(word完整版)教师资格证初中数学专业知识与能力复习笔记自己整理
- 格式:doc
- 大小:107.99 KB
- 文档页数:18
教师资格证初中数学专业知识与能力复习笔记自己整理一、初中数学基础知识1.1 函数与方程在初中数学中,函数和方程是基础中的基础。
我们需要掌握函数的定义、性质和图像,以及方程的基本解法。
对于函数,我们需要了解函数的三要素:定义域、值域和对应法则。
对于方程,我们需要学会如何运用加减乘除、移项、合并同类项等方法求解一元一次方程、一元二次方程等。
1.2 几何图形初中数学中的几何图形主要包括点、线、面、角等基本概念。
我们需要掌握这些基本概念的性质和相互关系,如点的位置、线段的长度、角度的大小等。
我们还需要学会如何运用几何知识解决实际问题,如计算面积、体积等。
二、初中数学应用题解答方法2.1 审题与分析解答初中数学应用题首先要做到审题准确,理解题目的要求。
然后要对所给信息进行分析,找出关键数据和条件。
这一步非常重要,因为很多问题的关键就在于能否找到合适的条件来解决问题。
2.2 建立模型根据题目要求和所给条件,我们需要建立一个合适的数学模型来描述问题。
这个模型可以是一个函数、一个方程或者一个不等式等。
建立模型的过程就是将实际问题转化为数学问题的过程。
2.3 求解与检验在建立了合适的数学模型之后,我们需要运用所学的知识对模型进行求解。
求解过程中要注意方法的选择和步骤的合理性。
求解完成后,要对结果进行检验,确保答案的正确性。
三、初中数学教学策略3.1 激发学生兴趣兴趣是最好的老师。
在教学过程中,教师要尽量激发学生的学习兴趣,让他们主动参与到课堂中来。
可以通过设置有趣的问题、组织实践活动等方式来实现这一目标。
3.2 注重基础知识教学基础知识是解决问题的关键。
在教学过程中,教师要注重培养学生的基础知识和基本技能,让他们在掌握了基础知识之后能够灵活运用到实际问题中去。
3.3 培养创新思维创新是推动社会进步的重要力量。
在教学过程中,教师要注重培养学生的创新思维能力,鼓励他们敢于质疑、勇于探索,培养他们的创新精神和创新能力。
教师资格证初中数学专业知识与能力复习笔记自己整理数学学科知识与教学模块二:课程知识第一章初中数学课程的性质与基本理念初中数学课程的主要影响因素包括教育政策、社会文化、教育资源等。
这些因素会影响教学内容、教学方法和教学评价等方面。
初中数学课程的性质包括普遍性、基础性、实用性和发展性。
这些性质决定了初中数学课程的重要性和必要性。
初中数学课程的基本理念包括以学生为中心、注重学科知识与能力的培养、注重数学思维和方法的培养等。
这些理念是指导初中数学教学的重要原则。
初中数学课程的核心概念包括数与式、函数、图形、变量、方程、不等式、比例、百分数、几何等。
这些概念是初中数学课程的基础和核心,学生需要掌握并理解其应用。
第二章初中数学课程目标初中数学课程的目标包括数学知识的掌握、数学思维和方法的培养、数学实践能力的提高等。
这些目标旨在使学生在数学学科中具备综合性的能力和素养。
第三章初中数学课程的内容标准初中数学课程的内容标准包括数与式、函数、图形、变量、方程、不等式、比例、百分数、几何等方面的知识和技能。
这些标准是教学内容的基础和指导。
第四章初中数学课程教学建议初中数学课程的教学建议包括注重学生的主体性和实践性、注重数学思维和方法的培养、注重教学资源的优化等方面。
这些建议旨在提高教学效果和促进学生的综合素质发展。
第一节:《课标》中的数学教学建议数学教学建议是指在课程标准中提出的数学教学的指导性意见。
这些建议包括教学目标、教学内容、教学方法等。
教师应该了解这些建议,并根据自己的实际情况进行合理的调整和应用。
在教学过程中,教师应该注重学生的研究兴趣和能力,采用多种教学方法,使学生能够积极主动地参与到研究中来。
第二节:教学中应当注意的几个关系在数学教学中,教师应该注重以下几个关系:教师与学生的关系、学生与学生之间的关系、教师与教材的关系、教师与教学方法的关系。
教师应该与学生建立良好的关系,尊重学生的个性,关注学生的情感需求。
第二章数学教学的测量与评价一、目的(1)鉴定和诊断数学教学的效果(2)调节学生的学习与教师的教学(3)督促和激励师生继续努力二:一般程序(1)测量与评价数学教学的准备阶段①数学教学评价的指标体系(数学教学是一个复杂的活动,所以常用一个指标体系来评价它)②数学教学评价指标体系的建立各评价指标的目的性,要求指标体系中的各指标能够作为标准的尺度,如评价学生的数学学习时,评价指标体系要能反映数学教学目标的要求。
各指标之间的独立性,要求尽可能得保持指标体系中诸指标的独立性,减少指标间的彼此相关或部分包含关系整个指标体系的完备性,要求整个指标体系对于评价标准来说,具有全面评价的意义可测性,说明诸指标是可以直接测量的确定指标体系的权值也是建立指标体系的一项重要工作③测量数学教学的方法(测验法、观察法、谈话法(又称访谈法)、问卷法等)(2)数学教学测量和评价实施阶段分两步:预测与正式施测(3)整理与分析测量的结果(4)对数学教学进行评价①形成性评价与终结性评价②绝对评价与相对评价③教师对学生的评价与学生的自我评价④成长记录袋评价(档案袋评价)三、关于数学测验的基本理论(1)什么是数学测验三个特征:一个测验是一个行为样本;这个样本是在标准化条件下获得的;在记分或从行为样本中获得数量化信息方面有已有的规则①行为样本②标准化③效度(描述数学测验有效性的指标,说明该测验的准确性程度)④信度(描述数学测验可靠性的指标,对测量结果一致性程度的估计)⑤项目分析⑥(2)编制数学测验的一般过程①测验目的的确立和材料的选择②选择与编制数学测验题目的原则(测题的取样应有代表性;难度要有一定的分布范围;文字简练,不重不漏;各测题要尽量彼此独立;答案的正确性是没有争议的;知识的记忆、原理的应用要有恰当的比例;形式应根据测验的目的、材料的性质、学生的年级而确定;测题的数目至少要比最后所需的数目多一倍,以备日后删除淘汰,也可编制备份,交替使用)③常用的数学测验题型(选择题、填空题、计算题、证明题、综合题)第三节教学策略的确定1、教学方法的选用2、教学媒体的运用3、教学程序的安排(1)按数学课类型确定教学程序①概念学习应遵循学生认知心理规律的四个发展层次:感觉——知觉——观念(表象)——概念概念新授课一般程序:引入概念、感知概念、建立概念、巩固概念、归纳小结、布置作业②复习课(一个阶段的复习)作用:系统归纳、整理阶段所学的知识、方法以及梳理知识方法所反映的数学思想,沟通知识、方法之间的联系,形成所学数学内容的整体结构。
教师资格证初中数学专业知识与能力复习笔记自己整理一、初中数学专业知识与能力复习笔记1.1 函数与方程函数是数学中的一个重要概念,它描述了两个变量之间的关系。
在初中数学中,我们学习了一些基本的函数,如一次函数、二次函数等。
这些函数在解决实际问题时具有很大的应用价值。
例如,我们可以通过求解一次函数的斜率和截距来确定直线的倾斜程度和位置;通过求解二次函数的顶点坐标来确定抛物线的形状和开口方向。
1.2 几何图形几何图形是初中数学中的另一个重要概念,它包括点、线、面等多种类型。
在初中数学中,我们学习了点、线、面的性质,如点到直线的距离、三角形的面积等。
这些性质在解决实际问题时具有很大的应用价值。
例如,我们可以通过计算点到直线的距离来确定一个点是否在直线上;通过计算三角形的面积来确定一个三角形的大小。
二、初中数学教学方法与策略2.1 启发式教学法启发式教学法是一种以学生为中心的教学方法,它强调教师应该引导学生自己去发现问题、解决问题。
在初中数学教学中,我们可以采用启发式教学法来激发学生的学习兴趣和思考能力。
例如,在教授一次函数时,我们可以先让学生观察生活中的实际问题,然后引导他们运用所学知识去解决这些问题。
这样既能提高学生的学习效果,又能培养他们的实际应用能力。
2.2 合作学习法合作学习法是一种以小组为单位的教学方法,它强调学生之间应该相互合作、相互促进。
在初中数学教学中,我们可以采用合作学习法来提高学生的学习效果和团队协作能力。
例如,在教授几何图形时,我们可以将学生分成若干个小组,让他们一起讨论某个问题的解法。
这样既能锻炼学生的思维能力,又能培养他们的团队精神。
2.3 实践性教学法实践性教学法是一种以实践为基础的教学方法,它强调学生应该将所学知识运用到实际生活中去。
在初中数学教学中,我们可以采用实践性教学法来提高学生的动手能力和实际应用能力。
例如,在教授三角函数时,我们可以让学生亲自进行实验操作,从而更好地理解三角函数的概念和性质。
◆1初中数学课程内容:(4)(内幕成评手)主要包括课程目标、教学内容、教学过程、评价手段。
它体现了国家从数学教育与教学的角度,对初中阶段学生实现最终培养目标的整体规划。
◆2确定数学课程内容的主要依据:(3) (表单课锯树枝)数学课程标准、单元目标、具体数学知识点三者结合,需注意以下三点:(1)数学知识的主要特征。
数学知识是复杂的,应该选择数学知识点最为本质的东西作为教学重点;(2)学生需要。
确定教学内容不由教材一个要素决定,还与学生认知发展阶段性有关,教学内容要选择教材内容中与学生认知发展相一致的内容;(3)编者意图。
编者意图通过例题和课后习题来体现,而数学例题和课后习题是数学课程内容重要的组成部分,数学课“教什么”是由练习题指示给老师的。
◆3影响初中数学课程的主要因素包括:(4) (可汗会发展心理特征)1、数学学科内涵:(本身+教育任务)(1)学科本身内涵(数学的知识、方法、意义等)(2)教育任务的内涵(理解数学整体性特征,领悟思想,应用数学解决问题能力)2、社会发展现状:(科技人文+生活变化+社会发展)(1)当代社会的科技、人文精神中蕴含的数学知识与素养等(2)生活变化对数学的影响等(3)社会发展对公民基本数学素养的需求3、学生心理特征:(适合数学思维+知经景)数学课程是针对初中学生年龄和知识经验而设,学生心理特征会影响具体课程内容。
(1)适合学生的数学思维特征(2)学生的知识、经验、环境背景◆4初中数学课程性质:(3) (基础普及发展)——基础性、普及性、发展性基础性:(1)课程内容未来常用;(2)每个学生必须经历,为其后续生存、发展打下基础; (3)数学学科是其他科学的基础,是学习其他课程的必要基础。
因此,数学课程为学生未来生活、工作和学习奠定重要的基础普及性:(1)应当在适龄少年中得到普及;(2)为所有适龄学生在具备相应学习条件的前提下,通过自己的努力而掌握。
◆5“数学课程目标”从根本上明确了哪些问题:(3) (为什么,学什么,带来什么)(1)学生为什么学数学;(2)学生应当学哪些数学;(3)数学学习将给学生带来什么。
初中数学学科知识与教学笔记(教师资格证)模块二:课程知识 (2)第一章初中数学课程的性质与基本理念 (2)第一节:影响初中数学课程的主要因素 (2)第二节、初中数学课程性质 (2)第三节:初中数学课程的基本理念 (3)第四节:数学课程核心概念(10个)(背) (4)第二章初中数学课程目标 (6)第三章初中数学课程的内容标准 (8)第四章:初中数学课程教学建议 (9)第一节《课标》中的数学教学建议 (9)第二节教学中应当注意的几个关系 (9)第五章初中数学课程评价建议 (9)第一章数学教学方法 (11)第一节初中数学教学常用的教学方法 (11)第二节:教学方法的选择 (11)第二章数学概念的教学 (11)第一节:重要概念教学的基本要求 (12)第二节概念教学的一般过程 (12)第三章数学命题的教学 (12)第一节重要命题教学的基本要求 (12)第二节:命题教学的一般过程 (12)第四章数学教学过程与数学学习方式 (13)第一节数学教学过程 (13)第二节:数学学习的概念 (13)第三节中学数学学习方式 (13)第一章数学教学设计 (15)第一节教学目标的阐明 (15)第二节教学内容的确定 (15)第三节教学策略的确定 (16)第四节教学方案的撰写 (16)第二章数学教学的测量与评价 (17)模块二:课程知识第一章初中数学课程的性质与基本理念第一节:影响初中数学课程的主要因素1、初中数学课程是一门国家课程,内容主要包括课程目标、教学内容、教学过程和评价手段。
它体现了郭嘉从数学教育与教学的角度,对初中阶段学生实现最终培养目标的整体规划。
2、影响初中数学课程的主要因素包括:一、数学学科内涵:(1)数学科学本身的内涵(数学的知识、方法和意义等)(2)作为教育任务的数学学科的内涵(理解数学的整体性特征,领悟相关的数学思想,应用数学解决问题的能力等)二、社会发展现状:(1)当代社会的科学技术、人文精神中蕴含的数学知识与素养等(2)生活变化对数学的影响等(3)社会发展对公民基本数学素养的需求。
教师资格证初中数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!教师资格证初中数学知识点总结关于教师资格证初中数学知识点总结数学学科课堂学习过程中不单纯是学习内容的展示,更是在实践教学过程中针对不同的教学阶段来进行多方位,多层次的总结和探究,以下是本店铺为大家带来的关于教师资格证初中数学知识点总结,欢迎参阅呀!关于教师资格证初中数学知识点总结1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
教师资格证初中数学专业知识与能力复习笔记自己整理作为一名行业专家,我深知教师资格证初中数学专业知识与能力复习的重要性。
在这篇论文中,我将从理论和实践两个方面,详细地阐述初中数学教师资格证的复习方法和技巧,希望能为广大考生提供有益的参考。
我们来谈谈理论方面的复习。
初中数学教师资格证考试涵盖了初中数学的各个方面,包括数与式、图形与位置、统计与概率、代数初步、几何初步、方程与不等式、函数与方程等。
因此,我们在复习时需要全面掌握这些知识点,并能够灵活运用。
在复习过程中,我们可以采用以下几种方法:1. 制定合理的学习计划:根据自己的实际情况,合理安排学习时间,确保每个知识点都能得到充分的复习。
要注意保持学习的连续性,避免长时间的间断。
2. 深入理解概念:初中数学的概念性很强,因此我们在复习时要深入理解每一个概念,掌握其内涵和外延。
可以通过查阅教材、参考书或网络资料,加深对概念的理解。
3. 勤做练习题:练习题是检验我们学习效果的重要手段。
我们可以通过做题来巩固知识点,提高解题能力。
在做题过程中,要注意总结经验,发现自己的不足之处,及时进行改进。
4. 加强模拟测试:模拟测试可以帮助我们熟悉考试流程,提高应试能力。
我们可以参加学校组织的模拟考试,或者自己购买一些模拟试题进行练习。
在模拟测试过程中,要注意调整心态,保持良好的心理状态。
接下来,我们来谈谈实践方面的复习。
除了理论知识的学习之外,我们还需要关注一些实践性的技能,如课堂教学、班级管理等。
以下是一些建议:1. 观察优秀教师的教学:我们可以通过观察优秀教师的教学过程,学习他们的教学方法和技巧。
要注意分析他们的优点和不足,为自己的教学提供借鉴。
2. 参加教育培训:初中数学教师资格证考试中有一些专门针对实践技能的题目,因此我们可以参加一些教育培训课程,提高自己的实践能力。
3. 开展教学实践活动:在复习过程中,我们可以尝试开展一些小型的教学实践活动,如给同学讲解某个知识点、组织一次班级活动等。
教师资格证初中数学专业知识与能力复习笔记自己整理哟,各位小伙伴们,今天咱们就来聊聊教师资格证初中数学专业知识与能力的复习笔记。
说到这个,小编可是有一堆话要说呢!咱们得明确一个问题,那就是数学这门学科可是个大家伙,里面涉及到的知识点和公式可真是多得让人眼花缭乱。
所以,咱们在复习的时候可得有个清晰的思路,不能让这些知识点和公式乱糟糟地堆在一起,那样可就容易搞混了。
咱们来说说初中数学的基本概念和基本运算。
这些知识点可是数学的基础,咱们可得好好掌握。
比如说,什么是方程?什么是不等式?什么是函数?这些都是初中数学的基本概念,咱们得先弄清楚。
而且,这些概念之间还有很多联系,咱们得学会把它们联系起来,这样才能更好地理解和应用。
接下来,咱们来说说初中数学的一些常用公式。
比如说,勾股定理、二次方程的求根公式、三角函数的定义和性质等等。
这些公式可是咱们在解题过程中经常要用到的,所以咱们得把它们记住。
而且,这些公式之间也有很多联系,咱们得学会把它们联系起来,这样才能更好地运用。
然后,咱们来说说初中数学的一些解题方法和技巧。
比如说,怎样用代数方法解方程?怎样用几何方法解决几何问题?怎样用三角函数解决三角问题?这些方法和技巧可是咱们在解题过程中经常要用到的,所以咱们得学会运用。
而且,这些方法和技巧之间也有很多联系,咱们得学会把它们联系起来,这样才能更好地解决问题。
咱们来说说初中数学的一些综合应用题。
这些题目可是考察咱们综合运用所学知识的能力,所以咱们得认真对待。
比如说,怎样用方程组解决实际问题?怎样用函数解决实际问题?怎样用几何方法解决实际问题?这些题目可是咱们在考试中经常会遇到的,所以咱们得提前做好准备。
初中数学专业知识与能力的复习笔记可不是一件简单的事情。
咱们得有条不紊地进行复习,不能急功近利。
只有这样,咱们才能在考试中取得好成绩。
当然啦,除了复习笔记之外,咱们还得多做一些练习题,这样才能更好地巩固所学知识。
而且,咱们还得多请教老师和同学,这样才能更好地提高自己。
教师资格证初中数学知识点总结一、数的概念和计算1.数的分类:–自然数:0、1、2、3…–整数:负整数、零、正整数–有理数:整数和分数–实数:有理数和无理数2.数的四则运算:–加法:两数相加–减法:从一个数中减去另一个数–乘法:两数相乘–除法:一个数被另一个数整除3.分数的概念和运算:–分子:分数的上部–分母:分数的下部–真分数:分子小于分母的分数–假分数:分子大于等于分母的分数–基本运算:加法、减法、乘法和除法4.百分数:–以100为基准的比例–计算方法:小数移位、转化为分数、计算百分数5.常见计算方法:–谈论一个数的大小时,要考虑数的绝对值、数的正负、数的比较大小–十进制数、分数、百分数的相互转化–奇数和偶数的性质与判断二、代数式与方程式1.代数式:–由数字、字母和运算符号组成的式子–运算法则:加法、减法、乘法和乘方–合并同类项和整理成一般式2.方程式和方程的解:–同一变量的等式–方程式的解:使方程式成立的未知数的值–一次方程式的解法:移项、消元、求解3.一次方程式的应用:–解决实际问题时,可以建立简单的一次方程式–根据方程式解题–根据实际情况检验方程式的解是否正确4.不等式:–同一变量的关系式,用不等号连接–不等式的解集表示不等式的解的范围–不等式的性质:加减,乘除同一个正数(负数),不等号方向不变三、图形的认识和计算1.图形的认识:–点、线、线段、角、三角形、四边形等图形–图形间的关系:平行、垂直、相等、全等等2.直线与角:–直线的性质:两点确定一条直线、垂直、平行线等–角的概念:两条线或两条线段的夹角–角的分类:锐角、直角、钝角等–角的加法和减法:补角、余角、对角等3.三角形:–三角形的分类:按边长和角度划分–三角形的性质:等边三角形、等腰三角形等–三角形的内角和:180度–三角形面积的计算四、数据的分析和统计1.数据与统计:–调查数据、整理数据–数据的分类和处理–用图形表示数据:条形图、折线图、饼状图2.平均数和中位数:–平均数的计算:算术平均数和加权平均数–中位数的计算:有限数据和无限数据3.概率与事件:–试验、样本空间和事件的概念–概率的计算:频率、几何和统计概率–概率的加法和乘法原理五、空间与形体1.空间与形体的认识:–几何图形的属性:线段、面、体–立体图形的命名和分类–空间位置的认识和判断2.视图与投影:–立体图形在平面上的投影–正投影与斜投影–视图的画法和转化3.相似与全等:–相似和全等图形的定义–相似和全等的判断和性质–根据相似和全等解决问题4.平移与旋转:–基本变换:平移和旋转–变换的性质和判断–根据变换解决问题以上是初中数学的主要知识点总结。
教师资格考试中学数学学科知识点汇总示例文章篇一:教师资格考试中学数学学科知识点汇总一、数与代数(一)数的认识1. 整数整数包括正整数、零和负整数。
同学们,想想看,我们日常生活中是不是经常用到整数呀?比如买东西找零钱,数数班级里的人数。
那整数的运算规则你们都清楚吗?加法是把两个数合并成一个数的运算,减法是已知两个加数的和与其中一个加数,求另一个加数的运算。
这是不是很简单?2. 分数分数表示一个数是另一个数的几分之几。
比如说,把一个蛋糕平均分成几份,其中的一份就是几分之一。
那分数的加减法怎么算呢?通分可是个关键步骤哦!你们不会觉得这很难吧?3. 小数小数由整数部分、小数部分和小数点组成。
像我们测量身高、体重时,经常会用到小数。
小数的性质你们还记得吗?在小数的末尾添上“0”或去掉“0”,小数的大小不变,这可太神奇啦!(二)式与方程1. 代数式用运算符号把数和字母连接而成的式子叫做代数式。
比如3x + 5 ,这就是一个代数式。
那你们能根据题目写出相应的代数式吗?2. 方程含有未知数的等式叫做方程。
解方程可是个重要技能,能帮我们解决很多实际问题呢!比如说,小明买了5 个本子,每个本子x 元,一共花了10 元,那这个方程怎么列呢?二、图形与几何(一)平面图形1. 三角形三角形具有稳定性,这在生活中的应用可多啦!像自行车的车架、塔吊的结构。
三角形的内角和是180 度,你们能通过实验来证明吗?2. 四边形四边形包括平行四边形、长方形、正方形和梯形。
它们的特点和性质可不一样哦,一定要分清楚!3. 圆圆的周长和面积公式一定要牢记呀!想想看,为什么车轮要做成圆形的呢?(二)立体图形1. 长方体长方体有6 个面,12 条棱,8 个顶点。
计算长方体的表面积和体积可不能马虎!2. 正方体正方体是特殊的长方体,它的六个面都是正方形,而且棱长都相等。
3. 圆柱和圆锥圆柱的侧面积、表面积和体积公式要搞清楚,圆锥的体积是等底等高圆柱体积的三分之一,这可别记错啦!三、统计与概率(一)数据的收集与整理我们可以通过调查、实验、测量等方法收集数据。
教师资格证初中数学专业知识与能力复习笔记自己整理一、初中数学知识与能力的复习笔记1.1 初中数学知识体系初中数学知识体系主要包括数与式、图形与变换、概率与统计、代数初步、几何初步、函数与方程、不等式与证明等七个方面。
在复习过程中,我们要全面掌握这些知识点,形成一个完整的知识体系。
1.2 初中数学能力要求初中数学能力主要体现在以下几个方面:(1)数学思维能力,如逻辑推理、抽象概括、空间想象等;(2)数学表达能力,如运算规范、语言通顺、论证严密等;(3)数学应用能力,如解决实际问题、创新性发展等。
在复习过程中,我们要注重培养这些能力,提高自己的综合素质。
二、初中数学专业知识的复习方法2.1 系统梳理知识点在复习过程中,我们要对初中数学知识点进行系统梳理,形成一个清晰的知识框架。
可以按照教材的章节顺序进行梳理,也可以按照知识点的逻辑关系进行梳理。
梳理过程中,要注意知识点之间的联系和区别,形成一个完整的知识网络。
2.2 注重基础知识的巩固基础知识是提高数学能力的基础。
在复习过程中,我们要注重基础知识的巩固,如数的认识、运算法则、公式定律等。
只有基础扎实,才能在今后的学习中游刃有余。
2.3 培养解题技巧和方法解题技巧和方法是提高数学能力的关键。
在复习过程中,我们要学会运用各种解题技巧和方法,如化归思想、分类讨论、设而不求等。
要注重培养自己的创新能力,勇于尝试新方法,不断拓展解题思路。
三、初中数学专业能力的提升途径3.1 多做练习题和模拟试题做题是提高数学专业能力的最有效途径。
在复习过程中,我们要多做练习题和模拟试题,提高自己的解题速度和准确率。
要注重分析错题原因,总结解题规律,形成自己的解题方法。
3.2 参加数学竞赛和活动参加数学竞赛和活动可以激发我们的学习兴趣,提高我们的数学素养。
在参加竞赛和活动的过程中,我们可以接触到更多的优秀作品和解题思路,拓宽自己的视野,提高自己的能力。
3.3 加强实践应用能力的培养数学是一门实用性很强的学科。
教师资格证初中数学专业知识与能力知识点圆的方程定义:圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的`方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ0,直线和圆相交、②Δ=0,直线和圆相切、③Δ0,直线和圆相离。
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。
①dR,直线和圆相离、2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
切线的性质⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足。
切线的判定定理经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线长定理从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。
教师资格证初中数学知识点总结2函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x 为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。
教师资格证初中数学专业知识与能力复习笔记自己整理一、初中数学专业知识与能力复习笔记1.1 初中数学基础知识初中数学主要包括有理数、整式、代数、几何、概率与统计等方面的知识。
在复习过程中,我们需要对这些知识点进行深入的理解和掌握,以便在考试中能够灵活运用。
例如,有理数的加减乘除运算、整式的因式分解、代数式的化简求值等,都是我们在初中数学学习中必须要掌握的基本技能。
1.2 初中数学解题方法在复习初中数学的过程中,我们还需要学会运用各种解题方法。
例如,方程组的解法、不等式的解法、函数的图像与性质等。
这些解题方法不仅能够帮助我们更好地理解数学知识,还能提高我们在考试中的解题速度和准确率。
二、初中数学专业知识与能力复习策略2.1 制定合理的复习计划在复习初中数学的过程中,我们需要制定一个合理的复习计划,以确保我们能够在有限的时间内掌握所有的知识点和解题方法。
我们可以根据自己的实际情况,将复习内容分为若干个阶段,每个阶段都有明确的学习目标和时间安排。
我们还需要定期对复习计划进行调整,以适应自己的学习进度。
2.2 注重基础知识的学习在复习初中数学的过程中,我们应该始终把基础知识放在首位。
只有掌握了扎实的基础知识,我们才能更好地理解和运用各种高级知识。
因此,在复习过程中,我们要花更多的时间去学习和巩固基础知识,如有理数、整式、代数等。
2.3 多做练习题和模拟试题做练习题和模拟试题是检验我们学习效果的重要途径。
通过做题,我们可以发现自己在某些知识点上的不足,从而针对性地进行复习。
做题还可以帮助我们熟悉考试的题型和难度,提高我们的应试能力。
因此,在复习过程中,我们要多做练习题和模拟试题,不断提高自己的解题能力和应试水平。
三、结论教师资格证初中数学专业知识与能力的复习是一个系统性的过程,需要我们从基础知识到解题方法,再到复习策略等方面进行全面地学习和掌握。
只有这样,我们才能在考试中取得理想的成绩,顺利实现教师资格证的目标。
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0.两个负数比较大小,绝对值大的反而小. 有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变.减法:减去一个数,等于加上这个数的相反数.乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数.除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数.混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的.2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数.立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数、0的立方根是0、负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数.实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示.3、代数式代数式:单独一个数或者一个字母也是代数式.合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变.4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式.②一个单项式中,所有字母的指数和叫做这个单项式的次数.③一个多项式中,次数最高的项的次数叫做这个多项式的次数.整式运算:加减运算时,如果遇到括号先去括号,再合并同类项.幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样.整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式.方法:提公因式法、运用公式法、分组分解法、十字相乘法.分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0.②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变.分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.除法:除以一个分式等于乘以这个分式的倒数.加减法:①同分母分式相加减,分母不变,把分子相加减.②异分母的分式先通分,化为同分母的分式,再加减.分式方程:①分母中含有未知数的方程叫分式方程.②使方程的分母为0的解称为原方程的增根.B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程.②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式.解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程. 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解.解二元一次方程组的方法:代入消元法/加减消元法.一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点.也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法.在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a.利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式.②不等式的两边都加上或减去同一个整式,不等号的方向不变.③不等式的两边都乘以或者除以一个正数,不等号方向不变.④不等式的两边都乘以或除以同一个负数,不等号方向相反.不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解.②一个含有未知数的不等式的所有解,组成这个不等式的解集.③求不等式解集的过程叫做解不等式.一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式.一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.③求不等式组解集的过程,叫做解不等式组.一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变.在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C 在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<b*c(c<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量.在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量.一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数.②当B=0时,称Y是X的正比例函数.一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.②正比例函数Y=KX的图象是经过原点的一条直线.③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限.④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少.二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的.②面与面相交得线,线与线相交得点.③点动成线,线动成面,面动成体.展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体.②N棱柱就是底面图形有N条边的棱柱.截一个几何体:用一个平面去截一个图形,截出的面叫做截面.视图:主视图,左视图,俯视图.多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.②圆可以分割成若干个扇形.2、角线:①线段有两个端点.②将线段向一个方向无限延长就形成了射线.射线只有一个端点.③将线段的两端无限延长就形成了直线.直线没有端点.④经过两点有且只有一条直线.比较长短:①两点之间的所有连线中,线段最短.②两点之间线段的长度,叫做这两点之间的距离.角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.②一度的1/60是一分,一分的1/60是一秒.角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的.②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.始边继续旋转,当他又和始边重合时,所成的角叫做周角.③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.平行:①同一平面内,不相交的两条直线叫做平行线.②经过直线外一点,有且只有一条直线与这条直线平行.③如果两条直线都与第3条直线平行,那么这两条直线互相平行.垂直:①如果两条直线相交成直角,那么这两条直线互相垂直.②互相垂直的两条直线的交点叫做垂足.③平面内,过一点有且只有一条直线与已知直线垂直.垂直平分线:垂直和平分一条线段的直线叫垂直平分线.垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点.垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线.定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆.110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心。
教师资格证初中数学知识点总结一、数的整体观念在初中数学中,我们首先需要建立起对数的整体观念。
数的整体观念包括自然数、整数、有理数、无理数和实数的概念,以及数的比较和数的大小关系等。
掌握了数的整体观念,我们才能进行后续的数学运算和推理。
二、整式与分式整式和分式是初中数学中的重要概念。
整式是由常数、变量和它们的乘积所构成的代数式,例如 3x² + 5y - 2。
分式是由分子和分母都是整式的代数式,例如 (2x + 1)/(3y - 2)。
掌握了整式和分式的概念,我们可以进行多项式的运算、分式的化简和方程的解的运算等。
三、图形与几何图形与几何是初中数学的重要内容之一。
主要包括平面图形的性质、尺规作图和立体图形的性质等。
在图形与几何的学习中,我们需要掌握各种平面图形的性质,如三角形、四边形和圆等;了解尺规作图的基本步骤;掌握立体图形的名称、性质和体积计算等。
四、函数与方程函数与方程是初中数学中的核心内容。
函数是自变量和因变量之间的一种对应关系,常用函数有线性函数、二次函数和反比例函数等。
方程是含有未知数的等式,常见的方程有一元一次方程、一元二次方程和一元一次不等式等。
掌握了函数与方程的概念和解题方法,我们可以解决各种实际问题,如速度、距离和时间的关系问题等。
五、统计与概率统计与概率是初中数学中的实用内容。
统计是研究数据的搜集、整理和分析的方法,常用的统计方法有频数、频率和平均数等。
概率是描述随机事件发生可能性的数值,常用的概率计算方法有等可能性原理和排列组合等。
掌握了统计与概率的基本方法,我们可以分析数据、进行概率计算和解决实际问题等。
六、解几何问题的方法解几何问题的方法是初中数学中的重要技巧。
在解几何问题时,我们可以运用数学的知识和技巧,如平行线的性质、相似三角形的性质和勾股定理等。
通过灵活运用这些方法,我们能够解决各种几何问题,如证明几何定理、计算线段长度和求解角度等。
七、数列与函数的应用数列与函数的应用是初中数学的扩展内容。
教师资格证初中数学专业知识与能力复习笔记自己整理一、初中数学专业知识与能力复习笔记1.1 初中数学基本概念与公式初中数学的基本概念和公式是我们学习的基石,要想在考试中取得好成绩,首先要熟练掌握这些基础知识。
例如,我们要了解什么是平行线、垂线,什么是勾股定理、相似三角形等。
这些概念和公式不仅在选择题中出现,还在解答题中占据重要地位。
因此,我们在复习过程中要重视这些基础知识的学习,通过大量的练习来巩固记忆。
1.2 初中数学解题方法与技巧掌握解题方法和技巧是提高数学成绩的关键。
在初中数学中,我们要学会运用代数思想、几何思维等多种解题方法。
例如,在解决方程问题时,我们要学会分类讨论、设未知数、建立方程组等方法;在解决几何问题时,我们要学会利用相似三角形、全等三角形等原理进行求解。
我们还要学会运用一些解题技巧,如化简方程、巧用公式等,以提高解题速度和准确率。
二、初中数学专业知识与能力复习策略2.1 系统复习基础知识在复习初中数学知识时,我们要做到系统性、全面性。
我们要对初中数学的基本概念和公式进行梳理,形成一个清晰的知识体系;我们要针对不同类型的题目进行专项训练,提高自己在各种情况下的应用能力。
在这个过程中,我们要注意查漏补缺,确保自己的基础知识扎实。
2.2 培养解题思维能力解题思维能力是衡量一个人数学水平的重要标准。
在复习过程中,我们要注重培养自己的解题思维能力。
具体来说,我们可以通过做大量的习题来锻炼自己的思维能力;我们还要注意总结解题方法和技巧,形成自己的解题套路。
在这个过程中,我们要敢于挑战自己,不断突破自己的极限。
2.3 提高运算速度和准确性运算速度和准确性是考试中非常重要的因素。
在复习过程中,我们要注重提高自己的运算速度和准确性。
具体来说,我们可以通过大量的练习来提高自己的运算速度;我们还要注意总结运算过程中的规律,避免出现错误。
在这个过程中,我们要有耐心,不怕失败,相信自己一定能够取得进步。
数学学科知识与教学模块二:课程知识 (2)第一章初中数学课程的性质与基本理念 (2)第一节:影响初中数学课程的主要因素 (2)第二节、初中数学课程性质 (2)第三节:初中数学课程的基本理念 (3)第四节:数学课程核心概念(10个)(背) (4)第二章初中数学课程目标 (6)第三章初中数学课程的内容标准 (8)第四章:初中数学课程教学建议 (9)第一节《课标》中的数学教学建议 (9)第二节教学中应当注意的几个关系 (9)第五章初中数学课程评价建议 (10)第一章数学教学方法 (11)第一节初中数学教学常用的教学方法 (11)第二节:教学方法的选择 (11)第二章数学概念的教学 (12)第一节:重要概念教学的基本要求 (12)第二节概念教学的一般过程 (12)第三章数学命题的教学 (12)第一节重要命题教学的基本要求 (12)第二节:命题教学的一般过程 (13)第四章数学教学过程与数学学习方式 (13)第一节数学教学过程 (13)第二节:数学学习的概念 (14)第三节中学数学学习方式 (14)第一章数学教学设计 (15)第一节教学目标的阐明 (15)第二节教学内容的确定 (15)第三节教学策略的确定 (16)第四节教学方案的撰写 (17)第二章数学教学的测量与评价 (17)模块二:课程知识第一章初中数学课程的性质与基本理念第一节:影响初中数学课程的主要因素1、初中数学课程是一门国家课程,内容主要包括课程目标、教学内容、教学过程和评价手段。
它体现了郭嘉从数学教育与教学的角度,对初中阶段学生实现最终培养目标的整体规划。
2、影响初中数学课程的主要因素包括:一、数学学科内涵:(1)数学科学本身的内涵(数学的知识、方法和意义等)(2)作为教育任务的数学学科的内涵(理解数学的整体性特征,领悟相关的数学思想,应用数学解决问题的能力等)二、社会发展现状:(1)当代社会的科学技术、人文精神中蕴含的数学知识与素养等(2)生活变化对数学的影响等(3)社会发展对公民基本数学素养的需求。
三、学生心理特征。
初中数学课程是针对初中学生年龄特征和知识经验而设置的,因此学生的心理特征必然会影响着具体的课程内容、(1)适合学生的数学思维特征(2)学生的知识、经验和环境背景第二节、初中数学课程性质一、基础性(1)初中阶段的数学课程中应当有大量的内容是未来公民在日常生活中必须要用到的。
(2)初中阶段的教育是每一个学生必须经历的基础教育阶段,它将为其后续生存、发展打下必要的基础。
(3)由于数学学科是其他科学的基础,因此数学课程内容也是学生在初中阶段学习其他课程的必要基础因此,义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础二、普及性(1)初中阶段的数学课程应当在适龄少年中得到普及,即每一个适龄的学生都有充分的机会学习它(2)初中数学课程内容应当能够为所有适龄学生在具备相应学习条件的前提下,通过自己的努力而掌握三、发展性第三节:初中数学课程的基本理念初中数学课程的基本理念主要表现五个方面一:课程内涵:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
(1)要实现学生的全面发展(2)要关注全体学生的发展(3)应促使学生自主地发展二:课程内容:(1)本身要反应社会的需要、数学的特点(2)构成不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法(3)选择要符合学生的认知规律,贴近学生现实,有利于学生体验与理解(4)组织要重视过程,处理好过程与结果的关系,要重视直观处理好直观与抽象的关系,要重视直接经验,处理好直接经验与间接经验的关系。
(5)呈现应注意层次性和多样性。
三:教学过程数学教学活动是师生积极参与、交往互动、共同发展的过程,有效的教学活动是学生学与教师教的同一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
四:学习评价学习评价的主要目的是为了全面了解学生数学学习的的过程和结果,激励学生学习和改进教师教学。
五、技术与数学课程(1)将信息技术作为学生从事数学活动的辅助性工具,包括在探究学习对象的性质、应用知识解决问题等活动中。
(2)将信息技术作为教师从事教学实践与研究的辅助工具。
(3)将计算机等技术作为评价学生数学学习的辅助性工具。
第四节:数学课程核心概念(10个)(背)一:符号意识(代数符号、几何符号)符号意识主要表现在对数学符号的理解和运用方面,具体含义包括:理解由数学符号表示的对象、数量关系、变化规律和图形特征等;能够使用符号进行运算、推理,表达数学关系等。
二:几何直观几何直观通常是个体认知、处理或使用数学对象的一种思维状态,具体表现在“利用图形描述和分析问题”,而这里的问题常常又不是几何问题,借助几何直观可以把复杂的数学问题变得简洁、形象,有助于整体把握数学对象,探索解决问题的思路,并预测结果。
三:数据分析观念数据分析观念是个体自觉使用数据分析结果对事物做分析、预测的意识和基本能力。
它主要包括:知道数据中蕴含着信息;认识到在现实生活中有许多问题应当先做调查研究,收集数据,再通过对数据做必要的分析才能够给出合理判断,也了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;而且经过正确的数据分析所得到的结果虽然合理,但也可能是错误的。
四、运算能力运算能力无疑是一种典型的数学能力。
《课标》给出的界定是:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。
在提高运算能力的价值上,有明确的落脚点:培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
五:推理能力推理能力也是一种典型的数学能力,由于推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式,所以培养学生的推理能力是数学教育的核心任务之一。
《课标》指出:推理一般包括合情推理和演绎推理合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算六:模型思想模型思想是实现应用数学解决问题的基本途径。
《课标》:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果,并讨论结果的意义它表明:模型思想的建立是提高学生应用数学的意识和能力的重要要点。
七:应用意识学生学习数学的一个重要目的就是用数学。
《课标》:(1)要有意识得利用数学的概念、原理、方法解释现实世界中的现象,解决现实世界中的问题;(2)认识到现实生活中蕴含着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
要求发展学生的应用意识需要从两个方面予以落实(1)在数学知识和方法的学习过程中实施“从情境入手”——让学生通过观察情境而发现并提出数学问题;(2)在理解知识和方法的基础上,增加“用数学”的环节——让学生有意识地应用所学数学知识解释现实生活中的有关现象,解决相应的问题。
八:创新意识个体创新意识的培养是初中阶段数学教育的基本任务。
创新意识的核心在于“独特”、“新颖”、“个性化”《课标》学生自己发现和提出问题是创新的基础,独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。
这表明:“提出问题”、“独立思考”、“归纳—猜想—验证”等活动方式是创新意识形成的核心要素,也是教学实施的主要关注点。
九、数感十、空间观念第二章初中数学课程目标1、具体内容:(1)获得适应社会生活和进一步发展所必需的数学知识、基本技能、基本思想、基本活动经验(2)体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力(3)了解数学的价值,提高学习数学的兴趣,增强学习学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。
这三个目标通过“知识技能”“数学思考”“问题解决”“情感态度”四个方面加以体现。
2、初中数学课程目标可分为:一:总体目标1、知识技能:(1)过程性目标①经历代数抽象与建模过程②经历图形的抽象、分类、性质探讨、运动、位置确定等③经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程(2)结果性目标掌握数与代数、图形与几何、统计与概率的基础知识和节本技能以及解决问题的数学活动经验2、数学思考:目标:(1)建立符号意识(2)初步形成几何直观和运算能力(3)发展形象思维和抽象思维(4)发展数据分析观念,感受随机现象(5)发展合情推理和演绎推理能力,清晰表达地自己的想法(6)学会独立思考,体会数学的基本思想和思维方式3、问题解决(1)初步学会从数学的角度发现和提出问题;(2)运用数学知识解决问题,获得分析问题和解决问题的一些基本方法(3)体验解决问题方法的多样性,发展创新意识和应用能力(4)学会与他人合作交流(5)初步形成评价与反思的意识4、情感态度(1)积极参与数学活动,对数学有好奇心和求知欲;(2)在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
(3)体会数学的特点,了解数学的价值(4)养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯二:学段目标1、知识技能2、数学思考3、问题解决4、情感态度3、总体目标和学段目标的关系:总体目标是义务教育阶段数学课程的终极目标,学段目标是总体目标的细化和学段化4、总体目标由“知识技能”“数学思考”“问题解决”“情感态度”四个方面体现只有这四个方面目标的整体实现,才是学生受到良好数学教育的标志。
第三章初中数学课程的内容标准数学各部分内容的重难点提示,四部分:第一节:数与代数第二节:图形与几何第三节:统计与概率第四节:实践与综合实践与综合课程领域与其他三个领域有着明显的不同:从学习对象而言:没有引入新的内容,但是强调数学知识的整体性和应用性,注意数学的现实背景以及与其他学科之间的关系;从学习目标而言:较少关注最终获得的具体结果,而更强调关注过程;从学习方式而言:追求一种基于个人思考的“合作交流”实践与综合的课程内容:(1)探究的能力与方法——能够有效使用观察、实验、归纳、类比等方法探究一个现象(对象)中存在的数学规律或结论,能够借助已有的知识和方法分析问题(2)抽象的能力——能够分析不同背景问题情境中蕴含的数学本质特征,并且用适当的数学符号、模型表达相应的数学关系、数学规律(3)合作交流的能力——能够了解他人对问题的想法、能够清晰、准确地表述自己对问题的理解和看法,能够与他人共同寻求解决问题的思路(4)发现问题与提出问题的能力——能够从一些已知现象(包括数学的、非数学的)、数学探究活动的过程和活动过程中发现进一步的问题。