大学物理:第八章 静电场
- 格式:ppt
- 大小:3.98 MB
- 文档页数:109
第八章 静电场1、 一电荷为q 的点电荷,处在半径为R 、介电常量为ε1的各向同性、均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同性、均匀电介质,则在距离点电荷r (r <R )处的场强和电势 (选U ∞=0)为:(A) E =0, r q U 14επ= . (B) 214r q E επ=, r q U 14επ=. (C) 214r q E επ=, R q R r q U 214114πεε+⎪⎭⎫ ⎝⎛-=π . (D) 222144r q r q E πεε+=π,R q R r q U 214114πεε+⎪⎭⎫ ⎝⎛-=π .[ C ] 2、如图所示,位于"无限大"接地的金属平面正上方距离d 处,有一电荷为q (q >0)的点电荷,则平面外附近一点P 处的电场强度大小是 (A) 204r q επ . (B) 202r q επ . (C) 302rqd επ (D)302r qx επ . [ C ] 3、半径为R 的金属球与地连接.在与球心O 相距d =2R 处有一电荷为q 的点电荷.如图所示,设地的电势为零,则球上的感生电荷q '为(A) 0. (B) 2q . (C) -2q . (D) -q . [ C ] 4、一带电孤立导体,处于静电平衡时其电荷面密度的分布为σ(x ,y,z ).已知面元d S 处的电荷面密度为σ0>0,如图示,则导体上除d S 面元处的电荷以外的其它电荷在d S 处产生的电场强度的大小为(A) 00εσ. (B) 002εσ. (C) 00εσ. (D) 002εσ. [ B ] 6、在坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E .现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A) x 轴上x >1. (B) x 轴上0<x <1.(C) x 轴上x <0. (D) y 轴上y >0. [ ]8、一个带电荷为-q 的点电荷,位于一原来不带电的金属球外,与球心的距离为d ,如图所示.则在金属球内,与球心相距为l 的P 点处,由感生电荷产生的场强为(σ'为P 点附近球面上感生电荷面密度) (A) 0. (B) i 0εσ'-. (C) ()i l d q 20π4--ε. (D) ()i l d q 20π4-ε. [ C ] 12、如图所示,两同心金属球壳,它们离地球很远,内球壳用细导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳:(A) 不带电荷.(B) 带正电荷.(C) 带负电荷.(D) 内球壳外表面带负电荷,内表面带等量正电荷.[ C ] 13、图中所示为一带电导体球A ,其上包着一层各向同性的均匀电介质球壳B .若在介质球壳层中取一闭合面S 1,在介质球壳外取一闭合面S 2,则通过S 1和S 2的电场强度通量Φ1和Φ2及电位移通量ψ1和ψ2之间的关系为(A) Φ1=Φ2,ψ1=ψ2.(B) Φ1=Φ2,ψ1≠ψ2.(C)Φ1≠Φ2,ψ1≠ψ2. (D) Φ1≠Φ2,ψ1=ψ2. [ D ] 15、一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2. (C) 2πR 2E . (D) 0. [ D ]18、有N 个电荷均为q 的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布.比较这两种情况下在过圆心O 并垂直于圆平面的z 轴上任一点P (如图所示)的场强与电势,则有(A) 场强相等,电势相等. (B) 场强不等,电势不等.(C) 场强分量E z 相等,电势相等.(D) 场强分量E z 相等,电势不等. [ C ]23、设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施? (A) 使两金属板相互靠近些.(B) 改变两极板上电荷的正负极性.(C) 使油滴离正极板远一些.(D) 减小两板间的电势差. [ D ]26、如图所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电荷+q 和-3q .今将一电荷为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04επ.(B) R Qq 02επ. (C) R Qq 08επ. (D) RQq 083επ. [ C ] 30、一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+λ,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:(A) 204rE ελπ=,a b U ln 20ελπ=. (B) 204r E ελπ=,r b U ln 20ελπ=. (C) rE 02ελπ=,r a U ln 20ελπ=. (D) rE 02ελπ=,r b U ln 20ελπ=. [ D ] 32、一空气平行板电容器,极板间距为d ,电容为C .若在两板中间平行地插入一块厚度为d /3的金属板,则其电容值变为(A) C . (B) 2C /3. (C) 3C /2. (D) 2C .[ C ]34、 已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出-+ q下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0. [ C ]36、 一"无限大"平行板电容器,极板面积为S ,若插入一厚度与极板间距相等而面积为S / 2、相对介电常量为εr 的各向同性均匀电介质板(如图所示),则插入介质后的电容值与原来的电容值之比C /C 0为:(A) εr . (B) 1 / εr . (C) 21( εr + 1). (D) 2 / ( εr + 1). [ C ] 38、如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ B ] 39、一平行板电容器,两板间距离为d ,若插入一面积与极板面积相同而厚度为d / 2 的、相对介电常量为εr 的各向同性均匀电介质板(如图所示),则插入介质后的电容值与原来的电容值之比C / C 0为(A) 11+r ε. (B) 1+r r εε. (C) 12+r r εε. (D) 12+r ε. [ C ] 40、如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh .[ A ]第九章稳恒磁场 1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S , S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . . (B) 2 πr2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]10、在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电 流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A)2202R a a I ⋅πμ (B) 22202R r a a I -⋅πμ (C) 22202r R a a I -⋅πμ (D) )(222220ar R a a I -πμ [ C ] 11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2 和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、 2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0. [ C ]16、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d (C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d [ D ]aRr O O ′ I 417、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A)=⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =(B)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =.(C) =⎰⋅1dL l B ⎰⋅2d L l B, 21P P B B ≠. (D) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ C ]18、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A) 两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同. (D) 两粒子的运动周期必然不同. [ C ]20、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?(A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变.(C) 粒子进入磁场后,其动能和动量都不变.(D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆. [ B ] 23、把轻的正方形线圈用细线挂在载流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动.当正方形线圈电流如图所示时线圈将(A) 不动.(B) 发生转动,同时靠近导线AB .(C) 发生转动,同时离开导线AB . (D) 靠近导线AB . [ D ]27、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A) 向着长直导线平移. (B) 离开长直导线平移(C) 转动. (D) 不动. [ A ]L 1 2 I 3 (a) (b) ⊙ B II 1 B28、如图所示,一根长为ab 的导线用软线悬挂在磁感强度为B 的匀强磁场中,电流由a 向b 流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab(A) 改变电流方向,并适当增大电流.(B) 不改变电流方向,而适当增大电流. (C) 改变磁场方向,并适当增大磁感强度B的大小.(D) 不改变磁场方向,适当减小磁感强度B 的大小. [ B ] 30、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行.(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直. [ A ] 35、如图所示,有两根载有相同电流的无限长直导线,分别通过x 1 = 1、x 2 = 3的点,且平行于y 轴,则磁感强度B 等于零的地方是(A) 在x = 2的直线上. (B) 在x > 2的区域.(C) 在x < 1的区域. (D) 不在Oxy 平面上.[ A ]38、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一 平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极.(C) O 的右端出现N 极. (D) P 的右端出现N 极.[ B ]39、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ 0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ B ]xM第十章电磁感应6、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 情况Ⅰ中为最大. (B) 情况Ⅱ中为最大.(C) 情况Ⅲ中为最大.(D) 情况Ⅰ和Ⅱ中相同.[ B ]8、有甲乙两个带铁芯的线圈如图所示.欲使乙线圈中产生图示方向的感生电流i ,可以采用下列哪一种办法?(A) 接通甲线圈电源.(B) 接通甲线圈电源后,减少变阻器的阻值.(C) 接通甲线圈电源后,甲乙相互靠近.(D) 接通甲线圈电源后,抽出甲中铁芯. [ D ]13、导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(C ) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ A ]17、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场 B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动 时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω. (D) =2l B ω,U a – U c =221l B ω-. 18、如图所示的电路中,A 、B 是两个完全相同的小灯泡, 其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B .(C) K 断开时,两灯同时熄灭. (D) K 断开时,I A =I B . [A ]19、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系 c d b d d v I 甲乙数为M 12.若它们分别流过i 1和i 2的变化电流且t i t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12. (B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12. (D) M 12 = M 21, 21 < 12. [ C ]21、一个电阻为R ,自感系数为L 的线圈,将它接在一个电动势为 (t )的交变电源上,线圈的自感电动势为tI LL d d -=E , 则流过线圈的电流为: (A) R t /)(E (B) R t L /])([E E- (C) R t L /])([E E + (D) R L /E [ C ] 26、在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和 bb ′如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0.(C) M 1 ≠M 2,M 2 = 0.(D) M 1 ≠M 2,M 2 ≠0. [ D ]29、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A)221LI . (B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞. (D) 221LI 020ln 2r d I π+μ [ A ] 30、两根很长的平行直导线,其间距离为a ,与电源组成闭合回路, 如图.已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的 (A) 总磁能将增大. (B) 总磁能将减少.(C) 总磁能将保持不变. (D) 总磁能的变化不能确定.a a ′b b ′ a a ′ b b ′ 图(1) 图(2)I I I d 2r 0。
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时,称这种状态为导体的静电平衡。
(2)静电平衡条件从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成: ①⇒导体内各点电势相等; ②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 导体静电平衡时其内0=E,∴ 0=•⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴ 空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即BAU U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=•内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q ,∴ 腔内表面必有感应电荷-q ,。
第八章 静电场8.1 真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ C ]8.2 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电通量必不为零.[ D ]8.3有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03εq . (B) 04επq (C) 03επq . (D) 06εq[ D ]q8.4面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)Sq 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ B ]8.5一个带正电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示中正确的是:[ D ]8.6如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ D ]-8.7静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ C ]8.8已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0.[ C ]A8.9 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 2分 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m3分8.10 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.L解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 2分d EO总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 3分 方向沿x 轴,即杆的延长线方向.8.11 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π。
《大学物理》(下)复习提纲第八章静止电荷的电场(1)掌握电场强度的迭加法计算。
掌握库仑定律。
(2)掌握电场强度通量计算方法、高斯定理。
(3)掌握静电场的环路定律,电势能和电势的定义和计算公式。
(4)掌握导体静电平衡时电荷如何分布。
导体静电平衡后的电势计算方法以及平行板电容器的电容公式。
(5)掌握电介质在外电场中极化性质和电介质中的高斯定理。
要会用介质中高斯定理定性分析介质中电场和电势,掌握电场能量计算公式。
1.如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d 的P点的电场强度.2.电荷为+q 和-2q 的两个点电荷分别置于x=1 m和x=-1 m处.一试验电荷置于x 轴上何处,它受到的合力等于零?3.若匀强电场的场强为E ,其方向平行于半径为R 的半球面的轴,如图所示.则通过此为半球面的电场强度通量Φe___________________,如果图是B,通量Φ为___________________。
e4.如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于___________________,如果电荷为q 的点电荷位于立方体的中心上,通过侧面abcd 的电场强度通量等于通量e Φ为___________________。
5.根据高斯定理的数学表达式∑⎰=⋅0/εq S d E S可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.6.三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_______________,E D =_________________ (设方向向右为正).7. 真空中一“无限大”均匀带电平面,其电荷面密度为σ (>0).在平面附近有一质量为m 、电荷为q (>0)的粒子.试求当带电粒子在电场力作用下从静止开始垂直于平面方向运动一段距离l 时的速率.设重力的影响可忽略不计.8. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在各个区域距离轴线为 r 处的 P 点的电场强度大小E 为 _______________________.9.如图,A 点与B 点间距离为2l ,OCD 是以B 为中心,以l 为半径的半圆路径. A 、B 两处各放有一点电荷,电荷分别为+q 和-q .把另一电荷为Q (Q <0 )的点电荷从D 点沿路径DCO 移到O 点,则电场力所做的功为___________________10. 将电荷均为q 的三个点电荷一个一个地依次从无限远处缓慢搬到x 轴的原点、x = a 和x = 2a 处.求证外界对电荷所作之功为设无限远处电势能为零.11. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10-8C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.12. 如图所示,两个同心的均匀带电球面,内球面半径为R1、带电荷Q1,外球面半径为R2、带有电荷Q2.设无穷远处为电势零点,试求下图(A),(B),(C)三图中、距离球心为r 处的P点的电势U为分别为__________________,__________________,__________________。
第八章 静电场 一.库仑定律1.电量很小的正点电荷,可作为检验电荷。
( √ ) 2.A 、B 两个点电荷间距离恒定,当其它电荷移到A 、B 附近时,A 、B 之间的库仑力将A .可能变大B .可能变小C .一定不变D .不能确定3.两个质量都是m 的相同小球,用等长的细线悬挂于同一点,如图所示,若使它们带上等值同号的电荷,平衡时两线之间的平角为θ2,当小球的半径可以忽略不计时,则每个小球所受的库仑力为:A .θmgtgB .θsin mgC .θcos mgD .mg4. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点,如果在这三角形的中心放一个电荷电量Q = q q 33-=' C ,就可以使这四个电荷都达到平衡。
5.有四个点电荷,电量都是+Q ,放在正方形的四个顶点,若要使这四个点电荷都能达到平衡,需要在正方形 中心 位置放一个电量为 Q 4122+-点电荷。
二.场强的定义1.电场强度的方向与正的检验电荷在该点所受的电场力方向相同。
( √ ) 2.如果把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动。
(√)3.下列几种说法中哪一个是正确的? ( ) A .电荷在电场中受到的电场力越大,该点的电场强度一定越大B .在某一点电荷附近的任一点,如果没有把试验电荷放进去,则该点的电场强度为零C .如果把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电力线运动D .电力线上任意一点的切线方向,代表点电荷q 在该点处获得的加速度方向4.电场线越密的地方,同一电荷所受电场力越大。
( √ ) 5.离点电荷越近的地方,电场线越密。
( √ ) 6.在无电荷的地方,任意两条电场线永远不会相交。
( √ )mm三.电通量、高斯定理1.如图所示均匀电场E 和半径为a 的半球面的轴线平行,通过此半球面的电通量为( )A .π4E a 2B .π2E a 2C .πE a 2D .02.由高斯定理可知,下列说法中正确的是:( )A .高斯面内不包围电荷,则面上各点的E处处为零B .高斯面上各点的E与面内电荷有关,与面外电荷无关C .穿过高斯面的E通量,仅与面内电荷有关D .穿过高斯面的E 通量为零,则面上各点的E必为零3.如果高斯面内无电荷,则高斯面上E处处为零。
大学物理上册(机械工业出版社-许瑞珍-贾谊明编著)第8章--静电场中的导体与电介质第八章 静电场中的导体与电介质8-1 点电荷+q 处在导体球壳的中心,壳的内外半径分别为R l 和R 2,试求,电场强度和电势的分布。
解:静电平衡时,球壳的内球面带-q 、外球壳带q 电荷在r<R 1的区域内rrq ˆ4E 201πε=,)111(42101R R r qU+-=πε在R 1<r<R 2的区域内,02=E .,4202R q U πε=在r>R 2的区域内:.ˆ4E203r r πεq=.403rq U πε=8-2 把一厚度为d 的无限大金属板置于电场强度为E 0的匀强电场中,E 0与板面垂直,试求金属板两表面的电荷面密度。
解:静电平衡时,金属板内的电场为0, 金属板表面上电荷面密度与紧邻处的电场成正比R 2R 1习题 8-1图q -q0 E 0习题 8-2图σ1 σ2所以有,001E εσ-=.002E εσ=8-3 一无限长圆柱形导体,半径为a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆简,内外半径分别为b 和c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)求电场强度的分布。
解:(1)由静电平衡条件,圆筒内外表面上每单位长度的电荷量为;,21λλλ+-(2)在r<a 的区域内:E=0 在a<rb 的区域内:Er012πελ=e n在r>b 的区域内:E r212πελλ+=e n8-4 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图所示。
如果A 板带正电3.0×10-7C ,略去边缘效应(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势。
习题 8-3图解:(1)设A 板两侧的电荷为q 1、q 2,由电荷守恒 原理和静电平衡条件,有A q q q =+21(1)1q q B -=,2q qC-=(2) 依题意V AB =V AC ,即101d Sq ε=22dS q ε112122q q d d q ==→代入(1)(2)式得q 1=1.0×10-7C ,q 2=2.0×10-7C ,q B =-1.0×10-7C ,q C =-q 2=-2.0×10-7C ,(2)101d SqU A ε==202d Sq ε==⨯⨯⨯⨯⨯⨯----312471021085810200102. 2.3×103V8-5 半径为R 1=l.0cm 的导体球带电量为q=1.0×10-10C ,球外有一个内外半径分别为R 2=3.0cm 和R 3=4.0cm 的同心导体球壳,壳带有电量Q=11×10-10 C ,如图所示,求(1)两球的电势;(2)用导线将两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点)解:静电平衡时,球壳的内球面带-q 、外球壳带q+Q 电荷A B C 习题 8-4图d12(1))(4132101R Q q R q R q U++-=πε代入数据)41113111(101085.814.34100.1212101++-⨯⨯⨯⨯⨯=---U=3.3×102V2024R Q q U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=2.7×102V(2)用导线将两球连接起来时两球的电势为2024R Q q U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=2.7×102V(3)外球接地时,两球电势各为)(412101R q R q U -=πε)3111(101085.814.34100.1212101-⨯⨯⨯⨯⨯=---U =60V2=U8-6 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小等,符号相同。
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
第七章静电场§7.1点电荷库仑定律一、点电荷和狄拉克d 函数❶点电荷:是一个理想模型,忽略带电体本身的大小和形状,而将其抽象成带电荷的质点。
❷电荷连续分布线分布:dl dq =λ面分布:ds dq =σ体分布:vd dq =ρ❸d 函数(),00⎩⎨⎧=∞≠=x x X d ()1=⎰∞∞-dx X d 二、库仑定律❶真空12f 1q 2q 12r 21ff1q 2q12f 21f ,12312211212r r q Kq f f =-=229cNm 100.9-⨯=K设,410πε=K 212120mN C 1085.8---⨯=ε则3120122121124r r q q f f επ =-=电介质312312441221012212112r r q q r r q q f f r πεεεπ ==-=εr 电介质的相对介电常数ε 电介质的介电常数§7.2电场电场强度一、电场电荷周围存在的一种特殊形态的物质,具有能量、动量等。
电场对外表现:其一:电场对引入其中的电荷有力的作用;其二:当电荷在电场中移动时,电场对它要做功。
电荷之间的作用是通过电场实现的。
电荷⇔⇔电荷电场二、电场强度为了描述电场对电荷的施力性质,引入一个基本物理量--电场强度,简称场强,用表示,其定义为EqF E=三、场强迭加原理处于由产生的电场中q 0n q q q ,,,21 ∑∑=====n i in i iE F FE q q 11四、场强的计算点电荷电场,430rrq q F πε =34r r q E πε =点电荷系电场∑∑==i i i ii i r r q E E 34πε任意带电体电场用积分求解.解体步骤:1.将带电体分成无数个电荷元(电荷元不一定是点电荷)电荷元dq 在空间某点的场强:r rdq E d341πε=2.选取适当的坐标系,写出的各个分量的表达式。
E dz y x dE dE E d ,,3.求zy x dE dE E d ,,,⎰=E d E x x ,⎰=E d E y y ⎰=E d E z z 此步最好利用电荷分布的对称性判断方向,减少计算.E4. 带电体的场强k E j E i E E z y x++=§7.3 电感强度高斯定理一、电感强度D在各向同性的均匀电介质中,任一点处的电感强度等于该点的电场强度和介电常数的乘积,即:D εEED ε=二、电力线和电感线电力线电力线在电场中任一点处,通过垂直于的单位面积的电力线条数等于该点处的量值。