递推数列通项公式的十种策略例析
- 格式:doc
- 大小:1.23 MB
- 文档页数:20
数列专题之(一)递推公式求通项1、 累加法适应于-1a -a n n = f(n), f(n)可为关于n 的一次函数、指数函数或分式函数(裂项)-1-1-2211a =(a -a )+(a -a )++(a -a )+a n n n n n ……2、累积法-121-1-21a a a a =a a a a n n n n n ∙∙∙∙……3、最简单的类型+1a =ca +d n n当c ≠0且c ≠1且 d ≠0时,通过待定系数法配凑为+1d d a +=c(a +)-1-1n n c c(也可直接用迭代,得-12-21a =c a +(1+c+c ++c )n n n d ) 4、+1a =pa +f(n)n n ,f(n)为关于n 的一次函数例1、在数列{a n }中,1a =1,+1a =3a +2n n n ,求通项a n .(方法一)解: +1a =3a +2n n n ,∴2n ≥时,-1a =3a +2(n-1)n n两式相减得令n b =,则n b =3-1n b +2,利用类型3的方法得n-1=53+2n b ∙即=n-153+2∙再用类型一的累加法得a n =n-1513--22n ∙(2n ≥)经检验1a 也满足(方法二,待定系数法)解:令+1a +x(n+1)+y=3(a ++)n n xn y (注意,3为a n 的系数),展开得+1a =3a +2+2-x n n xn y ,与+1a =3a +2n n n 比较系数得x=1,y=于是令n b =1a ++2n n ,则+1n b =3n b 1b = 故n b =n-1532∙所以a n =n-1513--22n ∙5、+1a =pa +f(n)n n ,f(n)为关于n 的指数函数 不妨令f(n)= q n方法一(待定系数法):令+1+1a +q=p(a +q )n nn n λλ,整理,比较系数得λ值,转化为等比数列求之例2、在数列{a n }中,1a =1,-1-1a =3-2a n n n ,求通项a n 设-1-1a +3=-2(a +3)n n n n λλ∙∙整理得a n =n-1-1-2-53n a λ∙ 比较系数得λ=1-5于是令n b = 1a -35nn ∙,下略方法二: +1a =pa +q n n n 等式两边同时除以+1pn ,得到+1+1a a 1=+()pnn n n nq ppp∙ 令n b =a pn n,则+1n b -n b =1()nq pp∙,结合类型一的累加得到n b 、a n方法三:+1a =pa +q n n n 等式两边同时除以+1n q,得到+1+1a a p 1=+n n n nqqqp∙令n b =a n nq,则+1n b =1+n p b qq结合类型三的配凑得到n b 、a n6、分式类型()+1pa +a =0,-0ra +n n n q r ps rq s≠≠常用方法:直接取倒数例4、在数列{a n }中,1a =1,+1a a =a +1n n n 求通项a n+1a +111==1+a a a n n nn,于是+111-=1a a n n,下略不动点辅助方法:先令pa +ra +n n q s=a n ,若有两重根a ,则a n —a 后取倒数(实际上,例4中a=0),若有两相异根a 、b ,则a -a -n n a b为等比数列例5、在数列{a n }中,1a =1,+11a =2-a n n求通项a n令1=a 2-a n n得两重根1,则+1a -1a -1=2-a n n n,+12-a 11==-1a -1a -1a -1n n n n ,下略例6、在数列{an }中,1a=0,+12a=3-ann求通项an令2a=3-ann得两根1、2,则+1+12-1a-13-a a-11==2a-22a-2-23-an n nn nn∙故a-11=a-22nnn⎛⎫⎪⎝⎭,下略。
求递推数列通项公式的十种策略例析递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。
笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。
仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。
一、利用公式法求通项公式例1 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。
解:n n 1n 23a 2a ⋅+=+两边除以1n 2+,得232a 2a nn 1n 1n +=++,则232a 2a n n 1n 1n =-++, 故数列}2a {n n 是以1222a 11==为首,以23为公差的等差数列,由等差数列的通项公式,得23)1n (12a nn -+=,所以数列}a {n 的通项公式为n n 2)21n 23(a -=。
评注:本题解题的关键是把递推关系式n n 1n 23a 2a ⋅+=+转化为232a 2a nn1n 1n =-++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12a nn -+=,进而求出数列}a {n 的通项公式。
二、利用累加法求通项公式例2 已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1)1n (2n)1n (21)1n (]12)2n ()1n [(21)112()122(]1)2n (2[]1)1n (2[+-+-⋅=+-++++-+-=++⋅++⋅+++-++-= 所以数列}a {n 的通项公式为2n n a =评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。
递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。
求递推数列通项公式的十种技巧一、利用公式法求通项公式例1 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。
解:n n 1n 23a 2a ⋅+=+两边除以1n 2+,得232a 2a nn 1n 1n +=++,则232a 2a n n 1n 1n =-++, 故数列}2a {n n 是以1222a 11==为首,以23为公差的等差数列,由等差数列的通项公式,得23)1n (12a nn -+=,所以数列}a {n 的通项公式为n n 2)21n 23(a -=。
评注:本题解题的关键是把递推关系式n n 1n 23a 2a ⋅+=+转化为232a 2a nn1n 1n =-++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12a nn -+=,进而求出数列}a {n 的通项公式。
二、利用累加法求通项公式例2 已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1)1n (2n)1n (21)1n (]12)2n ()1n [(21)112()122(]1)2n (2[]1)1n (2[+-+-⋅=+-++++-+-=++⋅++⋅+++-++-=所以数列}a {n 的通项公式为2n n a =评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。
例3 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
由递推公式求通项公式的常用方法由数列的推公式求通公式是高中数学的重点,也是点,它是年高考命的点。
于推公式确定的数列的求解,通常可以通推公式的,化等差数列或等比数列,有也用到一些特殊的化方法与特殊数列。
方法一:累加法形如 a n+1- a n=f(n)(n=2,3,4 , ⋯) , 且 f( 1) + f( 2) +⋯+ f( n- 1) 可求,用累加法求 a n。
有若不能直接用,可形成种形式,然后利用种方法求解。
例 1:( 07 年北京理工医)已知数列{ a n中, 1=n1= n+是常数,}a2,a+ a cn(c n=1,2,3,⋯)且a1,a2,a3成公比不 1 的等比数列(1)求 c 的(2)求 {a n} 的通公式解:( 1) a1,a2,a3 成公比不 1 的等比数列2a1a3a2a n1a n cn(n1,2,3, )(a1c)2a1(a1 c 2c)又a12解得c或(舍去)20因此 c2(2)由(1)知a n 1a n2n,即 a n 1a n 2n ,将n=1,2,⋯,n-1,分代入a2a121a3a222a4a323a n a n 12(n1)将上面 n-1个式子相加得a n- a1=2(1+2+3+⋯+n-1)=n2-n又 a1=2, a n=n2- n+2方法二:累乘法n n)(n f(1)f(f n-1)可求,用累乘法求a n.有若不形如a n+1= g(= 2,3,4⋯),且2)⋯ ( a能直接用,可形成种形式,然后用种方法求解。
例 2:{ a n}是首 1 的正数列,且 (n+ 1)a n+12-na n2+a n+1a n= 0(n= 1,2,3⋯ ),求它的通公式。
解:由意知a1=1,a n>0(n=1,2,3⋯)由 (n+ 1)a n+12-na n2+a n+1a n= 0得 (a n+1+a n)[( n+ 1)a n+1-na n]= 0因 a n>0,a na n+1n=1,2⋯-1 分代入得+1+a n≠,所以=,将n,0a n n+1,n ,21 a= 12 aa3=2a23⋯⋯a n n- 1=a n-1n将上面 n-1个式子相乘得,a n=1×2×⋯×n-1 a123n又,n=1a n点:本先由已知求出推公式,化成了a n+1= g(n)的型,再利用累乘法求通公a n式。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中 数学联赛的热点之一 • 一、作差求和法1 1a 2 a 1 — J a 31 21 1 a 4 a 3 — ,a 3 4得: a n a 1 1 —•故 a n 4 n 解:原递推式可化为 3, a n 1 a n1 求 n(n 1)' “ 1 1 小 : a n 1 a n则 n n 111a 2——23a n 11 1 逐项相加 nn 1 n1n例1在数列{ a n }中,印 通项公式a n . 13 4 1 1b 1 a 2 a 1,公比 为• 故9 3 9 31. n 21,1、n2 .1 n 1. nb n 1 b 1()() ()•故 an an 1 ()•由 39 3 33逐差法可得:a n 3](〕)n .2 2 3例4已知数列{ a n },其中a 1 1,a 2 2,且当n 》3时,a n 2a n 1 a n 21 ,求通项公式a n 。
解 由 a n2a n 1 a n21 得:(a n a n 1) (a n 1 a n 2)1,令b n 1 a n a n 1,则上式为b n 1 0 2 1,因此{ g }是一个等差数列, b 1 b 2b 1a 2 a 1 1,公差为1.故b n又 b 1 b 2b n 1 a 2a 1 a 3 a 2a n a n 1 a n 1b n 1n(n 1) 21所以 a n 1 一 n(n21),即a n 如22)二、作商求和法例2 设数列{ a n }是首 为1的正项数列,且四、积差相消法例5( 1993年全国数学联赛题一试第五题) 设正数列a 0 ,2 2 (n 1)a n 1 na n a n 1a n0 (n=1,2,3 …),则它的通项a n,…满足■. a n a n 22a n 1公式是a n = _____ ( 2000年高考15题) 解:原递推式可化为: (n 2)且a 0 a 1 1,求{a n }的通项公式解 将递推式两边同除以.a n 1a n 2整理得:[(n 1)a n 1 na n ](a n 1 a n ) =0 a n 1a n >0, a n 1 na n n 1则a 21 a 32 a 43 a n n 1 则1 J Ja 1 2 a 2 3 a 34 a n 1na 逐项相乘得:- n 1即 a n = 1a 1 n n a na n 1a n 2a n设b n =a n 1b 2 2b 1 1 a 1=1, b n2b n 1,故有⑴ b 3 2b 21三、换元法4 13 例3 已知数列{ a n },其中a 1 -,a 2 ,且当n >3 3 9 1 时,a n a n 1 (a n 1 a n 2),求通项公式a n (1986年高 3 考文科第八题改编)• 解:设b n 1 a n a n 1,原递推式可化为: 1b n 1b n 2,{b n } 是一个等比数列, 3b n2b n 11(n 1)由⑴ 2n2+⑵2n 3 + ...+(n 1 )20得 b n 12 222n1 :2n1, 即an=2n1・,a n 1逐项相乘得: a n=:(21)2 (22 1)2 (2n 21),考虑到a 01,a n1(2 1)2(221)2(2n1)2(n (n 0)1)八、待定系数法待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:1、a n 1 Aa n B (A、B为常数)型,可化为a n 1=A(a n )的形式.a n五、a n2a n 1取倒数法已知数列{a n}中,其中a i1,求通项公式a n。
3.3递推数列一、基本知识简述1.有关概念:我们在研究数列{a n }时,如果任一项a n 与它的前一项1-n a (或几项)间的关系可以用一个公式来表示,则此公式就称为数列的递推公式。
通过递推公式给出的数列,一般我们也称之为递推数列。
主要有以下几种方法:(1) 构造法:通过构造特殊的数列(一般为等差数列或等列),利用特殊数列的通项求递推数列的通项.(2) 迭代法:将递推式适当变形后,用下标较小的项代替某些下标较大的项,在一般项和初始之间建立某种联系,从而求出通项.(3) 代换法:包括代数代换、三角代换等(4) 待定系数法:先设定通项的基本形式,再根据题设条件求出待定的系数。
3.思想策略:构造新数列的思想。
4.常见类型: 类型Ⅰ:⎩⎨⎧=≠+=+为常数)a a a n p n q a n p a n n ()0)(()()(11(一阶递归)类型II :分式线性递推数列:)0(1≠++=+A BAa DCa a n n n二、例题:例1:231+=-n n a a ,21=a ,求通项n a分析:构造辅助数列, )1(311+=+-n n a a ,则13-=nn a求通项过程中,多次利用递推的思想方法以及把一般数列转化为等差、等比数列去讨论,从而求出了通项公式n a 。
[一般形式] 已知q pa a n n +=-1,a a =1,其中p,q,a 为常数,求通项n a [同类变式]已知数列}{n a 满足)12(21-+=+n a a n n ,且21=a ,求通项n a分析:(待定系数),构造数列}{b kn a n ++使其为等比数列, 即)(2)1(1b kn a b n k a n n ++=++++,解得1,2==b k求得12251--⋅=-n a n n[归纳]: 类型Ⅰ:⎩⎨⎧=≠+=+为常数)a a a n p n q a n p a n n ()0)(()()(11(一阶递归)其特例为:(1)1)(=n p 时,)(1n q a a n n +=+利用累加法,将)1(1-+=-n q a a n n ,=-1n a 2-n a +)2(-n q ,=2a 1a +)1(q …,各式相加,得 =n a 1a +∑-=11)(n k k q (n ≥2)(2)0)(=n q 时,n n a n p a )(1=+;利用累乘法,∏-==111)(n k n k p a a(3)q n q p n p ==)(,)(时,)0(1≠+=+p qpa a n n解题方法:利用待定系数法构造类似于“等比数列”的新数列法1:(常数变易法) 设)(1x a p x a n n +=+- 则)1(1-+=-p x pa a n n ,从而1-=p qx 亦即数列⎭⎬⎫⎩⎨⎧-+1p q a n 是以1-+p q a n为首项,公比为p 的等比数列, 从而可得:11)1(1--+=-+n n p p qa p q a , 1)1(1---+=-p q p p q a a n n 1])1([1--⋅+-=-p q p q p a n法2:)(211----=-n n n n a a p a a利用{}1--n n a a 成等比数列求出1--n n a a ,再利用迭代或迭另法求出n a 法3:由q pa a n n +=-1,则可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=+=-------21221221111........p q p a p a p qp a pa p q p a p a n n n n n nn n nn,从而又可得n n n p q p q p q p a p a ++++=...321 即)]...11([121-+++⋅+=n nn pq p p p q p a p a 1])1([1--⋅+-=-p qp q p a n(4)q n q p n p ==)(,)(n时,)0(1≠+=+p qpa a n n n两边同除以np例2:数列}{n a 的前n 项和为n S ,且11=a ,n S =*)(2N n a n n ∈,求数列}{n a 的通项公式.例3:数列}{n a 中,且311=a ,1221+=+n nn a a a ,求数列}{n a 的通项公式.[提示]112111+=+nn a a[归纳]:类型II :分式线性递推数列:)0(1≠++=+A BAa DCa a n n n练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2ΛΛ==n a c n nn ,求证:数列{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和。
求递推数列通项公式的十种策略例析递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。
笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。
仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。
一、利用公式法求通项公式例1 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。
解:n n 1n 23a 2a ⋅+=+两边除以1n 2+,得232a 2a nn 1n 1n +=++,则232a 2a n n 1n 1n =-++, 故数列}2a {n n 是以1222a 11==为首,以23为公差的等差数列,由等差数列的通项公式,得23)1n (12a nn -+=,所以数列}a {n 的通项公式为n n 2)21n 23(a -=。
评注:本题解题的关键是把递推关系式n n 1n 23a 2a ⋅+=+转化为232a 2a nn1n 1n =-++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12a nn -+=,进而求出数列}a {n 的通项公式。
二、利用累加法求通项公式例2 已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1)1n (2n)1n (21)1n (]12)2n ()1n [(21)112()122(]1)2n (2[]1)1n (2[+-+-⋅=+-++++-+-=++⋅++⋅+++-++-= 所以数列}a {n 的通项公式为2n n a =评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。
利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,K K)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n+++-+-=-Λ即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:Θ 2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ=1)1()2()2()1(a f f n f n f ++++-+-Λ.例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n , 证明213-=n n a 例2.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:n a n 12-= 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:na a n 11=,即n a =n1. 三、换元法例 3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式na (1986年高考文科第八题改编). 解:设11---=n n n a ab ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:n n a )31(2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
求递推数列通项公式的十种策略例析递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。
笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。
仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。
一、利用公式法求通项公式例1 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。
解:n n 1n 23a 2a ⋅+=+两边除以1n 2+,得232a 2a nn 1n 1n +=++,则232a 2a n n 1n 1n=-++, 故数列}2a {n n 是以1222a 11==为首,以23为公差的等差数列,由等差数列的通项公式,得23)1n (12a nn -+=,所以数列}a {n 的通项公式为n n 2)21n 23(a -=。
评注:本题解题的关键是把递推关系式n n 1n 23a 2a ⋅+=+转化为232a 2a nn1n 1n =-++,说明数列}2a {nn 是等差数列,再直接利用等差数列的通项公式求出23)1n (12a n n -+=,进而求出数列}a {n 的通项公式。
二、利用累加法求通项公式例2 已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1)1n (2n )1n (21)1n (]12)2n ()1n [(21)112()122(]1)2n (2[]1)1n (2[+-+-⋅=+-++++-+-=++⋅++⋅+++-++-= 所以数列}a {n 的通项公式为2n n a =评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。
例3 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
解:由132a a n n 1n +⋅+=+ 得132a a n n 1n +⋅=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---3)1n ()3333(23)132()132()132()132(122n 1n 122n 1n +-+++++=++⋅++⋅+++⋅++⋅=----所以1n 32n 31332a n nn -+=++--⋅= 评注:本题解题的关键是把递推关系式132a a n n 1n +⋅+=+转化为132a a n n 1n +⋅=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。
例4 已知数列}a {n 满足3a 132a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
解:132a 3a n n 1n +⋅+=+两边除以1n 3+,得1n n n 1n 1n 31323a 3a +++++=, 则1n nn 1n 1n 31323a 3a ++++=-, 故3a )3a 3a ()3a 3a ()3a a a ()a a 3a (3a 111223n 3n 2n 2n 2n 2n 1n 1n 1n 1n nn nn +-++-+-+-=---------- 33)3132()3132()3132()3132(22n 1n n +++++++++=-- 1)3131313131(3)1n (222n 1n n n +++++++-=-- 因此n1n n n n 321213n 2131)31(313)1n (23a ⋅-+=+--⋅+-=-, 则213213n 32a n n n -⋅+⋅⋅=评注:本题解题的关键是把递推关系式132a 3a n n 1n +⋅+=+转化为1n n n 1n 1n 31323a 3a ++++=-,进而求出)3a 3a ()3a 3a ()3a 3a (3n 3n 2n 2n 2n 2n 1n 1n 1n 1n n n -----------+-+-+…+3a )3a 3a (11122+-,即得数列}3a {n n的通项公式,最后再求数列}a {n 的通项公式。
三、利用累乘法求通项公式例5 已知数列}a {n 满足3a a 5)1n (2a 1n n 1n =⋅+=+,,求数列}a {n 的通项公式。
解:因为3a a 5)1n (2a 1n n 1n =⋅+=+,,所以0a n ≠,则n n1n 5)1n (2a a +=+, 则112232n 1n 1n n n a a a a a a a a a a ⋅⋅⋅⋅⋅=---3]5)11(2[]5)12(2[]5)12n (2[]5)11n (2[122n 1n ⋅⋅+⋅⋅⋅+⋅+-⋅+-=-- 35]23)1n (n [212)2n ()1n (1n ⋅⋅⋅⋅⋅-⋅⋅=+++-+--所以数列}a {n 的通项公式为!n 523a 2)1n (n 1n n⋅⋅⋅=--评注:本题解题的关键是把递推关系n n 1n a 5)1n (2a ⋅+=+转化为n n1n 5)1n (2a a +=+,进而求出112232n 1n 1n n a a a a a a a a a ⋅⋅⋅⋅⋅--- ,即得数列}a {n 的通项公式。
例6 (2004年全国15题)已知数列}a {n 满足)1n (a 3a 2a a 1a 321n 1-++++== , )2n (a )1n (1n ≥-+-,则}a {n 的通项⎪⎩⎪⎨⎧≥==2n 2!n 1n 1a n ,,解:因为)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=- ①所以n 1n 3211n na a )1n (a 3a 2a a +-++++=-+②所以②式-①式得n n 1n na a a =-+ 则)2n (a )1n (a n 1n ≥+=+ 则)2n (1n a a n1n ≥+=+ 所以2232n 1n 1n n n a a a a a a a a ⋅⋅⋅⋅=--- 22a 2!n a ]34)1n (n [⋅=⋅⋅⋅⋅-= ③由)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=- ,取n=2得212a 2a a +=,则12a a =,又知1a 1=,则1a 2=,代入③得2!n n 5431a n =⋅⋅⋅⋅⋅= 。
评注:本题解题的关键是把递推关系式)2n (a )1n (a n 1n ≥+=+转化为1n a a n1n +=+(n ≥2),进而求出2232n 1n 1n n a a a a a a a ⋅⋅⋅⋅--- ,从而可得当n ≥2时n a 的表达式,最后再求出数列}a {n 的通项公式。
四、利用待定系数法求通项公式例7 已知数列}a {n 满足6a 53a 2a 1n n 1n =⋅+=+,,求数列}a {n 的通项公式。
解:设)5x a (25x a n n 1n 1n ⋅+=⋅+++④将n n 1n 53a 2a ⋅+=+代入④式,得n n 1n n n 5x 2a 25x 53a 2⋅+=⋅+⋅++,等式两边消去n a 2,得n 1n n 5x 25x 53⋅=⋅+⋅+,两边除以n 5,得x 25x 3=⋅+,则x=-1,代入④式,得)5a (25a n n 1n 1n -=-++⑤由1565a 11=-=-≠0及⑤式,得05a nn ≠-,则25a 5a nn 1n 1n =--++,则数列}5a {n n -是以15a 11=-为首项,以2为公比的等比数列,则1n n n 215a -⋅=-,故n 1n n 52a +=-。
评注:本题解题的关键是把递推关系式n n 1n 53a 2a ⋅+=+转化为)5a (25a n n 1n 1n -=-++,从而可知数列}5a {n n -是等比数列,进而求出数列}5a {n n -的通项公式,最后再求出数列}a {n 的通项公式。
例8 已知数列}a {n 满足1a 425a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
解:设)y 2x a (3y 2x a n n 1n 1n +⋅+=+⋅+++⑥将425a 3a n n 1n +⋅+=+代入⑥式,得)y 2x a (3y 2x 425a 3n n 1n n n +⋅+=+⋅++⋅++整理得y 32x 3y 42)x 25(n n +⋅=++⋅+。
令⎩⎨⎧=+=+y 3y 4x 3x 25,则⎩⎨⎧==2y 5x ,代入⑥式,得)225a (3225a n n 1n 1n +⋅+=+⋅+++⑦由013121225a 11≠=+=+⋅+及⑦式, 得0225a nn ≠+⋅+,则3225a 225a n n 1n 1n =+⋅++⋅+++,故数列}225a {n n +⋅+是以13121225a 11=+=+⋅+为首项,以3为公比的等比数列,因此1n n n 313225a -⋅=+⋅+,则225313a n 1n n -⋅-⋅=-。
评注:本题解题的关键是把递推关系式425a 3a n n 1n +⋅+=+转化为)225a (3225a n n 1n 1n +⋅+=+⋅+++,从而可知数列}225a {n n +⋅+是等比数列,进而求出数列}225a {n n +⋅+的通项公式,最后再求数列}a {n 的通项公式。
例9 已知数列}a {n 满足1a 5n 4n 3a 2a 12n 1n =++⋅+=+,,求数列}a {n 的通项公式。
解:设z )1n (y )1n (x a 21n ++++++)z yn xn a (22n +++=⑧将5n 4n 3a 2a 2n 1n ++⋅+=+代入⑧式,得z )1n (y )1n (x 5n 4n 3a 222n +++++++⋅⋅+ )z yn xn a (22n +++=,则z2yn 2xn 2a 2)5z y x (n )4y x 2(n )x 3(a 22n 2n +++=+++++++++等式两边消去n a 2,得z 2yn 2xn 2)5z y x (n )4y x 2(n )x 3(22++=++++++++,则得方程组⎪⎩⎪⎨⎧=+++=++=+z25z y x y 24y x 2x2x 3,则⎪⎩⎪⎨⎧===18z 10y 3x ,代入⑧式,得18)1n (10)1n (3a 21n ++++++)18n 10n 3a (22n +++=⑨由0323111811013a 21≠=+=+⋅+⋅+及⑨式,得018n 10n 3a 2n ≠+++则218n 10n 3a 18)1n (10)1n (3a 2n 21n =+++++++++,故数列}18n 10n 3a {2n +++为以323111811013a 21=+=+⋅+⋅+为首项,以2为公比的等比数列,因此1n 2n 23218n 10n 3a -⋅=+++,则18n 10n 32a 24n n ---=+。