现代石油加工技术--催化裂解
- 格式:pptx
- 大小:1.22 MB
- 文档页数:53
炼油生产安全技术-催化裂化的装置简介类型及工艺流程催化裂化技术的发展密切依赖于催化剂的发展。
有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化.选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。
催化裂化装置通常由三大部分组成,即反应¾再生系统、分馏系统和吸收稳定系统。
其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:㈠反应––再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。
积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。
待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~68 0℃)。
再生器维持0.15MPa~0。
25MPa (表)的顶部压力,床层线速约0。
7米/秒~1。
0米/秒。
再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。
烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。
再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。
对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。
名词解释:1.催化裂化:催化裂化是在0.1~0.3MPa、500℃左右的温度及催化剂作用下,重质原料油发生以裂解为主的一系列化学反应,转化为气体、汽油、柴油、油浆及焦炭的工艺过程。
2.催化剂活性:催化剂的活性就是能加快反应速度的性能。
3.二次燃烧:由过剩O2含量太高,再生器密相床烧焦产生的CO在稀相段或集气室燃烧,放出大量热量而烧坏设备。
4氢转移反应:某烃分子上的氢脱下来立即加到另一烯烃分子上使之饱和的反应。
5碳堆积:再生器烧焦能力低或供氧不足,反应生成的焦炭烧为完全,使催化剂活性及选择性下降,又至使反应时生焦量增大,再生器烧焦更不完全,这样造成恶性循环,使催化剂上焦炭迅速增大,这就是碳堆积。
简答题1.简述催化裂化的化学反应分解反应、异构化反应,氢转移反应,烷基化反应,芳构化反应,烷基化反应、生焦反应2.列出芳烃转化的催化剂种类有酸性催化剂和固体酸,固体酸又分为浸附在适当载体上的质子酸;浸附在适当酸性卤化物,混合氧化物催化剂,贵金属-氧化硅-氧化铝催化剂;分子筛催化剂3.C8芳烃异构化反应所用的催化剂无定型SiO2-Al2O3催化剂,负载型铂催化剂。
ZSM催化剂,HF-BF3催化剂4.简述目前工业上分离对二甲苯的方法?答:深冷结晶法,络合分离法,吸附分离法5.简述开发芳烃转化工艺的原因不同来源的各种芳烃馏分组成是不同的,能得到各种芳烃的产量也不同,因此如果仅从这里取得芳烃,必然导致供需矛盾,所以用该工艺调节芳烃产量为什么催化裂化产物中少C1、C2,多C3、C4?正碳离子分解时不生成<C3、C4的更小正碳离子。
为什么催化裂化产物中多异构烃?伯、仲正碳离子稳定性差,易转化为叔正碳离子。
为什么催化裂化产物中多β烯烃?伯正碳离子易转为仲正碳离子,放出H+形成β烯烃。
催化裂化的原料和产品有什么特点?答:主要原料有:直馏馏分油、常压渣油、脱沥青油、焦化蜡油、减压渣油等。
主要产品有液化气、汽油、柴油、油浆等。
催化裂解就是在催化剂存在的条件下,对石油烃类进行高温裂解来生产乙烯、丙烯、丁烯等低碳烯烃,并同时兼产轻质芳烃的过程。
由于催化剂的存在,催化裂解可以降低反应温度,增加低碳烯烃产率与轻质芳香烃产率,提高裂解产品分布的灵活性。
(1) 催化裂解的一般特点①催化裂解就是碳正离子反应机理与自由基反应机理共同作用的结果,其裂解气体产物中乙烯所占的比例要大于催化裂化气体产物中乙烯的比例。
②在一定程度上,催化裂解可以瞧作就是高深度的催化裂化,其气体产率远大于催化裂化,液体产物中芳烃含量很高。
③催化裂解的反应温度很高,分子量较大的气体产物会发生二次裂解反应,另外,低碳烯烃会发生氢转移反应生成烷烃,也会发生聚合反应或者芳构化反应生成汽柴油。
(2) 催化裂解的反应机理一般来说,催化裂解过程既发生催化裂化反应,也发生热裂化反应,就是碳正离子与自由基两种反应机理共同作用的结果,但就是具体的裂解反应机理随催化剂的不同与裂解工艺的不同而有所差别。
在Ca-Al系列催化剂上的高温裂解过程中,自由基反应机理占主导地位;在酸性沸石分子筛裂解催化剂上的低温裂解过程中,碳正离子反应机理占主导地位;而在具有双酸性中心的沸石催化剂上的中温裂解过程中,碳正离子机理与自由基机理均发挥着重要的作用。
(3) 催化裂解的影响因素同催化裂化类似,影响催化裂解的因素也主要包括以下四个方面:原料组成、催化剂性质、操作条件与反应装置。
①原料油性质的影响。
一般来说,原料油的H/C比与特性因数K越大,饱与分含量越高,BMCI值越低,则裂化得到的低碳烯烃(乙烯、丙烯、丁烯等)产率越高;原料的残炭值越大,硫、氮以及重金属含量越高,则低碳烯烃产率越低。
各族烃类作裂解原料时,低碳烯烃产率的大小次序一般就是:烷烃>环烷烃>异构烷烃>芳香烃。
②催化剂的性质。
催化裂解催化剂分为金属氧化物型裂解催化剂与沸石分子筛型裂解催化剂两种。
催化剂就是影响催化裂解工艺中产品分布的重要因素。
催化裂解催化裂解,是在催化剂存在的条件下,对石油烃类进行高温裂解来生产乙烯、丙烯、丁烯等低碳烯烃,并同时兼产轻质芳烃的过程。
由于催化剂的存在,催化裂解可以降低反应温度,增加低碳烯烃产率和轻质芳香烃产率,提高裂解产品分布的灵活性。
一、催化裂解的一般特点1、催化裂解是碳正离子反应机理和自由基反应机理共同作用的结果,其裂解气体产物中乙烯所占的比例要大于催化裂化气体产物中乙烯的比例。
2 、在一定程度上,催化裂解可以看作是高深度的催化裂化,其气体产率远大于催化裂化,液体产物中芳烃含量很高。
3 、催化裂解的反应温度很高,分子量较大的气体产物会发生二次裂解反应,另外,低碳烯烃会发生氢转移反应生成烷烃,也会发生聚合反应或者芳构化反应生成汽柴油。
二、催化裂解的反应机理一般来说,催化裂解过程既发生催化裂化反应,也发生热裂化反应,是碳正离子和自由基两种反应机理共同作用的结果,但是具体的裂解反应机理随催化剂的不同和裂解工艺的不同而有所差别。
在Ca-Al系列催化剂上的高温裂解过程中,自由基反应机理占主导地位;在酸性沸石分子筛裂解催化剂上的低温裂解过程中,碳正离子反应机理占主导地位;而在具有双酸性中心的沸石催化剂上的中温裂解过程中,碳正离子机理和自由基机理均发挥着重要的作用。
三、催化裂解的影响因素同催化裂化类似,影响催化裂解的因素也主要包括以下四个方面:原料组成、催化剂性质、操作条件和反应装置。
3.1 原料油性质的影响一般来说,原料油的H/C比和特性因数K越大,催化裂解法处理焦油方案[1]饱和分含量越高,BMCI值越低,则裂化得到的低碳烯烃(乙烯、丙烯、丁烯等)产率越高;原料的残炭值越大,硫、氮以及重金属含量越高,则低碳烯烃产率越低。
各族烃类作裂解原料时,低碳烯烃产率的大小次序一般是:烷烃>环烷烃>异构烷烃>芳香烃。
3.2催化剂的性质催化裂解催化剂分为金属氧化物型裂解催化剂和沸石分子筛型裂解催化剂两种。
催化剂是影响催化裂解工艺中产品分布的重要因素。
石油加工中的催化裂化工艺技术石油加工是将原油转化为各种石油产品的过程,其中催化裂化是一种重要的加工工艺技术。
本文将对石油加工中的催化裂化工艺技术进行介绍,旨在帮助读者更好地了解该过程的原理和应用。
一、催化裂化的概述催化裂化是将长链烃分子在催化剂的作用下裂解为短链烃分子的过程。
它通过破坏长链分子的结构,使原油中的重质烃分子转化为轻质烃分子,从而提高汽油产量。
催化裂化工艺技术在炼油行业中有着广泛的应用,并成为提高汽油产量和改善燃料质量的重要手段。
二、催化裂化的原理催化裂化过程中,催化剂起到了关键的作用。
一般采用酸性固体催化剂,如二氧化硅、氧化铝和硼砂等。
这些催化剂表面具有一定的酸性,能够吸附原油中的长链分子并发生脱氢和脱碳反应,从而裂解为短链烃分子。
此外,催化剂还能够催化裂解产物的再重组反应,生成较高辛烷值的汽油。
三、催化裂化过程催化裂化过程主要包括以下几个步骤:料油预热、加热和蒸汽气化;进料油在催化剂床层中与催化剂接触发生裂化反应;裂解产物经过分离和处理,得到目标产品;再生催化剂,使其恢复活性。
整个过程需要严格控制反应温度、压力和催化剂的质量和活性。
四、催化裂化的应用催化裂化工艺技术在炼油工业中有着广泛的应用。
通过调整反应条件和催化剂的配方,可以实现不同的生产目标,如提高汽油产量、改善燃料质量、减少环境污染等。
此外,催化裂化还可以生产出其他石化产品,如乙烯和丙烯等。
五、催化裂化的发展趋势催化裂化工艺技术在过去几十年取得了较大的进展,但仍存在一些问题和挑战。
例如,催化剂的寿命较短,需要经常更换和再生;催化裂化过程中产生的废热和废气对环境造成污染。
为了解决这些问题,近年来研发了一系列新型催化剂和工艺技术,如热解裂化和催化裂解结合等,以提高催化裂化的效率和环境友好性。
六、结论石油加工中的催化裂化工艺技术是一项重要的炼油工艺,能够将原油转化为汽油等石化产品。
催化裂化过程中,催化剂起到了关键的作用,通过裂解和重组反应实现原油的转化。
催化裂解技术(DCC)
DCC 技术 是中国石化石油化工科学研究院开发的重质原料油催化裂解技术,原料包括减压瓦斯油(VGO)、减压渣油(VTB)、脱沥青油(DAO)等,产品包括可作为化工原料的低碳烯烃、液化气(LPG)、汽油、中馏分油等。
其工艺流程与FCC 相似,包括反应-再生系统、分馏系统以及吸收稳定系统。
原料油经蒸汽雾化后送入提升管加流化床(DCC-I 型)或提升管(DCC-Ⅱ)反应器中,与热的再生催化剂接触,发生催化裂解反应。
反应产物经分馏/吸收系统,实现分离、回收。
沉积了焦炭的待生催化剂经蒸汽汽提后送入再生器中,用空气烧焦再生。
热的再生催化剂以适宜的循环速率返回反应器循环使用,并提供反应所需热量,实现反应-再生系统热平衡操作。
DCC 油生产低碳烯烃的装置,于[中国石化石油化工科学研究院技术支持与服务中心供稿]反应产物烟气原料
水蒸气主风再生器床层反应器主提升管
先进炼油化工技术。
1.0催化裂化催化裂化是原料油在酸性催化剂存在下,在500℃左右、1×105~3×105Pa下发生裂解,生成轻质油、气体和焦炭的过程。
催化裂化是现代化炼油厂用来改质重质瓦斯油和渣油的核心技术,是炼厂获取经济效益的重要手段。
催化裂化的石油炼制工艺目的:1)提高原油加工深度,得到更多数量的轻质油产品;2)增加品种,提高产品质量。
催化裂化是炼油工业中最重要的一种二次加工工艺,是重油轻质化和改质的重要手段之一,已成为当今石油炼制的核心工艺之一。
1.1催化裂化的发展概况催化裂化的发展经历了四个阶段:固定床、移动床、流化床和提升管。
见下图:固定床移动床流化床提升管(并列式) 在全世界催化裂化装置的总加工能力中,提升管催化裂化已占绝大多数。
1。
2催化裂化的原料和产品1。
2.0原料催化裂化的原料范围广泛,可分为馏分油和渣油两大类。
馏分油主要是直馏减压馏分油(VGO),馏程350—500℃,也包括少量的二次加工重馏分油如焦化蜡油等,以此种原料进行催化裂化称为馏分油催化裂化。
渣油主要是减压渣油、脱沥青的减压渣油、加氢处理重油等.渣油都是以一定的比例掺入到减压馏分油中进行加工,其掺入的比例主要受制于原料的金属含量和残炭值。
对于一些金属含量低的石蜡基原有也可以直接用常压重油为原料.当减压馏分油中掺入渣油使通称为RFCC。
以此种原料进行催化裂化称为重油催化裂化。
1。
2。
1产品催化裂化的产品包括气体、液体和焦炭。
1、气体在一般工业条件下,气体产率约为10%—20%,其中含干气和液化气。
2、液体产物1)汽油,汽油产率约为30%-60%;这类汽油安定性较好.2)柴油,柴油产率约为0-40%;因含较多芳烃,所有十六烷值较低,由重油催化裂化得到的柴油的十六烷值更低,这类柴油需经加氢处理.3)重柴油(回炼油),可以返回到反应器内,已提高轻质油收率,不回炼时就以重柴油产品出装置,也可作为商品燃料油的调和组分。
4)油浆,油浆产率约为5%-10%,从催化裂化分馏塔底得到的渣油,含少量催化剂细粉,可以送回反应器回炼以回收催化剂.油浆经沉降出去催化剂粉末后称为澄清油,因多环芳烃的含量较大,所以是制造针焦的好原料,或作为商品燃料油的调和组分,也可作加氢裂化的原料。
石油化工重油催化裂化工艺技术石油化工重油催化裂化工艺技术是一种将重油转化为轻质油和化学品的过程。
该过程主要利用催化剂的作用,在高温高压条件下,使重油的大分子裂解成小分子,同时发生异构化、芳构化和氢转移等反应,以获得更多的轻质油和化学品。
催化剂的选择:催化剂是该技术的核心,其选择对产品的质量和产量有着至关重要的影响。
目前,常用的催化剂包括酸性催化剂、金属催化剂和金属氧化物催化剂等。
工艺条件的控制:工艺条件包括反应温度、压力、空速等,这些因素对产品的质量和产量都有着极大的影响。
因此,精确控制这些工艺条件是重油催化裂化工艺技术成功应用的关键。
产品的质量和性能:重油催化裂化工艺技术生产的产品具有高辛烷值、低硫含量等特点,被广泛应用于汽油、柴油、航空煤油等领域。
在应用方面,石油化工重油催化裂化工艺技术适用于不同类型重油,如减压渣油、催化裂化残渣油、脱沥青油等。
对于不同工业应用,可根据实际需求选择合适的工艺技术。
例如,对于生产高质量汽油和柴油的需求,可以选择更为精细的催化剂和严格的工艺条件;对于生产高附加值化学品的需求,则可以通过调整工艺流程和催化剂类型来增加化学品产量。
虽然石油化工重油催化裂化工艺技术在提高石油利用率、生产高质量石油化工产品方面具有重要作用,但也面临着一些挑战。
催化剂的活性、选择性和稳定性是该技术的关键,而目前催化剂的研究与开发尚存在诸多困难。
重油催化裂化过程中产生的固体废物和废气等对环境造成了严重影响,亟需解决。
由于重油资源的有限性,需要进一步探索和研发更为高效、环保的石油化工技术,以适应未来可持续发展的需要。
石油化工重油催化裂化工艺技术在石油化工产业中具有重要地位。
随着经济的发展和科技的进步,该技术将不断完善和优化,提高石油利用率和生产效率,同时注重环保和可持续发展。
未来,需要加强催化剂的研发与优化,减少环境污染,提高技术的绿色性和可持续性。
应积极探索新的石油化工技术,以应对全球能源危机和环境问题的挑战。