关注“新定义”型试题
- 格式:pdf
- 大小:163.88 KB
- 文档页数:3
与四边形相关的中考“新定义”题型举例所谓"新定义"型试题,是指试题在某种运算、某个基本概念或几何图形基础上或增加条件,或改编条件,或削弱条件,构造一些创意新奇、情境熟悉但又从未接触过的新概念的试题。
新定义型试题是以运算模式、几何模式、函数模式等形式出现, 体现出新定义型试题结构。
渗透了一些新的数学知识,并且还具有一定的数学解题思想方法,反映出在新课标理念下命题方向的变化以及命题形式的变化。
"新定义"型试题,有利于考查学生的阅读理解、合理猜想、细心说明、探索归纳、应用新知识能力、逻辑推理能力和创新能力,提出问题、分析并解决问题的能力。
解决此类问题常见思路:给什么,用什么。
即:要求学生用最短时间正确理解新定义,并将此定义作为解题的重要依据,分析并掌握其本质,用类比的方法迅速地同化到自身的认知结构中,然后解决新的问题。
中考“新定义”题型近些年试卷中出现非常多,其中以四边形为背景的新定义试题就是其中的一道亮丽的风景线,如“等对角线四边形、准等距点、勾股四边形、等对边四边形、筝形四边形、面积等分线、友好矩形、加倍矩形、损矩形、组合矩形、接近度、半菱形、半等角点、凸四边形的准内点”等等十几类。
这对引导学生改变学习几何方式、引导教师改变几何教学方法均具有积极的意义。
一、例题举例例1.如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.≠;(1)在图(3)正方形ABCD内画一个半等角点P,且αβ(2)在图(4)四边形ABCD中找一个半等角点P,保留作图痕迹(不需写出画法);(3)若四边形ABCD有两个半等角点P1、P2(如图(2)),证明线段P1P2上任一点也是它的半等角点,保留作图痕迹(不需写出画法);(4)若四边形ABCD有两个半等角点P1、P2(如图(2)),证明线段P1P2上任一点也是它的半等角点.例1图【题型特点】本例以四边形为载体,结合正方形、利用所熟悉的轴对称、全等三角形等知识进行解题。
新定义型题目的解题策略探究摘要:“新定义”试题是宁波市中考数学中的特色题目之一,近年来都以固定题型的形式出现在中考试卷上,其是以能力立意为目标,以增大思维容量为特色,以定义新概念为背景的一种创新题型。
本文在简述“新定义”试题的概念,特点,题型分类的基础上探究“新定义”试题的解题技巧与方法,并得出在教学中的启示与反思。
关键词:新定义;解题策略;教学启示一、“新定义”试题概述1.“新定义”试题的概念“新定义”试题成为近年来中考数学的新亮点,也是宁波市近年来中考数学的固定题型。
“新定义”试题主要是指在问题中定义了一些没有学过的新概念、新运算、新符号等,要求学生现学现用,能够理解新知,读懂题意,然后利用题目中所介绍的新定义、新概念等,结合已有知识、能力进行理解、运算、推理、迁移、拓展的一种题型。
“新定义”试题的目的是考查学生的接受能力、应变能力与创新能力,其在于培养学生自主学习与主动探究的数学素养。
2.“新定义”试题的特点“新定义”试题设计新颖,构思独特,集应用性、探索性和开放性于一体,旨在全方面、多角度考查学生发现问题、分析问题与解决问题的能力。
首先,“新定义”试题具有情景新、形式新颖、知识点活的特点。
其次,“新定义”试题体现了阅读性、应用性、综合性的特点。
最后,“新定义”试题体现探究性、启发性、探究性的特点。
二、“新定义”试题的类型与解题策略1.“新定义”试题的类型(1)“新定义”中的新运算与新规律试题“新定义”中的新运算试题一般是通过理解示例的运算规则,然后推理题目所求,这类题目相对比较简单,一般在填空或者选择题里出现。
关于新规律试题一般是通过已知条件推导出合理的新规律,再由特殊到一般对新规律加以应用去解题,这类题目也比较简单,一般也是作为小题出现。
(2)“新定义”中的阅读理解试题“新定义”中的阅读理解试题主要考察学生的语言逻辑、分析能力和推理能力,这类题目首先要理解阅读材料的内容,理清思路是很重要的,接下来在阅读材料中提炼重要信息内化为所学知识点去求解。
2019年高考数学复习:新定义型、创新型、应用型试题新定义型、创新型、应用型试题「考情研析」本讲内容主要考查学生的阅读理解能力,信息迁移能力,数学探究能力以及创造性解决问题的能力.高考中一般会以选择题的形式出现,分值5分,题目新而不难,备考时要高度重视.核心知识回顾1.新定义型问题“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此类题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2.创新型问题创新型试题在命题的立意,背景的取材,情境的设置,设问的方式等方面新颖灵活,解题时要注意进行文字阅读训练,培养从冗长的或不熟悉的问题情境中获取重要信息的能力,加强数学语言——符号语言——图形语言相互转换的能力训练,善于把不熟悉的问题转化为熟悉的问题来加以解决.3.实际应用型问题将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决).热点考向探究考向1新定义型问题例1(1)(2018·天津市耀华中学模拟)设P和Q是两个集合,定义集合P-Q ={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于() A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|0≤x<2}答案 B解析由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.(2)(2018·山东菏泽模拟)若函数y=f(x)的图象上存在两个点A,B关于原点对称,则称点对[A ,B ]为y =f (x )的“友情点对”,点对[A ,B ]与[B ,A ]可看作同一个“友情点对”,若函数f (x )=⎩⎨⎧2,x <0,-x 3+6x 2-9x +a ,x ≥0恰好由两个“友情点对”,则实数a 的值为( )A .-2B .2C .1D .0答案 B解析 首先注意到(0,a )没有对称点,当x >0时,f (x )=-x 3+6x 2-9x +a ,则-f (-x )=-x 3-6x 2-9x -a ,即-x 3-6x 2-9x -a =2(x <0)有两个实数根,即a =-x 3-6x 2-9x -2(x <0)有两个实数根.画出y =-x 3-6x 2-9x -2(x <0)的图象如下图所示,由图可知a =2时有两个解.方法指导 遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.1.若数列{a n }满足1a n +1-p a n=0,n ∈N *,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是( )A .2B .4C .6D .8答案 B解析 依题意可得b n +1=pb n ,则数列{b n }为等比数列.又b 1b 2b 3…b 99=299=b 9950,则b 50=2.b 8+b 92≥2 b 8·b 92=2b 50=4,当且仅当b 8=b 92,即该数列为常数列时取等号.2.(2018·湖南联考)在R 上定义运算:xy =x (1-y ).若对任意x >2,不等式(x -a )x ≤a +2都成立,则实数a 的取值范围是( )A .(-∞,7]B .(-∞,3]C .[-1,7]D .(-∞,-1]∪[7,+∞) 答案 A解析 ∵运算:x y =x (1-y ),∴(x -a )x ≤a +2转化为(x -a )(1-x )≤a +2,a (x -2)≤x 2-x +2,∵任意x >2,不等式(x -a )x ≤a +2都成立,∴a ≤x 2-x +2x -2. 令f (x )=x 2-x +2x -2,x >2,则a ≤[f (x )]min ,当x >2时,f (x )=x 2-x +2x -2=(x -2)+4x -2+3≥2(x -2)×4x -2+3=7,当且仅当x =4时,取最小值.∴a ≤7,选A.考向2 创新型问题例2 (1)(2018·抚顺模拟)关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请360名同学,每人随机写下一个x ,y 都小于1的正实数对(x ,y );然后统计x ,y 两数能与1构成钝角三角形三边的数对(x ,y )的个数m ;再根据统计数m 来估计π的值.假如统计结果是m =102,那么可以估计π的值约为( )A.227B.4715C.5116D.6017答案 B解析 (构造可行域求解)两数能与1构成钝角三角形三边的数对(x ,y )所需满足的条件为⎩⎨⎧ x +y >1,x 2+y 2<1,0<x <1,0<y <1,作出满足不等式组的可行域,如图中阴影部分所示,依题意有102360=π4-121×1,解得π=4715.(2)已知{a n }满足a 1=1,a n +a n +1=⎝ ⎛⎭⎪⎫14n (n ∈N *),S n =a 1+4·a 2+42·a 3+…+4n -1·a n ,类比课本中推导等比数列前n 项和公式的方法,可求得S n -4n 5·a n =________. 答案 n 5解析 由S n =a 1+a 2·4+a 3·42+…+a n ·4n -1; ①得4·S n =4·a 1+a 2·42+a 3·43+…+a n -1·4n -1+a n ·4n ; ②①+②得,5S n =a 1+4(a 1+a 2)+42·(a 2+a 3)+…+4n -1·(a n -1+a n )+a n ·4n =a 1+4·14+42·⎝ ⎛⎭⎪⎫142+…+4n -1·⎝ ⎛⎭⎪⎫14n -1+4n ·a n =1+1+1+…+1+4n ·a n =n +4n ·a n . 所以5S n -4n·a n =n ,∴S n -4n 5·a n =n 5. 方法指导 高中数学创新试题呈现的形式是多样化的,但是考查的知识和能力并没有太大的变化,解决创新型问题应注意三点:认真审题,确定目标;深刻理解题意;开阔思路,发散思维,运用观察、比较、类比、猜想等进行合情推理,以便为逻辑思维定向.方向确定后,又需借助逻辑思维,进行严格推理论证,这两种推理的灵活运用,两种思维成分的交织融合,便是处理这类问题的基本思想方法和解题策略.1.把数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12n -1的所有数按照从大到小的原则写出如图所示的数表,第k行有2k -1个数,第t 行的第s 个数(从左数起)记为A (t ,s ),则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12n -1中的项1287应记为________.113 1517 19 111 113115 117 119 (129)… … …答案 A (8,17)解析 令2n -1=287⇒n =144⇒1287是数列{12n -1}的第144项,由S 7=27-12-1=127⇒A (8,17). 2.如图,在平面斜坐标系xOy 中,∠xOy =θ,平面上任意一点P 关于斜坐标系的斜坐标这样定义:若OP →=x e 1+y e 2(其中e 1,e 2分别是x 轴,y 轴正方向上的单位向量),则点P 的斜坐标为(x ,y ),向量OP→的斜坐标为(x ,y ).给出以下结论:①若θ=60°,P (2,-1),则|OP→|=3; ②若P (x 1,y 1),Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2); ③若OP →=(x 1,y 1),OQ →=(x 2,y 2),则OP →·OQ →=x 1x 2+y 1y 2; ④若θ=60°,以O 为圆心、1为半径的圆的斜坐标方程为x 2+y 2+xy -1=0.其中所有正确结论的序号是________.答案 ①②④解析 对于①,OP 是两邻边长分别为2,1,且一内角为60°的平行四边形较短的对角线,解三角形可知|OP →|=3,故①正确;对于②,若P (x 1,y 1),Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2),故②正确;对于③,OP →=(x 1,y 1),OQ →=(x 2,y 2),所以OP →·OQ →=(x 1e 1+y 1e 2)(x 2e 1+y 2e 2),因为e 1·e 2≠0,所以OP →·OQ →≠x 1x 2+y 1y 2,故③错误;对于④,设圆O 上任意一点为P (x ,y ),因为|OP |=1,所以(x e 1+y e 2)2=1,所以x 2+y 2+xy -1=0,故④正确.故填①②④.考向3 实际应用型问题例3 (1)(2018·南昌模拟)小明在如图1所示的跑道上匀速跑步,他从点A 出发,沿箭头方向经过点B 跑到点C ,共用时30 s ,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t (s),他与教练间的距离为y (m),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )A .点MB .点NC .点PD .点Q答案 D解析 由题图2可知固定位置到点A 距离大于到点C 距离,所以舍去N ,M 两点,不选B ,A ;若是P 点,则从最高点到点C 依次递减,与图2矛盾,因此取Q ,即选D.(2)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ;当t =8时,y =a e -8b =12a ,∴e -8b =12,当容器中的沙子只有开始时的八分之一,即a e -bt =18a 时,e -bt=18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.方法指导 求解应用题的一般步骤(四步法)(1)读题:读懂和深刻理解,译为数学语言,找出主要关系;(2)建模:把主要关系近似化、形式化,抽象成数学问题;(3)求解:化归为常规问题,选择合适的数学方法求解;(4)评价:对结果进行验证或评估,对误差加以调节,最后将结果应用于现实,作出解释或验证.1.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N 最接近的是( )(参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28.又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93,故与M N 最接近的是1093.故选D.2.某网店是一家以销售袜子为主的店铺,该网店月销量L (x )(单位:千双)是关于销售单价x (单位:元/双)的函数.已知销售单价不低于1元/双.当月销售量最少为0.205千双时,该店才会正常营业,否则会亏本停业;当销售单价为20元/双时,月销售量恰好可以保证该店正常营业;当销售单价不超过4元/双时,月销售量为2.125千双.研究表明:当4≤x ≤20时,月销售量L (x )与销售单价x的函数关系为L (x )=a x 2+b (a ,b 为常数).记月销售额(单位:千元)为f (x )=x ·L (x ),为使f (x )达到最大值,则销售单价x 应为( )A .1元/双B .2元/双C .3元/双D .4元/双 答案 D解析 由题得,当1≤x ≤4时,L (x )=2.125;当x =20时,L (x )=0.205;当4≤x ≤20时,L (x )=a x 2+b (a ,b 为常数),则⎩⎨⎧ L (4)=2.125,L (20)=0.205,即⎩⎪⎨⎪⎧ a 42+b =2.125,a 202+b =0.205,解得⎩⎪⎨⎪⎧ a =32,b =18,所以L (x )=32x 2+18,故函数L (x )的表达式为L (x )=⎩⎪⎨⎪⎧ 2.125,1≤x ≤4,32x 2+18,4<x ≤20.故f (x )=x ·L (x )=⎩⎪⎨⎪⎧ 2.125x ,1≤x ≤4,32x +x 8,4<x ≤20.当1≤x ≤4时,f (x )为增函数,故当x =4时,f (x )的最大值为8.5;当4<x ≤20时,可知函数f (x )=32x +x 8在区间(4,16]上单调递减,在区间[16,20]上单调递增,又f (4)=8.5,f (20)=4.1,所以f (x )的最大值为8.5.综上,当x =4,即当销售单价为4元/双时,月销售额可以达到最大值,故选D.真题押题『真题模拟』1.(2018·郑州模拟)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据此公式可知,e 2i 表示的复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 依题可知e i x 表示的复数在复平面内对应的点的坐标为(cos x ,sin x ),故e 2i 表示的复数在复平面内对应的点的坐标为(cos2,sin2),显然该点位于第二象限,选B.2.(2018·天水期末)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n . ①第二步:将数列①的各项乘以n ,得数列(记为)a 1,a 2,a 3,…,a n .则a 1a 2+a 2a 3+…+a n -1a n 等于( )A .n 2B .(n -1)2C .n (n -1)D .n (n +1) 答案 C解析 a 1a 2+a 2a 3+…+a n -1a n =n 1·n 2+n 2·n 3+…+n n -1·n n =n 2⎣⎢⎡⎦⎥⎤11×2+12×3+…+1(n -1)n =n 2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =n 2·n -1n =n (n -1).3.(2018·南京模拟)古典著作《连山易》中记载了金、木、水、火、土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰是相克关系的概率为( )A.23B.25C.12D.15答案 C解析 依题意,从5种物质中任取2种,共有4+3+2+1=10种选法,根据相生相克原理,可知恰有5种选法具有相克关系,故恰是相克关系的概率为P =12,故选C.4.(2017·北京高考)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数;②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.答案 6 12解析 (1)若教师人数为4,则男学生人数小于8,最大值为7,女学生人数最大时应比男学生人数少1人,所以女学生人数的最大值为7-1=6.(2)设男学生人数为x (x ∈N +),要求该小组人数的最小值,则女学生人数为x-1,教师人数为x -2.又2(x -2)>x ,解得x >4,即x =5,该小组人数的最小值为5+4+3=12.5.(2018·江苏高考)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数.(1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).解 (1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3, 所以f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以f n (0)=1.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22, 因此n ≥5时,f n (2)=n 2-n -22. 『金版押题』6.某驾驶员喝了m 升酒后,血液中的酒精含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎪⎨⎪⎧ 5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1.《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不得超过0.02毫克/毫升.此驾驶员至少要过________小时后才能开车(精确到1小时).答案 4解析 当0≤x ≤1时,-2≤x -2≤-1,5-2<5x -2<5-1,即125<5x -2<15,不满足5x -2≤0.02,所以x >1.。
中考数学复习《新定义及阅读理解型问题》测试题(含答案)题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x ⊗(-2)=2x -4-1的解是( ) A . x =4 B . x =5 C . x =6 D . x =72.对于实数a 、b ,我们定义符号max {a ,b}的意义为:当a≥b 时,max {a ,b}=a ;当a <b 时,max {a ,b}=b ;如max {4,-2}=4,max {3,3}=3.若关于x 的函数为y =max {x +3,-x +1},则该函数的最小值是( )A . 0B . 2C . 3D . 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( ) ①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大. 其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b)a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________.6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算. 现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0), 例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________. 8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系并说明理由; (3)已知直线y =-2x +4与y =-2x -6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形; (2)如图②,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________; (4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”); (5)图中,“叠弦角”的度数为__________(用含n 的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B 【解析】根据题意a ⊗b =1a -b 2,则 x ⊗(-2)=1x -(-2)2=1x -4,又∵x ⊗(-2)=2x -4-1,∴1x -4=2x -4-1,解得x =5,经检验x =5是原方程的根,∴原方程x ⊗(-2)=2x -4-1的解是x =5. 2. B 【解析】当x +3≥-x +1时,max{x +3,-x +1}=x +3,此时x ≥-1,∴y ≥2;当x +3<-x +1时,max{x +3,-x +1}=-x +1,此时x <-1,∴y >2.综上y 的最小值为2.3. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②不正确;③∵2-1=12,∴log 212=-1,故③正确. 4. C 【解析】∵a @b =(a +b )2-(a -b )2,若a @b =0,则(a +b )2-(a -b )2=0,∴(a +b )2=(a -b )2, ∴a +b =±(a -b ),∴a =0或b =0,∴①正确;∵a @b =(a +b )2-(a -b )2,∴a @(b +c )=[a +(b +c )]2-[a -(b +c )]2=[a +(b +c )+a -(b +c )][a +(b +c )-(a -b -c )]=4ab +4ac ,∵a @b +a @c =(a +b )2-(a -b )2+(a +c )2-(a -c )2=a 2+2ab +b 2-a 2+2ab -b 2+a 2+2ac +c 2- a 2+2ac -c 2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,∴②正确;∵a @b =(a +b )2-(a -b )2= a 2+2ab +b 2-a 2+2ab -b 2=4ab ,当a =b =0时,满足a @b =a 2+5b 2,∴③错误;若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =(a +b )2-(a -b )2=4ab =4a (c -a )=-4(a -12c )2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32. 7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ),∴MB =MG . 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF是“匀称三角形”.理由如下:如解图②,第9题解图②连接AD、OD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D是BC中点,∵O是AB中点,∴OD是△ABC的中位线,∴OD∥AC.∵DF切⊙O于D点,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,易证Rt△BDG≌Rt△CDF(AAS),∴BG=CF,∵BECF=53,∴BEBG=53,∵BG∥AF(或Rt△BEG∽Rt△AEF),∴BEBG=AEAF=53.在Rt△AEF中,设AE=5k,则AF=3k,由勾股定理得,EF=4k,∴AF+EF+AE3=3k+4k+5k3=4k=EF,∴△AEF是“匀称三角形”.10. (1)证明:∵m是一个完全平方数,∴m=p×q,当p=q时,p×q就是m的最佳分解,∴F(m)=pq=pp=1.(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2(y≤9),∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179,∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22.(2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2,又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切.(3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25,∴这两条直线之间的距离为2 5.12. (1)选择图①.证明:依题意得∠DAD′=60°,∠PAO =60°. ∵∠DAP =∠DAD′-∠PAD′=60°-∠PAD′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD′, ∴∠DAP =∠D′AO.∵∠D =∠D′,AD =AD′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO , 又∵∠PAO =60°,∴△AOP 是等边三角形. 选择图②.证明:依题意得∠EAE′=60°,∠PAO =60°. ∵∠EAP =∠EAE′-∠PAE′=60°-∠PAE′, ∠E ′AO =∠PAO -∠PAE′=60°-∠PAE′, ∴∠EAP =∠E′AO(ASA ). ∵∠E =∠E′,AE =AE′, ∴△EAP ≌△E ′AO , ∴AP =AO , 又∵∠PAO =60°, ∴△AOP 是等边三角形.第12题解图(2)证明:如解图,连接AC ,AD ′,CD ′. ∵AE ′=AB ,∠E′=∠B =180°×(5-2)5=108°,E ′D ′=BC ,∴△AE ′D ′≌△ABC(SAS ),∴AD ′=AC ,∠AD ′E ′=∠ACB , ∴∠AD ′C =∠ACD′, ∴∠OD ′C =∠OCD′, ∴OC =OD′,∴BC -OC =E′D′-OD′,即BO =E′O. ∵AB =AE′,∠B =∠E′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD′中,⎩⎪⎨⎪⎧OA =OABA =D′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D′AO , 由(1)知∠D′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO ,∵∠EAB=15×180°×(5-2)=108°,∴∠PAE+∠BAO=48°,同理可证得∠OAB=∠PAE,∴∠OAB=12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO所在的直线绕点A逆时针旋转60°后,AO=AP,且∠PAO =60°,故△AOP是等边三角形.(5)60°-180°n(n≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n边形的内角度数减去60°之后再除以2,即∠OAB=180°(n-2)n-60°2,化简得∠OAB=60°-180°n(n≥3).13. 解:(1)由题意得n=1,∴抛物线y=x2-2x+1=(x-1)2,顶点为Q(1,0),将(1,0)代入y=mx+1,得m=-1,∴m=-1,n=1.(2)由题意设“路线”L的解析式为y=a(x-h)2+k,∵顶点Q的坐标在y=6x和y=2x-4上,∴⎩⎪⎨⎪⎧k=6hk=2h-4,解得h=-1或3,∴顶点Q的坐标为(-1,-6)或(3,2),∴y=a(x+1)2-6或y=a(x-3)2+2,又∵“路线”L过P(0,-4),代入解得a=2(顶点为(-1,-6)),a=-23(顶点为(3,2)),∴y=2(x+1)2-6或y=-23(x-3)2+2,即y=2x2+4x-4或y=-23x2+4x-4.(3)由题可知抛物线顶点坐标为(-3k2-2k+12a,4ak-(3k2-2k+1)24a),设带线l:y=px+k,代入顶点坐标得p=3k2-2k+12,11 ∴y =3k 2-2k +12x +k , 令y =0,则带线l 交x 轴于点(-2k 3k 2-2k +1,0),令x =0,则带线l 交y 轴于点(0,k), ∵k ≥12>0, ∴3k 2-2k +1=3(k -13)2+23>0, ∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k +3, 令t =1k ,∵12≤k ≤2,∴12≤t ≤2,∴S =1t 2-2t +3,∴1S =t 2-2t +3=(t -1)2+2,故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。
四边形中新定义型试题探究
四边形中新定义型试题探究
所谓"新定义"型试题,是指在试题中给出一个考生从未接触过的新概念,要求考生现学现用,主要考查考生阅读理解能力、应用新知识能力、逻辑推理能力和创新能力.给"什么",用"什么",是"新定义"型试题解题的基本思路.以四边形为背景的几何"新定义"型试题,看似平淡无奇,仔细研读却发现试题韵味无穷,极具探究价值和选拔功能.求解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握相关的基本概念、性质,把握图形的变化规律.
作者:王赛英徐敏贤作者单位:浙江省象山县丹城中学,315700 刊名:数学通报PKU英文刊名:BULLETIN DES SCIENCES MATHEMATICS 年,卷(期):2008 47(9) 分类号:O1 关键词:。
专题50 中考数学新定义型试题解法
1.新定义问题
所谓“新定义”试题指给出一个从未接触过的新规定,要求现学现用,“给什么,用什么”是应用新“定义”解题的基本思路.这类试题的特点:源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等等. 在解决它们过程中又可产生了许多新方法、新观念,增强了学生创新意识.
2.新定义问题类型
主要包括以下几种类型:
(1)概念的“新定义”;
(2)运算的“新定义”;
(3)规则的“新定义”;
(4)实验操作的“新定义”;
(5)几何图形的新定义.
3.新定义问题解题策略
“新定义型专题”关键要把握两点:
一是掌握问题原型的特点及其问题解决的思想方法;
二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移。
【例题1】(2020•河南)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为()
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.只有一个实数根。
初中数学关注“新定义”型试题近年来在各级竞赛和中考中,涌现了大量的着意考查学生的创新意识、创新精神为目的的新“定义”试题。
所谓“新定义”试题指给出一个考生从未接触过的新规定,要求考生现学现用,其目的考查考生的阅读理解能力、接受能力、应变能力和创新能力,培养学生自主学习、主动探究的品质。
“给什么,用什么”是应用新“定义”解题的基本思路。
1. 关注边缘概念的新定义所谓新定义的边缘概念,即给出一种特殊的概念或满足某种特殊的关系,要求学生运用这种概念去创造性地思考并解决问题。
例1. 一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如223516-=,故16是一个“智慧数”。
在自然数列中,从1开始起,第1990个“智慧数”是__________。
分析“智慧数”是一种全新的、特殊的概念,解这类题的关键是要准确全面地理解“智慧数”的涵义,通过可逆思维结合的方法解决问题。
由于自然数可分为奇数和偶数,所以要分析奇数与偶数中哪些数是“智慧数”。
解:设奇数为12+k (k 是自然数),显然12)1(22+=-+k k k 成立,当偶数为4k 时(k 是正整数),k k k 4)1()1(22=--+也成立,即:每个形如12+k ,4k 的非零自然数都是智慧数,而被4除余数为2的偶数都不是智慧数,所以智慧数有1,3,4;5,7,8;9,11,12;13,15,16;17,19,20;…,即2个奇数,1个4的倍数,三个一组依次排列下去。
因为1990=663×3+1,即第1990个智慧数是664组的第一个,所以它是663×4+1=2653。
2. 关注对新命题运算的定义新命题的运算,就是在代数式中对某些相同的结构或某种特定的操作用特定的算式符号来表示,形成一种新的运算。
例2. 读一读:式子“1004321+++++ ”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了方便起见,我们可将“1+2+3+4+…+100”表示为∑=1001n n ,这“∑”是求和符号。
例3、图1,已知四边形ABCD ,点P 为平面内一动点. 如果∠PAD =∠PBC ,则我们称点P 为四边形ABCD 关于A 、B 的等角点. 如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.(1)若A 、D 两点的坐标分别为A (0,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为______;(2)若A 、D 两点的坐标分别为A (2,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;(3)若A 、D 两点的坐标分别为A (2,4)、D (10,4),点P (x ,y )为四边形ABCD 关于A 、B 的等角点,其中x >2,y >0,求y 与x 之间的关系式.练习3:定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”。
根据上述定义,距离坐标为(2,3)的点的个数是_______。
例4.如果三角形有一边上的中线长恰好等于这边的长,则称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=32,求证:△ABC是“好玩三角形”;(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC 和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.练习4:若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数例5、如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A,B 重合),我们称∠APB 是⊙O 上关于A 、B 的滑动角.(1)已知∠APB 是⊙O 上关于A 、B 的滑动角.①若AB 是⊙O 的直径,则∠APB =____; ②若⊙O 的半径是1,AB=2,求∠APB 的度数.(2)已知O 2是⊙O 1外一点,以O 2为圆心做一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.BA0P几何新定义练习5:阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c.(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形.②当△ACE是直角三角形时,求∠AOC的度数.课堂练习1.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[410x+]=5,则x的取值可以是()A.40 B.45 C.51 D.563.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,则这个“特征三角形”的最小内角的度数为.5.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,则曲线CDEF的长是.6.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BEDC EC=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)。