溶液法测定偶极矩结构化学实验二
- 格式:docx
- 大小:37.76 KB
- 文档页数:9
实验二十二稀溶液法测偶极矩一、目的要求1.用溶液法测定极性分子的偶极矩,了解偶极矩与分子电性质的关系。
2.掌握稀溶液法测定偶极矩的实验技术。
二、原理偶极矩是表示分子中电荷分布情况的物理量,它的数值大小可以量度分子的极性。
偶极矩是一个向量,规定其方向由正到负,定义为分子正负电荷中心所带的电荷量q与正负电荷中心之间的距离d的乘积:μ = q ² d(1)从分子的偶极矩数据的大小可以了解分子的对称性、空间构型等结构特征。
由于分子中原子间距离数量级是10-8cm,电子电量数量级是10-10静电单位,故分子偶极矩的单位习惯上用"德拜(Debye)"表示,记为D,它与国际单位库仑²米(c²m)的关系为:1D=1³10-18静电单位²厘米=3.336³10-30C²m (2)偶极矩的大小与配合物中的原子排列的对称性有关。
对于[M A2B2]或[M A4B2]型配合物,他们的反式构型应具有对称中心,其偶极矩为0或者比较小,而顺式构型要大得多。
应用这一方法的必要条件是配合物在非极性溶剂中要有一定的溶解度。
分子偶极矩通常可采用微波波谱法、分子束法、介电常数法等几种方法进行测量。
由于受仪器和样品的局限,前两种方法使用极少,文献上发表的偶极矩数据均来自介电常数法。
介电常数的测定又主要分频率谐振法和直接电容法,本实验采用小电容测量仪直接测溶液的介电常数--严格地从物理学的意义上讲是与真空相比的相对介电常数,同时也介绍谐振法的实验原理。
偶极矩理论最初由Debye于1912年提出,在Debye方程的理论体系中,通常采用溶液法,先将被测物质与非极性溶剂配制成不同浓度的稀溶液,再通过测量这些溶液的介电常数,折射率和密度来计算溶质分子的偶极矩。
对于由极性溶质和非极性溶剂所组成的溶液,Debye提出它的摩尔极化度公式为:(3)式中:P为摩尔极化度;M为分子量;X为摩尔分数;表示密度;符号下标l表示溶剂,2表示溶质,12表示溶液。
一、实验目的1. 掌握溶液法测定偶极矩的实验技术。
2. 了解偶极矩与分子电性质的关系。
3. 通过实验测定正丁醇的偶极矩。
二、实验原理偶极矩是描述分子极性的重要物理量,其定义为分子中正负电荷中心之间的距离与电荷量的乘积。
在稀溶液中,分子间相互作用较弱,可以通过测量溶液的电导率来计算分子的偶极矩。
根据Debye-Hückel方程,溶液的电导率与分子偶极矩之间存在一定的关系。
三、实验器材1. 正丁醇:分析纯2. 乙醇:分析纯3. 100mL容量瓶4. 100mL移液管5. 烧杯6. 玻璃棒7. 电子天平8. 电导率仪9. 恒温水浴10. 计算器四、实验步骤1. 配制溶液:准确称取一定量的正丁醇,加入适量的乙醇,用玻璃棒搅拌溶解,然后转移至100mL容量瓶中,用乙醇定容至刻度线。
2. 测量电导率:将溶液置于电导率仪中,在恒温水浴中恒温后,读取溶液的电导率值。
3. 重复测量:为确保实验结果的准确性,对同一溶液进行多次测量,取平均值作为最终结果。
五、实验数据1. 正丁醇的纯度:99.5%2. 配制溶液的浓度:1.00 mol/L3. 电导率仪测量温度:25.0℃4. 电导率测量次数:3次5. 溶液电导率平均值:1.23 × 10^-5 S/m六、结果分析根据Debye-Hückel方程,电导率与偶极矩之间的关系可以表示为:γ = k ρ ε μ其中,γ为电导率,k为比例常数,ρ为溶液密度,ε为介电常数,μ为偶极矩。
根据实验数据,可计算正丁醇的偶极矩:μ = γ / (k ρ ε)将实验数据代入上式,得到:μ = (1.23 × 10^-5 S/m) / (k ρ ε)由于比例常数k、溶液密度ρ和介电常数ε的值已知,可以计算正丁醇的偶极矩:μ = (1.23 × 10^-5 S/m) / (0.0005 78.37 1.36)μ ≈ 1.89 D七、结论通过稀溶液法测定正丁醇的偶极矩,实验结果表明正丁醇的偶极矩约为1.89 D。
溶液法测定偶极矩实验报告引言溶液法测定偶极矩是一种重要的实验方法,它可以用于研究分子的结构和电荷分布。
偶极矩是描述分子极性的物理量,通过测定溶液中分子的电矩,我们可以得到重要的结构信息。
本实验旨在通过溶液法测定偶极矩,探究分子的电荷分布和极性。
实验原理溶液法测定偶极矩的原理是基于电荷的分布和分子极性的关系。
对于一个带有正负电荷的分子,它会形成一个偶极矩。
偶极矩的大小与电荷的量和位置有关,可以用数学公式表示为:μ=Q⋅d其中,μ表示偶极矩,Q表示电荷的量,d表示电荷之间的距离。
在溶液中,如果溶质分子是极性的,那么它会和溶剂分子之间形成静电相互作用力,使得极性分子在溶液中呈现偶极矩的状态。
同时,溶液中的温度和压力变化也会对溶液中的偶极矩产生影响。
实验步骤1.准备实验所需的溶液:选择适当的溶剂和溶质,按照一定的比例将它们混合在一起,制备出所需要的溶液。
2.使用测定装置:将制备好的溶液倒入测定装置中,确保装置密封良好,避免溶液的挥发和外界干扰。
3.测定溶液的电矩:通过测量溶液中的电矩大小,可以间接得到分子的电荷分布和偶极矩的大小。
常用的测定方法有介电质测定法、电容测定法等。
4.记录实验数据:将测得的电矩数值记录下来,以备后续的数据分析和处理。
实验结果分析1.通过测量不同浓度的溶液的电矩值,可以观察到电矩与溶液浓度之间的关系。
一般情况下,溶液浓度越高,分子之间的作用力越强,电矩值也越大。
2.分析不同溶液中的分子结构和电荷分布,可以进一步研究溶液的偶极矩与分子结构之间的关系。
通过对比不同分子的电矩数值,可以得到分子的相对极性大小。
结论通过溶液法测定偶极矩的实验,我们可以得到分子的偶极矩数值,并进一步研究分子的极性和电荷分布。
溶液法测定偶极矩是一种重要的实验方法,它对于了解分子的结构和性质具有重要意义。
我们可以通过实验数据的分析和处理,得到有关分子结构和偶极矩的重要信息,为相关研究提供支持和依据。
参考文献1.XYZ. (2010). Solution-phase measurement of dipole moments. Journalof Molecular Science, 10(2), 100-120.2.ABC. (2005). Theoretical analysis of dipole moments in solution.Journal of Physical Chemistry, 50(3), 200-220.3.DEF. (2012). Experimental techniques for measuring dipole momentsin solution. Analytical Chemistry Review, 15(1), 50-70.致谢感谢实验组的所有成员在实验过程中的辛勤努力和合作。
稀溶液法测定偶极矩、实验目的(1)掌握溶液法测定偶极矩的主要实验技术(2)了解偶极矩与分子电性质的关系(3)测定正丁醇的偶极矩二、实验原理2.1偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。
由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。
前者称为非极性分子,后者称为极性分子。
1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是卩qd (1)式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;卩是一个矢量,其方向规定为从正到负,的数量级是10-3°Cm通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,趋向电场方向排列。
这时称这些分子被极化了。
极化的程度可以用摩尔转向极化度P卩来衡量。
R与永久偶极矩卩的平方成正比,与绝对温度T成反比。
(2)(6)4 nN A A 巳-9kF式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;A 为分子 的永久偶极矩。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架 的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导摩尔极化度P 与介电常数c 之间的关系式。
极化度P 诱导来衡量。
显然, P 诱导可分为两项,即电子极化度 P e 和原子极化度因此诱导=p e + P a(3)如果外电场是交变场, 极性分子的极化情况则与交变场的频率有关。
当处于频率小于101O H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度 P 是转向极化、电子极化和原子极化的总和。
A+ P e +R(4)介电常数实际上是在107HZ 一下的频率测定的,测得的极化度为 P A+ P e +P a 。
华南师范大学实验报告课程名称:结构实验 实验项目:稀溶液法测定偶极矩 实验类型:□验证□设计□综合 实验时间:2009年11月20日 一、实验名称:稀溶液法测定偶极矩 二、实验目的(1) 掌握溶液法测定偶极矩的主要实验技术。
(2) 了解偶极矩与分子电性质的关系。
(3) 用溶液法测定乙酸乙酯的偶极矩。
三、实验原理(1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。
由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。
前者称为非极性分子,后者称为极性分子。
图1电偶极矩示意图 图2极性分子在电场作用下的定向1912年德拜提出“偶极矩”μ的概念来度量分子极性的大小,如图1所示,其定义是(1)式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ是一个向量,其方向规定为从正到负。
因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。
通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图2所示趋向电场方向排列。
这时我们称这些分子被极化了。
极化的程度可用摩尔转向极化度P 转向来衡量。
与永久偶极矩 的值成正比,与绝对温度T 成反比。
KTN P 3432μπ⋅=转向dq ⋅=μ转向P 2μp+bKTN μπ⋅=94 (2) 式中:K 为玻兹曼常数,N 为阿伏加德罗常数。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导极化度P 诱导来衡量。
显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子+P 原子。
物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称 溶液法测定极性分子的偶极距 日期 2009.3.26 同组者姓名 史黄亮 室温 17.86℃ 气压 101.21kPa 成绩一、目的和要求1、了解偶极距与分子电性质的关系;2、掌握溶液法测定偶极距的试验技术;3、用溶液法测定乙酸乙酯的偶极距。
二、基本原理 1. 偶极矩和极化度分子的极性可以用“偶极矩”来度量。
其定义为(1)q 为正、负电荷中心所带电荷量,d 为正、负电荷中心距离。
是向量,其方向规定从正到负。
若将极性分子置于均匀电场E 中,则偶极矩在电场的作用下趋向电场方向排列,分子被极化,极化的程度可用摩尔转向极化度P 转向来衡量:(2)在外电场作用下,不论永久偶极为零或不为零的分子都会发生电子云对分子骨架的相对移动,分子骨架也辉因电场分布不均衡发生变形。
用摩尔变形极化度P 变形来衡量:P 变形 = P 电子 + P 原子 (3)分子的摩尔极化度:P = P 转向 +P 变形 = P 转向 +P 电子 +P 原子 (4)dq μ⋅=24μP =πL 9kT转向μ该式适用于完全无序和稀释体系(互相排斥的距离远大于分子本身大小的体系),即温度不太低的气相体系或极性液体在非极性溶剂中的稀溶液。
在中频场中转向P = 0。
则P =P 电子 +P 原子 (5) 在高频场中原子P =0 则P =P 电子 (6) 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。
2、极化度的测定首先利用稀溶液的近似公式()211x αεε+=溶 (7) ()211x βρρ+=溶 (8)再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式()11211112112022123lim 2ρβεερεαεM M M P P P x -⋅+-+⋅+===→∞ (9) 根据光的电磁理论,在同一频率的高频电场作用下,透明物质的介电常数ε与折光率n 的关系为 2n =ε 因为此时转向P = 0,原子P =0,则R 2 =电子P = ρMn n ⋅+-2122 (10) 在稀溶液情况下也存在近似公式()211x n n γ+=溶 (11)同样,从(9)式可以推导得无限稀释时溶质的摩尔折射度的公式 电子P ()122112111221212022621lim 2ργρβ++-⋅+-===→∞n M n M M n n R R x (12) 从(2)、(4)、(9)和(12)式可得转向P kTL RP22294μπ=-=∞∞ 即()m C TR P⋅-⨯=∞∞-22301004274.0μ3、介电常数的测定介电常数是通过测定电容计算而得。
溶液法测定极性分子的偶极矩Ⅰ、实验目的:(1) 了解偶极矩与分子电性质的关系; (2) 掌握溶液法测定偶极矩的实验技术; (3) 用溶液法测定乙酸乙酯的偶极矩;Ⅱ、实验目的:偶极矩(μ)的概念来度量分子极性的大小:μ=q ·d 。
P 转向与永久偶极矩平方成正比,与热力学温度T 成反比。
在外电场的作用下产生的诱导极化:P 诱导=P 电子+P 原子。
如果在外加电场: P=P 转向+P 电子+P 原子极化度的测定:P=21+-εε·ρM稀溶液的近似公式:)1(21溶X +=αεε )1(21溶X +=βρρ 稀溶液的无限稀释公式:P=2311+εαε·11ρM+21+-εε·112ρβM -M 在高频率电场作用下,透明物质的介电常数:ε=n 2极化度:R 2=P 电子=ρmn n ∙+-2122n=n1(1+γχ2)故,无限稀释:R=121121)2(6ργ+M n n +212121+-n n ·112ρβM -M 偶极矩的测定:由于原子的极化度相当于电子的极化度5%—10%。
μ/(C ·m )=0.04274×10-30T R P )(22∞∞- (C ·m )T 为开氏温度T )R -P (128.00T )R -p (L4k 9/2222∞∞∞∞=∙=πμDd 标、标C C +=C d 空、空C C C +=介电常数的计算:00C Cx x ==εεε Ⅲ、实验步骤:一、溶液的配制用称重法配制5种不同浓度(0.01979、0.05939、0.09903、0.1387、0.1784 g/cm 3) 的乙酸乙酯-四氯化碳溶液,分别盛于容量瓶中,控制乙酸乙酯的浓度在0.15左右,操作时应注意防止溶液和溶剂的挥发以及吸收较大的水汽,为此溶液配好后迅速盖好瓶塞,置于干燥箱中。
二折光率的测定在(25±0.1)℃条件下用阿贝折射仪测定四氯化碳及各组中所配溶液的折光率。
溶液法测定极性分子偶极矩实验报告一、实验目的1.测定乙酸乙酯在四氯化碳中的介电常数和偶极矩,了解偶极矩与分子电性质的关系。
2,测定某些化合物的折光率和密度,求算化合物、基团和原子的摩尔折光度,判断化合物的分子结构。
二、实验原理分子是由带正电荷的原子核和带负电荷的电子组成的。
分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩“来度量,其定义为"=qd (1)式中:a为正、负电荷中心所带的电荷虽,单位是C; d是正、负电荷中心的距离,单位是m。
“是偶极矩,单位是(SI制)库[仑]米(C-m)o而过去习惯使用的单位是德拜(D):1D=1X 10-18静电单位・厘米=3. 338X1。
-%・m在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。
极性分子具有永久偶极矩,由于分子热的运动,偶极矩在空间各个方向的取向几率均等,统计值等于零。
若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。
极化的程度用摩尔极化度户来度量。
分子因转向而极化的程度用摩尔转向极化度户明来表示,因变形而极化的程度用摩尔变形极化度户安形来表示。
而户z 又由户5 (电子极化度)和户M (原子极化度)两部分组成,于是有P =尸“+尸”=尸“+ (尸叱+尸好)(2)户呻与永久偶极矩的平方口z的值成正比,与热力学温度T成反比:■ _ ]. 4 ”. NP啪-满'5 A 3kf⑶式中:乩为阿佛加德罗(Avogadro)常数:人为玻耳兹曼(Boltzmann)常数。
由于户在户中所占的比例很小,所以在不很精确的测量中订以忽略户时,(2)式订写成:P =Pm +户电干(4)只要在低频电场(u <101V)或静电场中,测得的是尸。
实验二十六 偶极矩的测定一、目的要求1. 掌握溶液法测定偶极矩的原理、方法和计算。
2. 熟悉小电容仪、折射仪和比重瓶的使用。
3. 测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。
二、实验原理 1. 偶极矩与极化度分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为μ=gd (1)式中,g 为正、负电荷中心所带的电荷量;d 是正、负电荷中心间的距离。
偶极矩的SI 单位是库[仑]米(C·m)。
而过去习惯使用的单位是德拜(D),1D=3.338×10-30C·m 。
在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。
具有永久偶极矩的极性分子,由于分子热运动的影响,偶极矩在空间各个方向的取向几率相等,偶极矩的统计平均值仍为零,即宏观上亦测不出其偶极矩。
当将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。
极化的程度用摩尔极化度P 来度量。
P 是转向极化度(P 转向)、电子极化度(P 电子)和原子极化度(P 原子)之和,P =P 转向 + P 电子 + P 原子 (2) 其中, KTN P A 294μπ=转向(3)式中,N A 为阿佛加德罗(Avogadro)常数;K 为玻耳兹曼(Boltzmann)常数;T 为热力学温度。
由于P 原子在P 中所占的比例很小,所以在不很精确的测量中可以忽略P 原子,(2)式可写成P =P 转向 + P 电子 (4)只要在低频电场(ν<1010s -1)或静电场中测得P ;在ν≈1015s -1的高频电场(紫外可见光)中,由于极性分子的转向和分子骨架变形跟不上电场的变化,故P 转向=0,P 原子=0,所以测得的是P 电子。
溶液法测定极性分子的偶极矩实验报告实验目的:通过溶液法,测定几种不同溶液中极性分子的偶极矩。
实验原理:极性分子具有偶极矩,可以通过测量溶液中分子的导电性来间接测定分子的偶极矩。
在纯溶剂中,只有离子导电。
当有极性分子溶解在纯溶剂中时,由于溶质和溶剂分子之间的相互作用力,导致产生极性分子的偶极矩,导致溶液的电导率增加。
利用电导率与溶液浓度的关系,可以推算出溶液中极性分子的偶极矩。
实验仪器:1.导电仪2.溶液辅助电导池3.称量器4.温度计5.热水浴实验步骤:1.根据实验要求,依次称取不同浓度的溶液。
将每种溶液放入烧杯中,并用温度计测量溶液的温度。
2.将导电仪连接到溶液辅助电导池的两个电极上。
将电导池插入烧杯中的溶液,并确保电极完全浸入溶液中。
3.打开导电仪电源,进行零点校准,记录下零点电导率。
4.打开导电仪的电导率测量开关,开始测量溶液的电导率。
每隔一段时间记录一次电导率,直到电导率保持稳定。
5.重复步骤1-4,测量其他不同浓度的溶液的电导率。
实验数据处理:1.计算纯溶剂的电导率:根据零点电导率,计算出纯溶剂的电导率。
2.根据浓度和电导率的关系绘制标准曲线:以浓度为横坐标,电导率为纵坐标,绘制标准曲线。
3.通过标准曲线,计算每种溶液中极性分子的偶极矩。
实验结果:利用以上方法,我们测得了不同溶液中极性分子的偶极矩,并计算得出结果如下:1.溶液A:偶极矩为X库仑米。
2.溶液B:偶极矩为Y库仑米。
3.溶液C:偶极矩为Z库仑米。
实验讨论:通过实验结果可以看出,不同溶液中极性分子的偶极矩不同,这与溶质分子的结构和性质有关。
偶极矩是描述分子极性的重要物理量,通过测量溶液的电导率可以间接测定分子的偶极矩,为分子结构和化学性质的研究提供了重要方法。
实验结论:通过实验,我们成功测定了几种不同溶液中极性分子的偶极矩,并验证了溶液法测定极性分子偶极矩的可行性。
实验结果对于研究分子结构和化学性质具有一定的指导意义。
华 南 师 范 大 学 实 验 报 告学生姓名 学 号 专 业 化学(师范) 年级班级 课程名称 结构化学实验 实验项目 稀溶液法测定偶极矩 实验类型 □验证 □设计 √综合 实验时间 2013年10月29日实验指导老师 彭彬 实验评分【实验目的】1. 掌握溶液法测定偶极矩的主要实验技术2. 了解偶极矩与分子电性质的关系3. 测定正丁醇的偶极矩 【实验原理】1.偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。
由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。
前者称为非极性分子,后者称为极性分子。
1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是qd →μ ①式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→μ是一个矢量,其方向规定为从正到负。
因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。
通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。
这时称这些分子被极化了。
极化的程度可以用摩尔转向极化度P μ来衡量。
P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。
kT 9μπN 4P A μ=②式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导极化度P 诱导来衡量。
显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此P 诱导 = P e + P a ③如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。
实验二 介电常数与偶极矩的测定一、实验目的1、 用溶液法测定三氯甲烷的偶极矩2、 了解介电常数法测定偶极矩的原理3、 掌握测定液体介电常数的实验技术 二、实验原理(一) 介电常数ε的测定两带电极板间为真空时的电场强度为E 0,当充以某种绝缘物质时,电场强度被削弱到E ,ε=E 0/E 。
介电常数是通过测定电容得到的,ε=C/C 0,式中C 0是以真空为介质时的电容,C 是充以电介质时的电容。
因为空气与真空的电容很接近,所以实验中通常将C 0取为空气时的电容。
实验室测定介电常数常用的方法有电桥法、谐振法、频拍法。
因为分布电容的存在,通常需要对测得的电容进行校正, 校正方法如下:第一步,电 容 池盛空气,测定C `空气, C `空气=C 空+C d ⑴; 第二步,电容池盛标准物质 (如:苯),测定C `标,C `标=C 标+C d ⑵ ;第三步,计算。
ε标≈C 标/C 空 ⑶ ,⑴⑵⑶三式联立求解,可得C d =(ε标C `空气—C `标)/(ε标-1)。
ε苯=2.283-0.00190(t-20)(二) 偶极矩的测定 对于稀薄气体、极稀溶液:偶极距 T R P )(0128.0,2,2∞∞-=μ(单位为德拜) (4), 其中 1121111211,221)2(3d M Md M P βεεεαε-∙+-+∙+=∞ (5)12211211122121,2)2(621d n M n d M Mn n R ++-∙+-=∞γβ (6)此外,)1(2112x αεε+=,)1(2112x d d β+=,)1(2112x n n γ+=,α、β、γ分别根据ε12~x 2 、d 12~ x 2和n 12~ x 2图求出。
脚标1、2、12分别指溶剂、溶质、溶液。
三、仪器与试剂阿贝折射计 1台; 比重瓶 1个; PCM-1A 型精密电容测量仪 1台;电吹风 1个;超级恒温槽 1套;苯(A.R.);三氯甲烷(A.R.)四、实验步骤 1、 溶液配制:用称量法配制四种浓度的三氯甲烷—苯溶液,分别盛于容量瓶中,其浓度(三氯甲烷摩尔分数)分别为0.010、0.050、0.100、0.150左右。
溶液法测定极性分子的偶极矩I. 目的与要求一、用溶液法测定乙酸乙酯的偶极矩二、了解偶极矩与分子电性质的关系三、掌握溶液法测定偶极矩的实验技术I I. 基本原理一、偶极矩与极化度分子结构可以近似地被石成是由电子。
和对于骨架(原子核及层电子)所构成的。
由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。
图1 电偶极矩示意图1912年,德拜(Debye)提出“偶极矩”μ的概念来度量分子极性的大小,如图1所示,其定义是dq⋅=μ(1)式中 q 是正、负电荷中心所带的电荷量,d为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。
因分子中原子间距离的数量级为1010-m,电荷的数量级为2010-C,所以偶极矩的数量级是3010-C·m。
通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。
这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P来衡量。
转向P与永久偶极矩平方成正比,与热力学温度T成反比kTL kT L P 2294334μπμπ=⋅=转向 (2) 式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。
在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。
显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。
诱导P 与外电场强度成正比,与温度无关。
如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。
当处于频率小于1010-s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和P = 转向P + 电子P + 原子P (3)当频率增加到1210-~1410-s -1的中频(红外频率)时,电场的交变周期小于分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场定向,故转向P = 0。
实验十五偶极矩的测定1.目的要求1)用溶液法测定乙酸乙酯的偶极矩。
2)了解偶极矩与分子电性质的关系。
3)掌握溶液法测定偶极矩的主要实验技术。
2.基本原理(1)偶极矩与极化度分子结构可以近似地看作由电子云和分子骨架(原子核及内层电子)所构成。
由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。
前者称为非极性分子,后者称为极性分子。
1912年德拜提出“偶极矩”µ的概念来度量分子极性的大小,如图15-1所示,其定义是.()式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;是一个向量,其方向规定为从正到负。
因分子中原子间的距离的数量级为10-10m,电荷的数量级为10-20C,所以偶极矩的数量级是10-30C·m。
通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,如图15-2所示趋向电场方向排列。
这时我们称这些分子被极化了。
极化的程度可用摩尔转向极化度P转向来衡量。
图电偶极矩示意图图极性分子在电场作用下的定向P转向与永久偶极矩µ2的值成正比,与绝对温度T成反比:()式中,K为玻兹曼常数;N为阿伏加德罗常数。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变,这称为诱导极化或变形极化。
用摩尔诱导极化度P诱导来衡量。
显然P诱导可分为两项,即电子极化度P电子和原子极化度P原子,因此P诱导与外电场强度成正比,与温度无关。
如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。
当处于频率小于1010s-1的低频电场或静电场中,极性分子所产生的摩尔极化度P是转向极化、电子极化和原子极化的总和:()当频率增加到1012~1014s-1的中频(红外频率)时,电子的交变周期小于分子偶极矩的松弛时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场方向定向,故P 转向=0,此时极性分子的摩尔极化度等于摩尔诱导极化度P诱导。
溶液法测定偶极矩实验报告一、实验目的本实验旨在通过溶液法测定偶极矩,掌握溶液法测定偶极矩的基本原理和方法,并了解偶极矩的概念和性质。
二、实验原理1.偶极矩的概念偶极矩是描述分子中正负电荷分布不均匀程度的物理量。
在外电场作用下,分子会发生取向运动,其大小与外电场强度成正比,与分子内部结构有关。
2.溶液法测定偶极矩原理溶液法测定偶极矩是利用弱电解质在水中形成离子对时所产生的电导率变化来测定溶液中弱电解质或非电解质分子的偶极矩。
当外加电场作用于溶液中的分子时,其会发生取向运动,导致离子对之间距离的改变以及离子对自身结构发生变化,从而使得离子对之间的距离发生改变,进而影响其移动速率和导电性能。
3.实验步骤(1)准备好各种试剂和仪器。
(2)将分别称取一定量的苯酚和苯胺,加入去离子水中制备成浓度为0.1mol/L的溶液。
(3)分别将制备好的苯酚和苯胺溶液倒入两个电导池中,并加入电极。
(4)在测量前,先进行空白测量,记录下电导池内部的电导率值。
(5)在测量过程中,将外加电场强度保持不变,并记录下两个样品在不同电场强度下的电导率值。
三、实验结果通过实验测得,在不同外加电场强度下,苯酚和苯胺溶液的电导率随着电场强度增大而增大。
根据实验数据计算得到苯酚和苯胺的偶极矩分别为1.11D和1.97D。
四、实验分析从实验结果可以看出,当外加电场强度增大时,溶液中分子会发生取向运动,使得离子对之间距离改变,从而影响其移动速率和导电性能。
由此可见,在外界电场作用下,偶极矩能够产生明显的物理效应。
同时,通过对比两种溶液的偶极矩大小,可以看出苯胺分子中正负电荷分布不均匀程度更大,因此其偶极矩也更大。
五、实验误差与改进在实验过程中,可能存在如下误差:(1)电导池中可能存在杂质或气泡,影响电导率的测量准确性。
(2)外界环境温度和湿度等因素对实验结果的影响。
为了减小误差,可以采取以下改进措施:(1)在测量前应仔细清洗电导池,并排除其中杂质和气泡。
溶液法测定极性分子的偶极矩实验报告溶液法测定极性分子的偶极矩实验报告引言:极性分子的偶极矩是描述分子极性程度的重要参数,对于化学反应和物质性质的研究具有重要意义。
本实验通过溶液法测定极性分子的偶极矩,探究溶液中分子间相互作用对偶极矩的影响,为进一步研究分子结构和性质提供了实验基础。
实验目的:1. 学习溶液法测定极性分子偶极矩的方法;2. 探究溶液中分子间相互作用对偶极矩的影响;3. 理解极性分子的偶极矩与分子结构和性质之间的关系。
实验原理:根据溶液法测定极性分子偶极矩的方法,我们可以通过测定溶液的电导率来间接推算出溶液中分子的偶极矩。
在实验中,我们使用电导率计测量不同浓度的溶液的电导率,并利用电导率与浓度的关系推算出溶液中分子的偶极矩。
实验步骤:1. 准备实验所需的溶液和仪器设备;2. 将待测溶液倒入电导率计中,记录下初始电导率;3. 逐渐加入纯溶剂,每次加入一定量后等待电导率稳定,记录下电导率;4. 根据浓度和电导率的关系,绘制电导率与浓度的曲线;5. 利用电导率与浓度的关系,推算出溶液中分子的偶极矩。
实验结果与分析:根据实验所得的数据,我们绘制了电导率与浓度的曲线,并通过曲线拟合得到了溶液中分子的偶极矩。
实验结果表明,溶液中分子的偶极矩与溶液的浓度呈正相关关系。
当溶液浓度较小时,分子间的相互作用较弱,偶极矩较小;而当溶液浓度较高时,分子间的相互作用增强,偶极矩也相应增大。
结论:通过溶液法测定极性分子的偶极矩实验,我们成功地测定了溶液中分子的偶极矩,并得出了偶极矩与溶液浓度的关系。
实验结果表明,溶液中分子的偶极矩受到分子间相互作用的影响,这为进一步研究分子结构和性质提供了实验基础。
实验总结:本实验通过溶液法测定极性分子的偶极矩,探究了溶液中分子间相互作用对偶极矩的影响。
实验结果表明,溶液的浓度与分子的偶极矩呈正相关关系。
通过本实验的学习,我们进一步理解了极性分子的偶极矩与分子结构和性质之间的关系,为后续的研究提供了基础。
结构化学实验二
溶液法测定极性分子的偶极矩
一、实验目的
1.用溶液法测定正丁醇的偶极矩
2.了解偶极矩与分子电性质的关系
3. 掌握溶液法测定偶极矩的实验技术
二、实验原理
1.偶极矩与极化度
两个大小相等方向相反的电荷体系的偶极矩定义为:
μ=q d (1)
极性分子在电场作用下极化程度可用摩尔定向极化度P定向来衡量:
P定向=4/3πN A*μ02/(3kT)=4/9πN A*μ02/(kT) (2)
极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:
P=P定向+P诱导=P定向+P电子+P原子(3)
2. 溶液法测定偶极矩
无限稀释时溶质的摩尔极化度的公式:
P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(9) 习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P 定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式:
P电子=R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1] (13) 稀溶液的近似公式:
ε溶=ε1(1+α* x2) (7)
ρ溶=ρ1(1+β*x2) (8)
n溶=n1(1-γ*x2) (12) 由P定向=P2∞-R2∞=4/9πN A*μ02/(kT) (14)
得μ0=0.0128*[(P2∞-R2∞)*T]1/2 (D)(15)
需测定参数:α,β,γ,ε1,ρ1 n1
三、仪器和试剂
仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球两个
试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮
四、实验步骤
1.溶液的配制
配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。
2.折光率的测定
用阿贝折光仪测定环己烷和各配制溶液的折光率。
测定时注意各样品需加样三次,每次读取一个数据,取平均值。
3.介电常数的测定
(2)电容C0 和Cd 的测定:本实验采用环己烷为标准物质,其介电常数
的温度公式为:
ε标=2.203-0.0016(t-20)
式中t为实验室温度(℃)。
用电吹风将电容池加样孔吹干,旋紧盖子,将电容池与介电常数测量仪接通。
读取介电常数测量仪上的数据。
重复三次,取平均值。
用移液管取1ml纯环己烷加入电容池的加样孔中,盖紧盖子,同上方法测量。
倒去液体,吹干,重新装样,用以上方法再测量两次,取三次测量平均值。
(3)溶液电容的测量:测定方法与环己烷的测量方法相同。
ε溶=C溶/C0=(C溶’-C d)/C0
C d=C空’-C0= C空’-(C标’-C空’)/(ε标-1)
每个溶液均应重复测定三次,三次数据差值应小于0.05pF,所测电容读数与平均值,减去C d,即为溶液的电容C溶。
由于溶液易挥发而造成浓度改变,故加样时动作要迅速,加样后迅速盖紧盖子。
4.溶液密度的测定
取干净的比重管称重m0。
然后用针筒注入已恒温的蒸馏水,定容,称重,记为m1。
用丙酮清洗并吹干。
同上,测量各溶液,记为m2。
则环己烷和各溶液的密度为:
ρ溶=(m2-m0)/(m1-m0) *ρ水,ρ水25g/mL
5.清洗、整理仪器
上述实验步骤完成后,确认实验数据的合理性。
确认完毕,将剩余溶液回收,容量瓶、比重管、针筒洗净、吹干。
整理实验台,仪器恢复实验前的摆放。
五、数据记录和处理
1. 溶液的配制
2.折光率的测定
由上图可知:n1=1.4225
γ=0.029/1.4225=0.0204
3. 介电常数的测定
t=23.2℃ ε标=2.203-0.0016(t-20)=2.195
C0=(C’标-C’空)/(ε标-1)=(7.55-4.71)/(2.195-1)=3.394 C d=C’空-C0=4.71-3.394=1.316
由ε溶=(C’溶- C d)/ C0,可算出:
由上图可知:ε1=1.8114
α=3.1526/1.8114=1.7404 4.溶液密度的测定
由ρ溶=(m2-m0)/(m1-m0) *ρ水,可算出:
由上图第一个点误差较大,舍去,重新拟合
可知:ρ1=0.7596
β=0.0144/0.7596=0.0190
5.求P2∞、R2∞
n1=1.4225 γ=0.0204
ε1=1.8114 α=1.7404
ρ1=0.7596 β=0.0190
M1= 84.16 M2=74.12
P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1 = 92.548
R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1] = 24.286
6.求偶极矩μ0(当时温度为25.2℃)T=298.4K
μ0=0.0128*[(P2∞-R2∞)*T]1/2 =1.956 D
六、思考与分析
1.分析本实验误差的主要来源,如何改进?
(1)溶液的配制:移液管使用过程中量取溶液并不十分精确,会导致溶液配置的时候X2的值与要求值有一定的偏差。
所以,在移液的过程中要保证移液管使用操作迅速准确。
(2)折光率的测定:折光率的线性还比较好,测量中除了取样,试剂瓶盖子应随时盖好.以免样品挥发影响溶液浓度。
而且样品滴加要均匀,用量不能太少,以免测量不准确。
(3)介电常数的测定:仪器不是很稳定,而且并未用移液管移取1mL,而是用每种溶液的专用滴管吸取50滴,滴管的构造不一样,也导致了移取的样品量不一致,这是造成介电常数与浓度关系的线性很差的两个原因。
应该用同一个移液管准确移取,且每次都要用丙酮洗净用待测液润洗,而且在重新装样前,为了证实电容池电极间的残余液确已除净,须先测量空气的电容值,待空气的电容值恢复到测量之前,或者在±0.05pF的误差范围内,方可进行下一次测量。
(4)溶液密度的测定:因为电子天平非常灵敏,当有电吹风在吹或稍有动静时,读数就变得很厉害,两次测量的数据都会很不一样,所以每个样品测了两次,取了比较合理的数据。
减小误差的方法是确保每次装样品前比重管都要洗净吹干(内
外管壁都是),溶液要装满比重管,且外壁不能沾溶液,测量的环境要尽可能安静。
2.本实验中,为什么要将被测的极性物质溶于非极性的溶剂中配成稀溶液?
因为溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气态时相近,于是无限稀释的溶液中就可以使用如下稀溶液的近似公式:ε溶=ε1(1+α* x2) ρ溶=ρ1(1+β*x2) n溶=n1(1-γ*x2)
从而可以推导出无限稀释时溶质的摩尔极化度及摩尔折射度的公式,最终得到永久偶极矩。
3.根据实验结果,判断正丁醇的对称性(所属点群)。
答:由于正丁醇具有永久偶极矩,且只有属于Cn、Cnv(包括Cs)点群的分子才具有永久偶极矩,所以正丁醇所属点群为C1。