化原课程设计二氧化硫吸收塔
- 格式:doc
- 大小:2.26 MB
- 文档页数:30
吉林化工学院化工原理课程设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计教学院化工与材料工程学院专业班级化学工程与工艺0804班学生姓名学生学号 08110430指导教师徐洪军2010 年 12 月 15 日化工原理课程设计任务书专业化学工程与工艺班级化工0804 设计人郑大朋一.设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计二.原始数据及条件生产能力:年处理空气—二氧化硫混合气2.3万吨(开工率300天/年)。
原料:二氧化硫含量为5%(摩尔分率,下同)的常温气体。
分离要求:塔顶二氧化硫含量不高于0.26% 。
塔底二氧化硫含量不低于0.1% 。
建厂地址:河南省永城市。
三.设计要求(一)编制一份设计说明书,主要内容包括:1. 摘要;2. 流程的确定和说明(附流程简图);3. 生产条件的确定和说明;4. 吸收塔的设计计算;5. 附属设备的选型和计算;6. 设计结果列表;7. 设计结果的讨论和说明;8. 主要符号说明;9. 注明参考和使用过的文献资料;10. 结束语(二) 绘制一个带控制点的工艺流程图。
(三)绘制吸收塔的工艺条件图]1[。
四.设计日期: 2010 年 11 月 22 日至 2010 年 12 月 15 日目录摘要 (IV)第一章绪论 (1)1.1 吸收技术概况 (1)1.2 吸收设备发展 (1)1.3 吸收在工业生产中的应用 (3)第二章吸收塔的设计方案 (4)2.1 吸收剂的选择 (4)2.2 吸收流程选择 (5)2.2.1 吸收工艺流程的确定 (5)2.2.2 吸收工艺流程图及工艺过程说明 (6)2.3 吸收塔设备及填料的选择 (7)2.3.1 吸收塔设备的选择 (7)2.3.2 填料的选择 (8)2.4 吸收剂再生方法的选择 (10)2.5 操作参数的选择 (11)2.5.1 操作温度的确定 (11)2.5.2 操作压强的确定 (11)第三章吸收塔工艺条件的计算 (12)3.1 基础物性数据 (12)3.1.1 液相物性数据 (12)3.1.2 气相物性数据 (12)3.1.3 气液两相平衡时的数据 (12)3.2 物料衡算 (12)3.3 填料塔的工艺尺寸计算 (13)3.3.1 塔径的计算 (13)3.3.2 泛点率校核和填料规格 (14)3.3.3 液体喷淋密度校核 (15)3.4 填料层高度计算 (15)3.4.1 传质单元数的计算 (15)3.4.2 传质单元高度的计算 (16)3.4.3 填料层高度的计算 (17)3.5 填料塔附属高度的计算 (18)3.6 液体分布器的简要设计 (18)3.6.1 液体分布器的选型 (18)3.6.2 分布点密度及布液孔数的计算 (19)3.6.3 塔底液体保持管高度的计算 (20)3.7 其他附属塔内件的选择 (21)3.7.1 填料支撑板 (21)3.7.2 填料压紧装置与床层限制板 (21)3.7.3 气体进出口装置与排液装置 (21)3.8 流体力学参数计算 (22)3.8.1 填料层压力降的计算 (22)3.8.2 泛点率 (23)3.8.3 气体动能因子 (23)3.9 附属设备的计算与选择 (23)3.9.1 吸收塔主要接管的尺寸计算 (23)3.9.2 离心泵的计算与选择 (24)工艺设计计算结果汇总与主要符号说明 (26)设计方案讨论 (31)附录(计算程序及有关图表) (32)参考文献 (34)结束语 (35)带控制点的工艺流程图 (36)设备条件图 (37)化工原理课程设计教师评分表 (38)摘要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
化学与环境工程学院化工原理课程设计SO过程填料吸收塔的设计题目:处理量为31⋅的水吸收22000m h-专业班级:化学工程与工艺0409402班学生学号: *************:**指导老师:谭志斗、石新雨化工原理—化工设备机械基础课程设计任务书-2 专业化工班级 0409402 设计人一、设计题目:水吸收二氧化硫填料吸收塔设计二、设计任务及操作条件1、设计任务:)处理量: 2000Nm3/h 混合气(空气、SO2进塔混合气中含SO: 5%(V%)操作温度: 303 K2回收率: 95%SO22、操作条件操作压强: 100kPa(绝)3、设备型式自选4、厂址武汉地区三、设计内容:1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔径的确定(2)填料层高度计算(3)总塔高、总压降及接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、工艺流程图及换热器工艺条件图7、设计评述四. 设计日期:2011年 12月01日至 2011年12 月16日五. 指导教师:谭志斗、石新雨目录摘要 .............................................................................................................................................. - 5 - 第一章绪论 ................................................................................................................................ - 6 -1.1吸收技术概况.................................................................................................................- 6 -1.2吸收设备发展.................................................................................................................- 6 -1.3吸收在工业生产中的应用.............................................................................................- 8 - 第二章吸收塔的设计方案 ........................................................................................................ - 9 -2.1吸收剂的选择.................................................................................................................- 9 -2.2 吸收流程选择........................................................................................................... - 10 -2.2.1吸收工艺流程的确定....................................................................................... - 10 -2.2.2吸收工艺流程图及工艺过程说明................................................................... - 11 -2.3吸收塔设备及填料的选择.......................................................................................... - 12 -2.3.1吸收塔设备的选择........................................................................................... - 12 -2.3.2填料的选择....................................................................................................... - 13 -2.4吸收剂再生方法的选择.............................................................................................. - 16 -2.5 操作参数的选择....................................................................................................... - 16 -2.5.1操作温度的确定............................................................................................... - 16 -2.5.2操作压力的确定............................................................................................... - 17 - 第三章吸收塔工艺条件的计算 .............................................................................................. - 18 -3.1基础物性数据.............................................................................................................. - 18 -3.1.1液相物性数据................................................................................................... - 18 -3.1.2气相物性数据................................................................................................... - 18 -3.1.3气液两相平衡时的数据................................................................................... - 18 -3.2物料衡算...................................................................................................................... - 19 -3.3填料塔的工艺尺寸计算.............................................................................................. - 20 -3.3.1塔径的计算....................................................................................................... - 20 -3.3.2泛点率校核和填料规格................................................................................... - 21 -3.3.3液体喷淋密度校核........................................................................................... - 22 -3.4填料层高度计算.......................................................................................................... - 22 -3.4.1传质单元数的计算........................................................................................... - 22 -3.4.2传质单元高度的计算....................................................................................... - 22 -3.4.3填料层高度的计算........................................................................................... - 24 -3.5填料塔附属高度的计算.............................................................................................. - 24 -3.6液体分布器的简要设计.............................................................................................. - 25 -3.6.1液体分布器的选型........................................................................................... - 25 -3.6.2分布点密度及布液孔数的计算....................................................................... - 26 -3.6.3塔底液体保持管高度的计算........................................................................... - 28 -3.7其它附属塔内件的选择.............................................................................................. - 28 -3.7.1 填料支撑板...................................................................................................... - 28 -3.7.2 填料压紧装置与床层限制板.......................................................................... - 29 -3.7.3气体进出口装置与排液装置........................................................................... - 29 -3.8流体力学参数计算...................................................................................................... - 30 -3.8.1填料层压力降的计算....................................................................................... - 30 -3.8.2泛点率............................................................................................................... - 31 -3.8.3气体动能因子................................................................................................... - 31 -3.9附属设备的计算与选择.............................................................................................. - 31 -3.9.1吸收塔主要接管的尺寸计算........................................................................... - 31 -3.9.2离心泵的计算与选择....................................................................................... - 32 - 工艺设计计算结果汇总与主要符号说明 ................................................................................ - 34 - 设计方案讨论 ............................................................................................................................ - 39 - 附录 ............................................................................................................................................ - 39 - 参考文献 .................................................................................................................................... - 41 - 结束语 ........................................................................................................................................ - 42 -摘要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
目录目录 (1)摘要 (3)第1章绪论 (5)1.1吸收技术概况 (5)1.2吸收设备的发展 (6)1.3吸收在工业生产中的应用 (7)第2章设计方案 (7)2.1吸收剂的选择 (7)2.2吸收流程的选择 (8)2.2.1 气体吸收过程分类 (8)2.2.2吸收装置的流程 (9)2.3吸收塔设备及填料的选择 (9)2.3.1 吸收塔设备 (9)2.3.2 填料的选择 (10)2.4吸收剂再生方法的选择 (10)2.5操作参数的选择 (11)第3章吸收塔的工艺计算 (11)3.1基础物性数据 (11)3.1.1 液相物性数据 (11)3.1.2 气相物性数据 (12)3.1.3气液相平衡数据 (12)3.2物料衡算 (12)3.3塔径计算 (13)3.3.1 塔径的计算 (13)3.3.2泛点率校核: (14)3.3.4液体喷淋密度得校核: (14)3.4填料层高度的计算 (14)3.4.1 传质单元数的计算 (14)3.4.2传质单元高度的计算 (15)3.4.3填料层高度的计算 (16)3.5填料塔附属高度的计算 (17)3.6液体分布器计算 (17)3.6.1液体分布器的选型 (18)3.6.2布液孔数的计算 (18)3.6.3布液计算 (18)3.7其他附属塔内件的选择 (18)3.7.1填料支承装置的选择 (18)3.7.2填料压紧装置 (19)3.7.3塔顶除雾器 (19)3.8吸收塔的流体力学参数计算 (20)3.8.1 吸收塔的压力降 (20)3.8.2 吸收塔的泛点率 (21)3.8.3 气体动能因子 (21)3.9附属设备的计算与选择 (21)3.9.1 离心泵的选择与计算 (21)3.9.2吸收塔主要接管尺寸选择与计算 (22)工艺设计计算结果汇总与主要符号说明 (23)设计过程的评述和有关问题的讨论 (26)主要参考文献 (27)结束语 (28)吸收操作系统的工艺流程图 (29)吸收操作系统的设备条件图 (30)摘要气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。
水吸收二氧化硫填料吸收塔--课程设计完整版水吸收二氧化硫填料吸收塔课程设计一、设计背景随着工业化的快速发展,大量的二氧化硫排放进入大气中,严重污染了环境。
为了降低二氧化硫的排放,采用填料吸收塔进行二氧化硫吸收是一种经济有效的技术。
本次课程设计旨在设计一座水吸收二氧化硫填料吸收塔,以控制工业二氧化硫排放。
二、设计要求1.设计一座水吸收二氧化硫填料吸收塔,要求能够有效地吸收工业排放的二氧化硫。
2.考虑填料吸收塔的经济性、可靠性和环保性。
3.确定最佳的操作条件,包括吸收液的流量、喷淋密度、填料高度等。
4.对填料吸收塔的设计进行优化,以提高吸收效率。
三、设计原理填料吸收塔是利用填料作为两相接触的表面,使二氧化硫气体能够与水充分接触。
在填料塔内,气相和液相逆流接触,二氧化硫气体通过填料表面的液膜扩散进入水中,从而降低气相中的二氧化硫浓度。
四、设计方案1.填料选择考虑到二氧化硫吸收的效率和经济的因素,选择聚丙烯鲍尔环作为填料。
聚丙烯鲍尔环具有高的比表面积和通量,可以增加气液接触面积,提高二氧化硫吸收效率。
2.结构设计填料吸收塔的结构包括塔体、进气管、出水管、填料支撑板和聚丙烯鲍尔环填料。
塔体采用圆形结构,直径为1.2m,高度为12m;进气管安装在塔顶部,用于引入二氧化硫气体;出水管位于塔底部,用于排出吸收后的废水;填料支撑板位于塔体中部,用于支撑聚丙烯鲍尔环填料。
3.操作条件在填料吸收塔的操作过程中,需要控制以下条件:(1)吸收液的流量:通过调整水泵的流量来控制吸收液的流量,使其保持在一个最佳值,以提高吸收效率。
(2)喷淋密度:通过调整喷嘴的数量和喷射角度来控制喷淋密度,使水能够均匀地分布在填料上,增加气液接触机会。
(3)填料高度:选择合适的填料高度,以确保气液充分接触,提高吸收效率。
五、设计优化1.增加填料层数:通过增加填料的层数,可以增加气液接触的机会,提高吸收效率。
但是填料层数过多会增加压降和塔的能耗,因此需要综合考虑。
《化工原理课程设计》报告设计任务书(一)设计题目试设计一座填料吸收塔,用于脱除混于空气中的SO2,混合气体的处理为2500m3/h,其中SO2(体积分数)8﹪。
要求塔板排放气体中含SO2低于0.4%,采用清水进行吸收。
(二)操作条件常压,20℃(三)填料类型选用塑料鲍尔环、陶瓷拉西环填料规格自选(四)设计内容1、吸收塔的物料衡算2、吸收塔的工艺尺寸计算3、填料层压降的计算4、吸收塔接管尺寸的计算5、绘制吸收塔的结构图6、对设计过程的评述和有关问题的讨论7、参考文献8、附表目录一、概述 (4)二、计算过程 (4)1. 操作条件的确定 (4)1.1吸收剂的选择 (4)1.2装置流程的确定 (4)1.3填料的类型与选择 (4)1.4操作温度与压力的确定 (4)2. 有关的工艺计算 (5)2.1基础物性数据 (5)2.2物料衡算 (6)2.3填料塔的工艺尺寸的计算 (6)2.4填料层降压计算 (11)2.5吸收塔接管尺寸的计算 (12)2.6附属设备……………………………………………… ..12三、评价 (13)四、参考文献 (13)五、附表 (14)一、概述填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
二、设计方案的确定(一) 操作条件的确定1.1吸收剂的选择因为用水作吸收剂,同时SO2不作为产品,故采用纯溶剂。
1.2装置流程的确定用水吸收SO2属于中等溶解度的吸收过程,故为提高传质效率,选择用逆流吸收流程。
1.3填料的类型与选择用不吸收SO2的过程,操作温度低,但操作压力高,因为工业上通常选用塑料散堆填料,在塑料散堆填料中,塑料鲍尔环填料的综合性能较好。
二氧化硫填料吸收塔的课程设计二氧化硫填料吸收塔是一种常用的工业废气处理设备,其主要作用是将工业烟气中的二氧化硫(SO2)等有毒有害气体经过吸收液处理后转化为无害的硫酸或硫酸盐等物质。
以下是二氧化硫填料吸收塔的课程设计建议:一、设计任务设计一套二氧化硫填料吸收塔,对污染气体中的二氧化硫进行吸收处理,将其转化为硫酸盐等物质。
具体要求如下:1.设计一套单级立式填料吸收塔,应考虑吸收效率、填料摆放方式、液流量和泵选型等参数。
2.选择合适的吸收液,建立吸收液稀释与循环系统,并估算其化学消耗量。
3.设计吸收塔底部的收集槽,实现二氧化硫的收集和回收。
4.制定操作规程和紧急处理方案,保证设备的安全运行。
二、设计步骤1.确定设计参数,包括吸收液种类、填料类型和数量、吸收液循环流量和泵型号、收集槽尺寸和材质等。
2.进行吸收液配制试验,并根据试验结果确定吸收液的组成、浓度和稀释方案。
3.根据塔内流体动力学理论,优化填料摆放方式,选择合适的填料高度和层数。
4.设计吸收塔的结构和支撑体系,选择合适的材料和标准进行设计。
5.进行工艺流程模拟和设备性能计算,优化设计参数,并绘制各项工艺图纸。
6.制定操作规程和紧急处理方案,并进行模拟实验和应急演练。
三、注意事项1.设计中应充分考虑环保和安全要求,确保设备能够达到相关标准和指标。
2.设计中应注重填料的选择和摆放,以及吸收液的循环流量和泵选型,这对于吸收效率和设备运行费用有着重要的影响。
3.设计中应充分考虑设备的可维护性和易操作性,尽可能地降低运行成本。
4.设计完成后应进行安全评估和性能测试,确保设备的可靠性和稳定性。
总之,二氧化硫填料吸收塔的设计需要充分考虑各方面因素,以实现高效环保的处理效果。
同时,还要注重设备的安全运行和易操作性,并进行必要的测试和评估,确保设备能够在长期使用中保持良好的工作状态。
化工原理课程设计任务书专业班级:姓名:学号:指导老师:目录一·目的和要求二·设计任务三·设计方案1.吸收剂的选择2.塔内气液流向的选择3.吸收系统工艺流程(工艺流程图及说明)4.填料的选择四·工艺计算1.物料衡算,吸收剂用量,塔底吸收液浓度2.塔径计算3.填料层高度计算4.填料层压降计算5.填料吸收塔的主要附属构件简要设计6.动力消耗的计算与运输机械的选择(对吸收剂)五·设备零部件管口的设计计算及选型六·填料塔工艺数据表填料塔结构数据表物性数据表七·对本设计的讨论八·主要符号说明九·参考文献一·目的和要求1.进行查阅专业资料、筛选整理数据及化工设计的基本训练;2.进行过程计算及主要设备的工艺设计计算,独立完成吸收单元的设计;用简洁的文字和图表清晰地表达自己的设计思想和计算结果;3.建立和培养工程技术观点;4.初步具备从事化工工程设计的能力,掌握化工设计的基本程序和方法。
5.独立完成课程设计任务。
二·设计任务1.题目:SO2填料吸收塔2 生产能力:SO2炉气的处理能力为1500 m³/h(1atm,30℃时的体积)3 炉气组成:原料气中含SO2为9%(v),其余为空气4 操作条件:P=1atm(绝压)t=30 ℃5 操作方式:连续操作6 炉气中SO2的回收率为95%三·设计方案1.吸收剂的选择用水做吸收剂。
水对SO2有较大的溶解度,有较好的化学稳定性,有较低的粘度,廉价、易得、无毒、不易燃烧2.塔内气液流向的选择在填料塔中,SO2从填料塔塔底进入,清水从塔顶由液体喷淋装置均匀淋下。
3.吸收系统工艺流程(工艺流程图及说明)二氧化硫炉气经由风机从塔底鼓入填料塔中,与由离心泵送至塔顶的清水逆流接触,在填料的作用下进行吸收。
经吸收后的尾气由塔顶排除,吸收了SO2的废水由填料塔的下端流出。
目录引言 (1)1.流程的说明 (2)1.1吸收剂的选择 (2)1.2填料层 (2)1.2.1填料的作用 (2)1.2.2填料种类的选择 (3)1.2.3填料的选择 (3)1.2.4填料塔的选择 (3)1.3吸收流程 (4)1.4液体分布器 (4)1.5液体再分布器 (4)2.吸收塔工艺计算 (5)2.1基础物性数据 (5)2.1.1 液相物性数据 (5)2.1.2气相物性数据 (5)2.2物料衡算 (5)2.3填料塔的工艺尺寸计算 (6)2.3.1塔径计算 (6)2.3.2传质单元高度的计算 (8)2.3.3 传质单元数的计算 (8)2.3.4填料层高度的计算 (9)2.4塔附属高度的计算 (10)2.5填料层压降的计算 (10)2.6其他附属塔内件的选择 (11)2.6.1液体分布器的选择: (11)2.6.2布液计算 (12)2.7.3液体再分布器的选择 (13)2.6.4填料支承装置的选择 (13)2.6.5填料压紧装置 (14)2.6.6塔顶除雾器 (14)2.7吸收塔的流体力学参数计算 (14)2.7.1 吸收塔的压力降 (14)2.7.2 吸收塔的泛点率校核 (14)2.7.3 气体动能因子 (15)3.其他附属塔内件的选择 (15)3.1吸收塔主要接管的尺寸计算 (15)3.2离心泵的计算与选择 (16)3.3风机的选取 (17)4.总结 (18)附录一吸收塔设计计算用量符号总表 (19)参考文献 (21)引言吸收是分离气体混合物的单元操作,其分离原理是利用气体混合物中各组分在液体溶剂中溶解度的差异来实现不同气体的分离。
一个完整的吸收过程应包括吸收和解吸两部分。
气体吸收过程是利用气体混合物中,各组分在液体溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。
在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都广泛应用到气体吸收过程。
化工原理课程设计任务书专业班级:姓名:学号:指导老师:目录一·目的和要求二·设计任务三·设计方案1.吸收剂的选择2.塔内气液流向的选择3.吸收系统工艺流程(工艺流程图及说明)4.填料的选择四·工艺计算1.物料衡算,吸收剂用量,塔底吸收液浓度2.塔径计算3.填料层高度计算4.填料层压降计算5.填料吸收塔的主要附属构件简要设计6.动力消耗的计算与运输机械的选择(对吸收剂)五·设备零部件管口的设计计算及选型六·填料塔工艺数据表填料塔结构数据表物性数据表七·对本设计的讨论八·主要符号说明九·参考文献一·目的和要求1.进行查阅专业资料、筛选整理数据及化工设计的基本训练;2.进行过程计算及主要设备的工艺设计计算,独立完成吸收单元的设计;用简洁的文字和图表清晰地表达自己的设计思想和计算结果;3.建立和培养工程技术观点;4.初步具备从事化工工程设计的能力,掌握化工设计的基本程序和方法。
5.独立完成课程设计任务。
二·设计任务1.题目:SO2填料吸收塔2 生产能力:SO2炉气的处理能力为1500 m³/h(1atm,30℃时的体积)3 炉气组成:原料气中含SO2为9%(v),其余为空气4 操作条件:P=1atm(绝压)t=30 ℃5 操作方式:连续操作6 炉气中SO2的回收率为95%三·设计方案1.吸收剂的选择用水做吸收剂。
水对SO2有较大的溶解度,有较好的化学稳定性,有较低的粘度,廉价、易得、无毒、不易燃烧2.塔内气液流向的选择在填料塔中,SO2从填料塔塔底进入,清水从塔顶由液体喷淋装置均匀淋下。
3.吸收系统工艺流程(工艺流程图及说明)二氧化硫炉气经由风机从塔底鼓入填料塔中,与由离心泵送至塔顶的清水逆流接触,在填料的作用下进行吸收。
经吸收后的尾气由塔顶排除,吸收了SO2的废水由填料塔的下端流出。
设计要求书设计题目处理量为2400m3/h水吸收二氧化硫填料吸收塔的设计设计题目一原始数据及条件1.生产能力:混合气(SO+空气)的处理量2400m3/h;2的含量 5%(摩尔分数);2.进塔混合气中SO23。
吸收率:95%;4.以清水为吸收剂;5.平衡线方程:Y = 66。
7888X1。
163726.操作压力:常压(101325Pa);7。
吸收温度:20℃;(注:吸收过程视为等温吸收过程。
)8.吸收剂的用量为最小用量的1。
5倍。
设计任务完成填料吸收塔的工艺设计及有关附属设备的设计和选用,绘制填料塔系统带控制点的工艺流程图及填料塔的设计条件图,编写设计说明书。
目录设计要求书1设计题目1设计题目一原始数据及条件1设计任务1第1章概述31.1吸收塔的概述31。
2吸收设备的发展31。
3吸收过程在工业生产上应用4第2章设计方案52.1吸收剂的选择52.2吸收流程的确定62。
3吸收塔设备的选择72。
4吸收塔填料的选择7第3章吸收塔的工艺计算113。
1物料衡算113.1。
1液相物性数据113.1.2气相物性数据113.1.3气液相平衡数据113.1.4物料衡算123。
2填料塔的工艺尺寸的计算133。
2。
1塔径的计算133。
2.2填料层高度计算143。
2.3塔高度的确定173。
2.4塔材料以及壁厚等的确定173。
2。
5填料层压降的计算18第4章塔内件及附属设备的计算194。
1液体分布器的计算194.2填料支撑板204。
3填料压紧装置204.4液体除雾器214.5筒体和封头的设计214。
6人孔的设计224。
7法兰的设计22符号说明24英文字母25下标26希腊字母26参考文献27第1章概述1.1吸收塔的概述气体混合物的分离,是根据混合物中各组分间某种物理性质和化学性质的差异而进行的。
吸收作为其中一种,它的基本原理根据混合物各组分在特定的液体吸收剂中溶解度的不同,实现各组分分离的单元操作。
实际生产中,除了少数情况只需单独进行吸收外,一般需对吸收后的溶液继以脱吸,使溶剂再生,循环使用。
化工原理课程设计题目:SO2气体吸收塔的设计系别:化学与环境工程学院专业:过程装备与控制工程:天赐学号:122209104136指导老师:红娇2015年 6 月22 日目录一设计任务书二设计方案简介三工艺计算一设计任务书(一)设计题目水吸收SO2过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除混合气体(先冷却)中的SO2,其余为惰性组分,采用清水进行吸收。
(二)操作条件(1)操作压力常压(2)操作温度20℃(三)设计容(1)流程的选择:本流程选择逆流操作;(2)工艺计算:吸收剂量求取、操作线方程式、填料塔径求取、填料层高度、最小润湿速度求取及润湿速度的选取、单位填料层压降的求取、吸收塔高度等的计算;(3)附件选型:液体分布,分布器及再分布器、支座等的选型;(4)编写设计说明书和设计结果一览表,绘制填料塔的工艺条件图。
二设计方案简介2.1方案的确定2.1.1装置流程的确定本流程选择逆流操作。
2.1.2吸收剂的选择吸收剂为清水2.1.3操作温度与压力的确定(1)操作压力常压(2)操作温度20℃2.2填料的类型与选择对于水吸收SO2的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。
本流程选用N38塑料鲍尔环填料。
2.3设计步骤本课程设计从以下几个方面的容来进行设计:(1)吸收塔的物料衡算;(2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(3)设计液体分布器及辅助设备的选型;(4)绘制有关吸收操作图纸。
三 工艺计算3.1基础物性数据3.1.1 液相物性数据20℃时水的有关物性数据如下: 密度为 ρL =998.2 kg/m 3 粘度为 µL =1.0050mPa ·s 表面力为σL =72.6×103 N/mSO 2在水中的扩散系数为 D L =147×10-9m 2/s=5.29×10-6m 2/h (依Wilke-Chang 0.518r 0.6()1.85910M TD Vφμ-=⨯计算,查《化学工程基础》)3.1.2 气相物性数据设进塔混合气体温度为20℃, 混合气体的平均摩尔质量为M Vm =Σy i M i =0.04×64+0.96×29=30.4g/mol 混合气体的平均密度为 ρVm =RT PM =293314.84.30325.101⨯⨯=1.2645kg/ m 3混合气体的粘度可近似取为空气的粘度,查化工原理得20℃空气的粘度为 μV =1.81×105Pa ·s查手册得SO 2在空气中的扩散系数为 D V =1.08×10-5m 2/s=0.039 m 2/h3.1.3 气液相平衡数据由手册查得,常压下20℃时SO 2在水中的亨利系数为 E=3.55×103kPa 相平衡常数为m=E/P=3.55×103/101.3=35.04 溶解度系数为H=ρ/EM=998.2/(3.55×103×18)=0.0156kmol/kN ·m 3.1.4 物料衡算(1)进塔混合气中各组分的量 塔平均操作压强为101.3kPa ,故: 混合气量=3000×20273273 ×4.221=124.79 kmol/h混合气SO 2中量=124.78×0.04=4.99 kmol/h =4.99×64=319.44kg/h 设混合气中惰性气体为空气,则混合气中空气量=124.78-4.99=119.79kmol/h =119.79×29=3473.88kg/h(2)混合气进出塔的摩尔组成y 1=0.04 y 2=0.0014(3)混合气进出塔摩尔比组成进塔气相摩尔比为 Y 1=11y 1y -=04.0104.0-=0.04167出塔气相摩尔比为 Y 2=22y 1y -=0014.010014.0-=0.001401963(4)出塔混合气量出塔混合气量=119.79÷(1-0.0014)=119.96kmol/h (5)吸收剂(水)的用量L该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算12min 12()Y Y LY V X m -=-对于纯溶剂吸收过程,进塔液相组成为X 2=0 (V L )min =004.3504167.0001401963.004167.0--=33.86取操作液气比为min 4.1)(V L V L = 404.4786.334.1=⨯=VL53.567879.119404.47=⨯=L kmol/h(6)塔底吸收液组成X 11212()()V Y Y L X X -=-000848.0)(211=-=LY Y V X (7)操作线方程依操作线方程0014.0404.47)(22+=-+=X X VLY X V L Y 3.2填料塔的工艺尺寸的计算3.2.1塔径的计算采用Eckert 通用关联图计算泛点气速。
气相质量流量为W V =3000×1.264=3792 kg/h 液相质量流量可近似按纯水的流量计算,即 W L =5678.53×18=102213.45 kg/h 其中:ρL =992.2 kg/m 3ρV =1.264 kg/m 3 g = 9.81 m/s2µL =1.0050mPa ·s(1)采用Ecekert 通用关联图法计算泛点气速uF 。
通用填料塔泛点和压降的通用关联图如下:图一填料塔泛点和压降的通用关联图(引自《化工原理》)图中u0——空塔气速,m /s;φ——湿填料因子,简称填料因子,1 /m;ψ——水的密度和液体的密度之比;g——重力加速度,m /s2;ρV、ρL——分别为气体和液体的密度,kg /m3;W V、W L——分别为气体和液体的质量流量,kg /s。
此图适用于乱堆的颗粒形填料,如拉西环、弧鞍形填料、矩鞍形填料、鲍尔环等,其上还绘制了整砌拉西环和弦栅填料两种规整填料的泛点曲线。
对于其他填料,尚无可靠的填料因子数据。
Eckert 通用关联图的横坐标为959.0)2.998264.1(379245.102213)(5.05.0=⨯=L V V L W W ρρ查图一查得纵坐标值为20.2u ()0.022g VF L Lρφμρ=表一 散装填料泛点填料因子平均值( 《化工原理课程设计》附录十一) 查得:1m 184-=F φ962.00050.1264.111842.99881.9022.0g 022.0u 2.02.0=⨯⨯⨯⨯⨯==L V F LF μψρφρm/s(2)操作气速由以下公式计算塔径:(《化工原理课程设计》)D =对于散装填料,其泛点率的经验值为u/uF=0.5~0.85取 u=0. 7u F =0.7×0.962=0.674m/s (3)塔径由 1.255D m === 圆整塔径,取D=l.2m 。
(4)泛点率校核:23000/36000.737/0.785 1.2u m s ==⨯ 0.737100%76.63%0.962F u u =⨯=(在允许围) (5)填料规格校核:120031.581538D d ==> (6)液体喷淋密度校核: 取最小润湿速率为 (Lw )min=0.08 m 3/m ·h 查填料手册得塑料阶梯环比表面积at=130m 2/m 3Umin=(Lw )minat=0.08×130=10.4m 3/ m 2·h32min 2102213.45/998.290.585m /0.785 1.2U m h U ==>⨯ 经以上校核可知,填料塔直径选用D=1200mm 合理。
3.2.2填料层高度计算 (1)传质单元数N OG1135.040.0008480.02971Y mX *==⨯= 220Y mX *==解吸因数为:35.04119.790.7395678.53mV S L ⨯=== 气相总传质单元数为:12221ln[(1)]110.041620ln[(10.739)0.793]8.22310.7390.00140OG Y Y N S S S Y Y **-=-+---=-+=--(2)传质单元高度的计算气相总传质单元高度采用修正的恩田关联式计算0.10.20.750.052221exp 1.45w C L t L L t L t L L L L t a U a U U a a g a σσμρρσ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭查表二:常见材质的临界表面力值得Cσ= 33 dyn/cm = 427680 kg/h2液体质量通量为:22102213.4590422.37/()0.785 1.2L U kg m h ==⨯ 气膜吸收系数由下式计算:0.050.0.750.1222842768090422.3790422.3713090422.371exp 1.45940896130 3.6998.2 1.2710998.29408961300.6339w t a a -⎧⎛⎫⎛⎫⨯⎪⎛⎫⎛⎫=--⎨ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎪⎩=气体质量通量为:10.730.237V V t V G t V V V U a D k a D RT μμρ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭气体质量通量:223000 1.2643354.565/()0.785 1.2V U kg m h ⨯==⨯ 10.7323354.5650.0651300.0390.2371300.065 1.2640.0398.3142930.0357/()G k kmol m hkPa ⨯⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭=液膜吸收系数由下式计算:211323121833260.009590422.37 3.6 3.6 1.27100.00950.6339130 3.6998.2 5.2910998.21.270/L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭= 查表三:常见填料塔的形状系数本设计填料类型为开孔环 所以 Ψ=1.45,则()1.11.130.03571300.6339 1.45 4.4273kmol / m kPa G G w k a k a h ψ==⨯⨯⨯=0.40.41.2701300.6339 1.45121.427/L L w k a k a l hψ==⨯⨯⨯=又因u/uF=76.63﹪>50﹪ 需要按下式进行校正,即1.4'2.2'19.50.51 2.60.5G G F L L F u k a k au u k a k au ⎡⎤⎛⎫⎢⎥=+- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+- ⎪⎢⎥⎝⎭⎣⎦可得:()()()1.4'32.2'19.50.76630.5 4.427311.02kmol / m kPa 1 2.60.76630.5121.427138.61/G L k a h k a l h⎡⎤=+-⨯=⎣⎦⎡⎤=+-⨯=⎣⎦则()3''111.8076kmol / m kPa 111111.020.0156138.61G G L K a h k aHk a===++⨯由2119.791.8076101.30.785 1.20.579OG Y G V VH K a K aP m==ΩΩ=⨯⨯⨯= (3)填料层高度的计算 由0.5798.223 4.76OG OG Z H N m ==⨯= 根据设计经验,填料层的设计高度一般为 Z ′=(1.2~1.5)Z (4-19)式中 Z ′——设计时的填料高度,m ;Z ——工艺计算得到的填料层高度,m 。