
- 大小:403.50 KB
- 文档页数:23
目录摘要............................................. 错误!未定义书签。
关键词 (3)正文 (4)1 概述 (4)2 总体设计方案 (5)2.1软件 (5)2.2 设计思路 (5)3 系统软件设计 (5)3.1 主板说明 (5)3.2 芯片主要性能............................. 错误!未定义书签。
3.3 功能特性描述 (6)3.4 引脚描述 (6)4 系统软件设计 (9)4.1 初始定义 (9)4.2 子程序设计 (9)4.3 主要源程序 (10)5 系统调试 (13)6 课程设计体会 (15)7 参考文献 (15)附录 (16)数字频率计是现代科研生产中不可或缺的测量仪器,它以十进制数显示被测频率,基本功能是测量正弦信号,方波信号,及其它各种单位时间内变化的物理量。
本系统采用AT89S52单片机智能控制,结合外围电子电路,设计的频率计性能稳定。
在软件设计上采用了单片机的C语言设计,通过单片机内部定时/计数器同时动作,在测量频率时将测频率和测周期相结合,提高了频率计的测量准确性。
测量结果在四位七段式数码管上输出显示,结果精确到整数位。
频率计的软件设计,系统软件设计简单明了,适用于测量频率从1~9999Hz的脉冲信号,超频自动报警,安全可靠。
关键词:数字频率计;AT89S52单片机;信号;AT89S52最小系统板;LG5011BSR1.概述单片机是20世纪中期发展起来的一种面向控制的大规模集成电路模块,具有功能强、体积小、可靠性高、价格低廉等特点,在工业控制、数据采集、智能仪表、机电一体化、家用电器等领域得到了广泛的应用,极大的提高了这些领域的技术水平和自动化程度。
AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在线系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。
基于51单片机的频率计设计报告
在该设计报告中,我将介绍基于51单片机的频率计的设计原理、硬件设计和软件设计。
设计原理:
频率计是一种用于测量信号频率的仪器。
基于51单片机的频率计的设计原理是利用单片机的定时计数器来测量输入信号的脉冲个数,然后将脉冲个数转换为频率。
硬件设计:
硬件设计主要包括输入信号的采集电路、计数电路和显示电路。
输入信号的采集电路使用一个比较简单的电路,包括一个电阻和一个电容,用于将输入信号转换为脉冲信号。
计数电路使用单片机的定时计数器来进行计数。
在这个设计中,我们使用TIMER0和TIMER1作为计数器,分别用于测量输入信号的高电平时间和低电平时间,然后将两个时间相加得到一个完整的周期,再根据周期反推频率。
显示电路使用一个LCD模块来显示测量得到的频率。
在这个设计中,我们使用IO口将计算得到的频率发送给LCD模块,通过LCD模块来显示频率。
软件设计:
软件设计主要包括信号采集、脉冲计数和频率计算。
信号采集主要通过定时器的中断来进行。
在采集到一个脉冲之后,中
断程序会使计数器加1
脉冲计数是通过对输入信号高电平时间和低电平时间计数来完成的。
在脉冲计数的过程中,我们需要启动TIMER0和TIMER1,并设置正确的工
作模式和计数值。
频率计算是通过将高电平时间和低电平时间相加得到一个完整的周期,然后再根据周期反推频率来完成的。
最后,将计算得到的频率发送给LCD
模块进行显示。
总结:。
基于51单片机的高频频率计的设计基于51单片机的高频频率计的设计简介:基于51单片机设计了一款测试范围在1 Hz~10 MHz的频率计。
系统通过峰值有效电路和有效值电路将正弦渡、方波和三角波转化为直流信号送入单片机,通过编写相应的程序计算出其有效值和峰峰值的比,实现自动检测的目的,并由显示电路显示测量结果。
该系统电路简洁、软件编写简单、调试难度低。
摘要基于51单片机设计了一款测试范围在1 Hz~10 MHz的频率计。
系统通过峰值有效电路和有效值电路将正弦渡、方波和三角波转化为直流信号送入单片机,通过编写相应的程序计算出其有效值和峰峰值的比,实现自动检测的目的,并由显示电路显示测量结果。
该系统电路简洁、软件编写简单、调试难度低。
目前在频率测量领域中,对于高频率信号高精度测量大都使用ARM、FPGA等高速处理器加专用计数芯片来完成。
但这种方法程序编写复杂,并且其处理器外围电路复杂,这增加了其调试难度,降低了可操作性。
文中设计的高频信号频率计,除数据处理和显示交由单片机负责外,测频核心电路用经检测的模拟电路完成,该高频频率计电路简洁,软件编写简单,降低了调试难度的同时增强了其操作性。
1 系统总体设计方案系统以STC80C51为核心,设计了一款测试范围在1 Hz~10 MHz的频率计。
该系统主要设计思想是通过峰值有效电路和有效值电路将正弦波、方波、三角波转化为直流信号,送入单片机,通过编写相应的程序计算出其有效值和峰峰值比,实现自动检测的目的,最后通过显示电路显示测量结果。
系统分为:缓冲器、峰值检测电路、有效值检测电路、分频电路、模式转换、最小系统和显示电路。
总体设计方案如图1所示。
基于51单片机的高频频率计的设计输入信号i经过缓冲器处理分为3路输出,依次作为峰值检测电路、有效值检测电路和分频器电路的输入信号。
经峰值检测电路和有效值电路处理后,输出直流信号O1、O2,经分频器分频后输出方波信号O3。
O1和O2经过A/D模数转换后输入单片机,在单片机中进行处理比较峰值和有效值的关系从而达到自动确定信号类型的功能。
《频率计》实验报告班级:电子094 姓名:刘洋学号:0910910408班级:电子094 姓名:王铁柱学号:0910910414实验日期:2011-11-14至2011-12-14一.设计要求1.1实验目的及原理(1)利用单片机计数器功能实现正弦波频率的检测。
(2),频率计又称为频率计数器是一种专门对被测信号频率进行测量的电子测量仪器。
1.2实验要求(1)输入信号为峰峰值为5V的正弦信号,信号频率为1~60KHz,设计整形电路将正弦信号整形为方波。
(2)利用单片机定时/计数器的计数功能对整形后方波进行计数从而实现频率的测量。
(2)在数码管或LCD实时显示输入信号的频率。
1.3实现部分(1)输入信号峰峰值可在1V~10V范围变化。
(2)实现了方波和正弦波的频率检测,通过按键进行方波或正弦波检测模式的改变,在数码管或LCD进行检测模式的显示。
(3)正弦波测量范围达到1Hz~3.8MHz,正弦波测量范围达到1Hz~4.7MHz,测量精度达到10Hz单位,高于实验要求。
二.总体设计2.1频率计测频原理概论:简而言之就是:“通过测量单位时间内出现的方波个数,进行频率计算”。
将输入的正弦波信号经波形转换模块转换为方波,高频信号再经过分频模块进行分频。
由晶体振荡器产生的基频,按十六进制分频得出的分频脉冲,经过驱动电路增加带载能力。
在时间间隔T内累计周期性的重复变化次数N,则频率的表达式为式:数字频率计的原理框图如下:电路总设计图2.2 系统组成及工作原理数字频率计由以下模块组成:单片机控制模块、驱动模块、施密特电路波形转换模块、按键模块、分频模块和显示模块。
(1)STC89C52单片机简介TN清零信号锁存信号III IIIIV VSTC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
基于51单片机的频率计的设计频率计是一种测量信号频率的仪器或装置,其原理是通过对信号进行计数和定时来测量信号的周期,并进而计算出信号的频率。
在本篇文章中,我们将设计一个基于51单片机的频率计。
设计方案:1.硬件设计:(1)时钟电路:使用11.0592MHz晶振为主频时钟源。
(2)信号输入:选择一个IO口作为信号输入口,通过外部电平转换电路将信号转换为51单片机能够处理的电平。
(3)显示装置:使用一个数码管或液晶显示屏来输出测量结果。
2.软件设计:(1)初始化:设置51单片机的工作模式、引脚功能、定时器等。
初始化时,将IO口配置为输入模式,用于接收外部信号。
(2)定时器设置:利用定时器来进行时间的测量,可以选择适当的定时器和计数器来实现定时功能。
(3)外部中断设置:使用外部中断来触发定时器,当外部信号边沿发生变化时,触发定时器的启动或停止。
(4)中断处理:通过中断处理程序来对定时器进行启动、停止和计数等操作。
(5)频率计算:将计数结果经过一定的处理和运算,计算出信号的频率。
(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏输出。
3.工作流程:(1)初始化设置:对51单片机进行初始化设置,包括端口、定时器、中断等的配置。
(2)外部信号输入:通过外部电平转换电路将要测量的信号输入至51单片机的IO口。
(3)定时测量:当外部信号发生边沿变化时,触发外部中断,启动定时器进行定时测量。
(4)停止计时:当下一个信号边沿出现时,中断处理程序停止定时器,并将计数结果保存。
(5)频率计算:根据定时器的设置和计数结果,计算出信号的周期和频率。
(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏进行显示。
4.注意事项:(1)确保信号输入的稳定性:外部信号输入前需要经过滤波处理,保证稳定且无杂波的输入信号。
(2)测量精度的提高:如有必要,可以通过增加定时器的位数或扩大计数范围来提高测量精度。
(3)显示结果的优化:可以根据需要,通过增加缓冲区、优化数码管显示等方式来改善结果的可读性。
基于51单片机数字频率计的设计在电子技术领域中,频率计是一种常见的测试仪器,它可以用来测量信号的频率。
在本文中,我们将通过介绍基于51单片机数字频率计的设计实现来了解它的工作原理和设计流程。
1. 确定设计需求在进行任何项目之前,我们需要明确自己的设计需求。
对于频率计而言,它的主要需求就是准确地测量信号的频率。
因此,我们需要确定我们需要测量的频率范围和精确度。
2. 确定硬件设计在确定了设计需求之后,我们需要确定硬件设计。
对于数字频率计而言,它需要一个计数器来计算信号的脉冲数量。
在本设计中,我们采用74LS90计数器芯片来实现计数功能。
我们还需要一个51单片机来读取计数器的计数值,并将其转换为对应的频率值。
另外,我们还需要硬件板、LCD显示屏、按键等元件来搭建数字频率计的电路结构。
3. 确定软件设计硬件设计完成后,我们需要开发相应的软件来实现我们的需求。
在本设计中,我们使用KEIL C51软件来编写51单片机的程序。
编写软件的主要步骤是读取计数器计数值、计算出对应的频率值、将频率值显示在LCD屏幕上,并实现按键控制。
我们需要将这些步骤按照程序流程依次实现。
4. 进行测试在软件编写完成后,我们需要对数字频率计进行测试,以确保其满足我们的需求。
我们可以使用信号发生器给数字频率计输入不同频率的信号,然后观察LCD屏幕上显示出来的相应频率值是否准确。
如果测试结果不满足我们的需求,则需要对硬件或软件进行优化或调试,直到数字频率计能够正常工作为止。
总之,基于51单片机的数字频率计设计是一个较为简单的电子设计项目。
通过上述步骤的详细介绍,我们了解了数字频率计的设计流程和工作原理,并明确了设计中需要注意的细节和注意事项。
希望能够对大家理解数字频率计的设计过程有所帮助。
毕业论文课题:基于单片机的数字频率计的设计摘要本方案主要以单片机为核心,主要分为时基电路,复位电路,显示电路三大部分,设计以单片机为核心,利用单片机的计数器和定时器的功能对被测信号进行计数。
编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。
本设计以89C51单片机为核心,应用单片机的算术运算和控制功能并采用LED数码显示管将所测频率显示出来。
系统简单可靠、操作简易,能基本满足一般情况下的需要。
既保证了系统的测频精度,又使系统具有较好的实时性。
本频率计设计简洁,便于携带,扩展能力强,适用范围广。
[关键词]单片机,运算,频率计,LED数码管。
*******************************************************************************************************************************************专抠专欢迎**业抠为您的**代群大加入**做 2 学**毕 4 生**设 6 服** 3 务** 8 解** 2 决** 2 问** 3 题** ***********************************************************************************************************************************************AbstractThe program mainly microcontroller as the core, are divided into time-base circuit, the logic control circuit, amplifier shaping circuit, the gate circuit, the counting circuit, latch circuit, decoding circuit most of the seven shows, design a microcontroller as the core, the measured signal the first amplifier to amplify the incoming signal, and then was sent to the waveform shaping circuit surgery, the measured sine wave or triangle wave shaping as a square wave. Counter and timer microchip features of the signal count. Write the corresponding program can automatically adjust the measurement range of SCM, and the frequency of the measured data to the display circuit displays.The design of the89C51microcontroller core, microcontroller applications and control functions and arithmetic operations with LED digital display tube to the measured frequency is displayed. System is simple, reliable, easy to operate and can basically meet the general needs. Both to ensure the accuracy of the system frequency measurement, but also the system has good real-time. The frequency meter design is simple and easy to carry, expansion capability, wide application.[Key words] microcontroller, operation, frequency meter, LED digital tube。
题目:基于51单片机的数字频率计目录第1节引言 (2)1.1数字频率计概述 (2)1.2频率测量仪的设计思路与频率的计算 (2)1.3基本设计原理 (3)第2节数字频率计(低频)的硬件结构设计 (4)2.1系统硬件的构成 (4)2.2系统工作原理图 (4)2.3AT89C51单片机及其引脚说明 (5)2.4信号调理及放大整形模块 (7)2.5时基信号产生电路 (7)2.6显示模块 (8)第3节软件设计 (12)3.1 定时计数 (12)3.2 量程转换 (12)3.3 BCD转换 (12)3.4 LCD显示 (12)第4节结束语 (13)参考文献 (14)附录汇编源程序代码 (15)基于51单片机的数字频率计数理与信息工程学院计算机专升本 056班蔡永指导老师余水宝第1节引言本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。
并且引导一种创新的思维,把学到的知识应用到日常生活当中。
在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。
全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。
1.1数字频率计概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。
本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD 显示器动态显示6位数。
测量范围从1Hz —10kHz 的正弦波、方波、三角波,时基宽度为1us,10us,100us,1ms 。
用单片机实现自动测量功能。
基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。
它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。
1.2频率测量仪的设计思路与频率的计算频率测量仪的设计思路主要是:对信号分频,测量一个或几个被测量信号周期中已知标准频率信号的周期个数,进而测量出该信号频率的大小,其原理如右图1所示。
若被测量信号的周期为,分频数m 1,分频后信号的周期为T ,则:T=m 1T x 。
由图可知: T=NT o(注:T o 为标准信号的周期,所以T 为分频后信号的周期,则可以算出被测量信号的频率f 。
)由于单片机系统的标准频率比较稳定,而是系统标准信号频率的误差,通常情况下很小;而系统的量化误差小于1,所以由式T=NT o 可知,频率测量的误差主要取决于N 值的大小,N 值越大,误差越小,测量的精度越高。
1.3 基本设计原理基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。
它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。
所谓“频率”,就是周期性信号在单位时间(1s )内变化的次数。
若在一定时间间隔T 内测得这个周期性信号的重复变化次数N ,则其频率可表示为f=N/T 。
其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率f x 。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s ,则门控电路的输出信号持续时间亦准确地等于1s 。
闸门电路由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。
秒信号结束时闸门关闭,计数器停止计数。
由于计数器计得的脉冲数N 是在1秒时间图1 频率测量原理内的累计数,所以被测频率fx=NHz。
第2节 数字频率计(低频)的硬件结构设计2.1 系统硬件的构成本频率计的数据采集系统主要元器件是单片机AT89C51,由它完成对待测信号频率的计数和结果显示等功能,外部还要有分频器、显示器等器件。
可分为以下几个模块:放大整形模块、秒脉冲产生模块、换档模拟转换模块、单片机系统、LCD 显示模块。
各模块关系图如图2所示:图2 数字频率计功能模块2.2 系统工作原理图该系统工作的总原理图如图3所示:图3 数字频率计系统工作原理图显示时基电路倍频锁相放大整形单片机被测信号2.3 AT89C51单片机及其引脚说明89C51是一种高性能低功耗的采用CMOS工艺制造的8位微控制器,它提供下列标准特征:4K字节的程序存储器,128字节的RAM,32条I/O线,2个16位定时器/计数器, 一个5中断源两个优先级的中断结构,一个双工的串行口, 片上震荡器和时钟电路。
引脚说明::电源电压²VCC²GND:地²P0口:P0口是一组8位漏极开路型双向I/O口,作为输出口用时,每个引脚能驱动8个TTL逻辑门电路。
当对0端口写入1时,可以作为高阻抗输入端使用。
当P0口访问外部程序存储器或数据存储器时,它还可设定成地址数据总线复用的形式。
在这种模式下,P0口具有内部上拉电阻。
在EPROM编程时,P0口接收指令字节,同时输出指令字节在程序校验时。
程序校验时需要外接上拉电阻。
²P1口:P1口是一带有内部上拉电阻的8位双向I/O口。
P1口的输出缓冲能接受或输出4个TTL逻辑门电路。
当对P1口写1时,它们被内部的上拉电阻拉升为高电平,此时可以作为输入端使用。
当作为输入端使用时,P1口因为内)。
部存在上拉电阻,所以当外部被拉低时会输出一个低电流(IIL²P2口:P2是一带有内部上拉电阻的8位双向的I/O端口。
P2口的输出缓冲能驱动4个TTL逻辑门电路。
当向P2口写1时,通过内部上拉电阻把端口拉到高电平,此时可以用作输入口。
作为输入口,因为内部存在上拉电阻,某个引)。
脚被外部信号拉低时会输出电流(IILP2口在访问外部程序存储器或16位地址的外部数据存储器(例如MOVX @DPTR)时,P2口送出高8位地址数据。
在这种情况下,P2口使用强大的内部上拉电阻功能当输出1时。
当利用8位地址线访问外部数据存储器时(例MOVX @R1),P2口输出特殊功能寄存器的内容。
当EPROM编程或校验时,P2口同时接收高8位地址和一些控制信号。
²P3口:P3是一带有内部上拉电阻的8位双向的I/O端口。
P3口的输出缓冲能驱动4个TTL逻辑门电路。
当向P3口写1时,通过内部上拉电阻把端口拉到高电平,此时可以用作输入口。
作为输入口,因为内部存在上拉电阻,某个引)。
脚被外部信号拉低时会输出电流(IILP3口同时具有AT89C51的多种特殊功能,具体如下表1所示:端口引脚第二功能P3.0 RXD (串行输入口)P3.1 TXD(串行输出口)P3.2 0INT (外部中断0)INT(外部中断1)P3.3 1P3.4 T0(定时器0)P3.5 T1(定时器1)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器都选通)表1 P3口的第二功能²RST:复位输入。
当振荡器工作时,RST引脚出现两个机器周期的高电平将使单片机复位。
²ALE/PROG:当访问外部存储器时,地址锁存允许是一输出脉冲,用以锁存地址的低8位字节。
当在Flash编程时还可以作为编程脉冲输出(PROG)。
一般情况下,ALE是以晶振频率的1/6输出,可以用作外部时钟或定时目的。
但也要注意,每当访问外部数据存储器时将跳过一个ALE脉冲。
²PSEN:程序存储允许时外部程序存储器的读选通信号。
当AT89C52执行外部程序存储器的指令时,每个机器周期PSEN两次有效,除了当访问外部数据存储器时,PSEN将跳过两个信号。
:外部访问允许。
为了使单片机能够有效的传送外部数据存储器从²EA/VPP0000H到FFFH单元的指令,EA必须同GND相连接。
需要主要的是,如果加密位1被编程,复位时EA端会自动内部锁存。
端。
当执行内部编程指令时,EA应该接到VCC²XTAL1:振荡器反相放大器以及内部时钟电路的输入端。
²XTAL2:振荡器反相放大器的输出端。
在本次设计中,采用89C51作为CPU处理器,充分利用其硬件资源,结合D 触发器CD4013,分频器CD4060,模拟转换开关CD4051,计数器74LS90等数字处理芯片,主要控制两大硬件模块,量程切换以及显示模块。
下面还将详细说明。
2.4 信号调理及放大整形模块放大整形系统包括衰减器、跟随器、放大器、施密特触发器。
它将正弦输入信号Vx 整形成同频率方波Vo,幅值过大的被测信号经过分压器分压送入后级放大器,以避免波形失真。
由运算放大器构成的射级跟随器起阻抗变换作用,使输入阻抗提高。
同相输入的运算放大器的放大倍数为(R1+R2)/R1,改变R1的大小可以改变放大倍数。
系统的整形电路由施密特触发器组成,整形后的方波送到闸门以便计数。
由于输入的信号幅度是不确定、可能很大也有可能很小,这样对于输入信号的测量就不方便了,过大可能会把器件烧毁,过小可能器件检测不到,所以在设计中采用了这个信号调理电路对输入的波形进行阻抗变换、放大限幅和整形,信号调理部分电路具体实现电路原理图和参数如下图4所示:图42.5 时基信号产生电路:CD4013------双上升沿D 触发器 ,引脚及功能见如下图5:CD4013 由两个相同的、相互独立的数据型触发器构成。
每个触发器有独立的数据置位复位时钟输入和 Q 及Q 非输出。
此器件可用作移位寄存器,且通过将Q 非输出连接到数据输入,可用作计数器和触发器。
在时钟上升沿触发时,加在D 输入端的逻辑电平传送到Q 输出端。
置位和复位或复位线上的高电平完成。
图5 CD4013芯片引脚用功能图D4DIODED3DIODED2DIODE 23765184U3LM 311D1DIODECLR11CLK13D12D212CLK211SET14SET210CLR213Q15Q16Q29Q28GND7+5V 14IC174LS1412J1CON212J2CON2C1105R1RES1R2RES1R3RES1R4RES1R5RES1R6RES1D5ZENER1VCC15V-VCC15V GNDVCC15V-VCC15VGNDGNDGND5VGNDVCCGND32184U1ALF353567U1B LF353CD4060------14位二进制串行计数器,引脚及功能见如下图6: CD4060 由一震荡器和14极二进制串行计数器位组成,震荡器的结构可以是RC 或晶振电路。
CR 为高电平时,计数器清零且振荡器使用无效,所有的计数器位均为主从触发器 CP1非(和 CP0)的下降沿计数器以二进制进行计数,在时钟脉冲线上使用施密特触发器对时钟上升和下降时间无限制。