医学统计学
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
第一章绪论(一)名词解释1.总体与样本2. 随机抽样3. 变异4. 等级资料5. 概率与频率6. 随机误差7. 系统误差8. 随机变量9.参数10. 统计量(二)单项选择题1.观察单位为研究中的( )。
A.样本B. 全部对象C.影响因素D. 个体2.总体是由()。
A.个体组成B. 研究对象组成C.同质个体组成D. 研究指标组成3.抽样的目的是()。
A.研究样本统计量B. 由样本统计量推断总体参数C.研究典型案例研究误差D. 研究总体统计量4.参数是指()。
A.参与个体数B. 总体的统计指标C.样本的统计指标D. 样本的总和5.关于随机抽样,下列那一项说法是正确的()。
A.抽样时应使得总体中的每一个个体都有同等的机会被抽取B.研究者在抽样时应精心挑选个体,以使样本更能代表总体C.随机抽样即随意抽取个体D.为确保样本具有更好的代表性,样本量应越大越好(三)是非题1.研究人员测量了100例患者外周血的红细胞数,所得资料为计数资料。
2.统计分析包括统计描述和统计推断。
3.计量资料、计数资料和等级资料可根据分析需要相互转化。
(四)简答题某年级甲班、乙班各有男生50人。
从两个班各抽取10人测量身高,并求其平均身高。
如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什麽?第二章计量资料的统计描述(一)名词解释1.频数表2.算术均数3.几何均数4.中位数5.极差6.百分位数7.四分位数间距8.方差9.标准差10.变异系数(二)单项选择题1.各观察值均加(或减)同一数后()。
A.均数不变,标准差改变B.均数改变,标准差不变C.两者均不变D.两者均改变2.比较身高和体重两组数据变异度大小宜采用()。
A.变异系数B.差C.极差D.标准差3.以下指标中()可用来描述计量资料的离散程度。
A.算术均数B.几何均数C.中位数D.标准差4.偏态分布宜用()描述其分布的集中趋势。
A.算术均数B.标准差C.中位数D.四分位数间距5.各观察值同乘以一个不等于0的常数后,()不变。
医学统计学一、介绍医学统计学是医学领域中一门重要的学科,它通过收集、整理和分析医学数据,为医学研究和临床决策提供科学依据。
医学统计学的主要任务是使用统计方法分析各种医学数据,从中提取有意义的信息,并对结果的可靠性和有效性进行评估。
在医学研究中,医学统计学起着至关重要的作用,帮助研究人员通过数据分析对疾病的发病机制、病理生理过程和治疗效果等进行评估。
二、常见统计方法1. 描述统计学描述统计学是医学统计学的基础,它主要用于对医学数据的数量特征进行描述和总结。
常见的描述统计学方法包括:•平均值:用于描述数据的中心趋势。
•标准差:用于描述数据的离散程度。
•百分位数:用于描述数据的分布情况。
2. 推断统计学推断统计学是医学统计学的核心,它基于样本数据对总体进行推断。
常见的推断统计学方法包括:•假设检验:用于检验研究假设的真实性。
•置信区间:用于估计总体参数的范围。
•方差分析:用于比较多个样本的均值差异。
3. 生存分析生存分析是医学统计学中的一项重要内容,它主要用于研究患者的生存时间和相关因素。
常见的生存分析方法包括:•生存曲线:用于描述患者生存时间的分布情况。
•生存率:用于描述患者在某一时间点存活的概率。
•Cox比例风险模型:用于研究生存时间和危险因素的关系。
三、应用领域医学统计学广泛应用于医学研究和临床实践中,对于评估疾病的风险因素、制定预防策略、确定诊断标准和评估治疗效果等方面都起着至关重要的作用。
以下是医学统计学在不同领域的应用示例:1. 流行病学研究医学统计学在流行病学研究中发挥着重要作用。
通过收集大量的样本数据,并运用相关的统计方法,可以研究疾病的发病规律、危险因素和暴露因素等,为疾病的预防和控制提供科学依据。
2. 临床试验医学统计学在临床试验中的应用也非常重要。
通过对试验组和对照组的数据进行比较分析,可以评估新药物或治疗方法的疗效和安全性,为临床决策提供可靠依据。
3. 医疗质量评估医学统计学可以用于医疗质量评估,通过对不同医疗机构之间的数据进行比较分析,评估医疗服务的质量,为改善医疗质量提供参考。
医学统计学的基本内容第一章医学统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一(资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作,,其取值范围0?P?1,一般用小数表示。
,,0,事件不可能发生必然事件(随机事件的特例);,,1,事件必然发生;,?0,事件发生的可能性愈小;,?1,事件发生的可能性愈大六、小概率事件习惯上将,?0.05或,?0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
医学统计学第一章绪论第一节医学统计学的定义和内容1.医学统计学的主要内容 :统计推断、统计描述第二节统计工作的基本步骤1.医学统计工作可分为四个步骤:统计设计搜集资料整理资料分析资料第三节统计资料的类型医学统计资料按研究指标的性质一般分为:定量资料、定性资料、等级资料一、定量资料(计量资料)定量资料(quantitative data)是用定量的方法测定观察单位(个体)某项指标数值的大小,所得的资料称定量资料。
如身高(㎝)、体重(㎏)、脉搏(次/分)、血压(kPa,mmHg)等为数值变量,其组成的资料为定量资料。
二、定性资料(计数资料)定性资料(qualitative data)是将观察单位按某种属性或类别分组,清点各组的观察单位数,所得的资料。
亦称无序分类资料。
如:男-女分组;中医的虚、实,阴、阳等分组;按生存-死亡分组;A、B、O、AB分组。
三、等级资料等级资料(ranked data)是将观察单位按属性的等级分组,清点各组的观察单位数,所得的资料为等级资料。
亦称有序分类资料。
如治疗结果分为治愈、显效、好转、无效四个等级。
:疾病的严重程度可以分为,轻、中、重;中医辨证中舌象的颜色有,淡、红、暗、紫。
♦根据需要,各类变量可以互相转化。
♦若按贫血的诊断标准将血红蛋白分为四个等级:重度贫血、中度贫血、轻度贫血、正常,可按等级资料处理。
有时亦可将定性资料或等级资料数量化,如将等级资料的治疗结果赋以分值,分别用0、1、2…等表示,则可按定量资料处理。
第四节统计学中的几个基本概念一、同质与变异同质(homogeneity)是指观察单位或研究个体间被研究指标的主要影响因素相同或基本相同。
如研究儿童的生长发育,同性别、同年龄、同地区、同民族、健康的儿童即为同质儿童。
变异(variation)由于生物个体的各种指标所受影响因素极为复杂,同质的个体间各种指标存在差异,这种差异称为变异。
如同质的儿童身高、体重、血压、脉搏等指标会有一定的差别。
第一章医学统计中的基本概念一、医学统计工作的内容:实验设计(experiment design)、收集资料(collecting data)、整理资料(sorting data)和分析资料(analyzing data)二、变异:医学研究的对象是有机的生命体,其功能十分复杂,不同的个体在相同的条件下,对外界环境因素可以发生不同的反应,这种现象称为个体差异或称为变异三、总体(population)和样本(sample):总体是同质的个体所构成的全体。
从总体中抽取部分个体的过程称为抽样,所抽的部分称为样本,在一个样本里含有的个体数可以不同,样本包含的个体数目称为样本容量。
四、样本的特性:代表性(representation)——要求样本能够充分反应总体的特征;随机性(randomization)——需要保证总体中的每个个体都有相同的几率被抽做样本;可靠性(reliability)——实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度;可比性(comparability)——指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
五、误差:①系统误差(system error)②③六、概率(probability):是描述某一件事发生的可能性大小的一个量度。
习惯将P≤0.05或P≤0.01的事件称为小概率事件第二章集中趋势的统计描述一、频数表(frequency table):①概念:一种格式的统计表,即同时列出观察指标的可能取值区间及其在各区间内出现的频数。
由于这种资料的表达方式较完整地体现了观察值的分布规律,所以也称为频数分布表。
②制作图标的步骤:确定组数、确定组距、确定组段、对各组段计数及手工编制划记表。
二、直方图(histogram):①概念:直方图是以垂直条段代表频数分布的一种图形,条段的高度代表各组的频数,由纵轴标度;各组的组限由横轴标度,条段的宽度表示组距。
医学统计学(statistics of medicine ):医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。
医学统计工作的基本步骤:1、研究设计2、收集资料3、整理(sorting data)资料4、分析(analysis of data)资料研究单位(unit):研究中的个体(individual),是根据研究目的确定的。
观察单位可以是一个人、一个家庭、一个地区、一个样品、一个采样点等。
变量(variable):研究单位的研究特征。
例如:研究7岁男孩身高的正常值范围变量:身高变量可分为:数值变量和分类变量变量之间可以互相转换。
变量值(value of variable):变量的观察结果大小或属性。
数值变量:变量值是可以定量测量并有数值大小的变量。
分类变量:变量值为变量的属性或类别的变量。
同质(homogeneity):根据研究目的给研究单位确定的相同性质。
注意:同质实质上是指有条件的相同,不是全部相同。
只是一个相对的概念,不是绝对的相同。
变异(variation):同质研究单位中变量值间的差异。
总体(population):是根据研究目的确定的同质研究单位的全体。
更确切地说是同质研究单位某种变量值的集合。
例如:调查某地2002年正常成年男子的红细胞数的正常值范围研究单位:一个人变量:红细胞数同质:同某地、同2002年、同成年男子、同正常。
总体:1)某地所有的正常成年男子2)某地所有的正常成年男子的红细胞数样本(sample):是总体中抽取的有代表性的一部分。
注意:随机抽样(无主观性)参数(parameter):根据总体个体值统计计算出来的描述总体的特征量。
(一般用希腊字母表示)统计量(statistic):根据样本个体值统计计算出来的描述样本的特征量。
(一般用拉丁字母表示)注意:总体参数一般是不知道的统计学抽样研究的目的就是:样本统计量→总体参数误差(error)是指实际观察值与观察真值之差、样本指标与总体指标之差。
医学统计学期中测验
1.如何理解正常值范围与均数的可信区间?
答:医学参考值范围传统上称正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
由于存在生物个体变异,每个正常人的测量值会有所不同,即使是同一个人也会因机体的内外环境变化而改变。
因此同属正常人也不能以某一个测量数据作为标准,而必须确定一个波动范围,关于“正常值范围”这一说法,在其意义、推理和观念上都比较模糊,现在已很少使用,而改用“参考值范围”。
参数估计指由样本统计量估计总体参数,是统计推断的重要内容之一。
常用的估计方式有两种:点估计和区间估计。
其中区间估计是指按预先给定的概率,计算出一个区间使它能够包含未知的总体均数,可信区间通常由两个数值界定的可信限构成,其中数值较小的一方称为下限,数值较大的一方称为上限。
1 .从意义来看95%参考值范围是指同质总体内包括95%个体值的估计范围,而总体均数95%可信区间是指按95%可信度估计的总体均数的所在范围。
2.从计算公式看若指标服从正态分布,95%参考值范围的公式是:变量的均数±1.96*变量的标准差。
总体均数95%可信区间的公式是:变量的均数±1.96变量均数的标准差。
前者用标准差,后者用标准误。
前者用1.96,后者用α为0.05,自由度为v的t界值。
应注意:可信区间与参考值范围的意义、计算公式和用途均不同。
2.标准差与标准误的异同。
答:区别:1含义不同(1)S描述个体变量值(x)之间的变异度大小.s越大,变量值(x)越分散;反之,变量值越集中,均数的代表性越强;(2)标准误是述样本均数之间的变异度的大小,标准误越大,样本均数与总体均数的间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。
2与n的关系不同:n增大时,(1)s恒定(2)标准误差减小并趋于0(不存在抽样误差)3用途不同(1)s表示x变异度的大小,计算CV,估计正常值范围,计算标准误等。
(2)参数估计和假设检验。
联系:二者均为变异度指标,样本均数的标准差即为标准误。
标准差与标准误成正比。
3.假设检验的基本原则。
答:假设检验的基本思想是首先对所需要比较的总体提出一个无差别的假设,然后通过样本数据去推断是否拒绝这一假设。
提出假设(即假定来自同一个整体)然后在假设成立的条件下看实际抽到的样本是否属于小概率事件,若属于,则拒绝假设,(即不是来自同一个总体,差异是本质的区别):若不属于小概率事件,则不拒绝假设(取来自同一个总体,差异是由样本误差造成的)。
4.医学统计的主要工作内容。
答:实验设计、收集资料、整理资料和分析资料是医学统计工作的主要内容。
1 实验设计:根据研究的目的,制定总的研究方案;2收集资料:根据研究的目的,实验设计的要求,收集准确完整的含有丰富信息的原始资料;3整理资料:把收集到的原始资料,有目的的进行科学加工,使资料系统化、条理化,以便进行统计分析。
一般应注意以下几点:
(1)资料的逻辑检验 ,(2)一致性检验 ,(3)原始数据的加工;4分析资料:对经过统计整理的资料进行一系列统计描述和统计推断,阐明事物的规律性。
5.第一类错误和第二类错误的关系。
答:当0H 为真时,假设检验拒绝0H 接受1H ,这类错误称为第一类错误或I 型错误,亦称
假阳性错误。
当真是情况为0H 不成立时,假设检验结论不拒绝0H ,这类错误称为第二类
错误或II 型错误,亦称假阴性错误。
Ι型错误的概率用α表示, 表示检验有意义的水准,亦称检验水准。
Ⅱ 型错误的概率用β表示,α愈小,β愈大;反之α愈大,β愈小。
若要同时减少Ⅰ型错误和Ⅱ型错误,则只有增加样本含量。
当不可能同时达到较小的检验水准α和较大的检验功效1-β,α取值一般为0.05,若重点减小β,一般取α=0.1或0.2。