近三年广东省中考数学试题知识点分布表
- 格式:pdf
- 大小:51.82 KB
- 文档页数:3
广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共1小题)1.(2023•广东)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.二.分式的化简求值(共1小题)2.(2022•广东)先化简,再求值:a+,其中a=5.三.分式方程的应用(共1小题)3.(2023•广东)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.四.解一元一次不等式组(共2小题)4.(2021•广东)解不等式组.5.(2022•广东)解不等式组:.五.函数的表示方法(共1小题)6.(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x (kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.六.反比例函数与一次函数的交点问题(共1小题)7.(2021•广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.七.全等三角形的判定与性质(共1小题)8.(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.八.圆内接四边形的性质(共1小题)9.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.九.解直角三角形(共1小题)10.(2021•广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.一十.解直角三角形的应用(共1小题)11.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)一十一.条形统计图(共1小题)12.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?一十二.众数(共1小题)13.(2021•广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.一十三.方差(共1小题)14.(2023•广东)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910A线路所用时间15321516341821143520B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a= ;b= ;c= ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•广东)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.【答案】(1)6.(2)y=2x+1.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.二.分式的化简求值(共1小题)2.(2022•广东)先化简,再求值:a+,其中a=5.【答案】2a+1,11.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.三.分式方程的应用(共1小题)3.(2023•广东)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.【答案】乙骑自行车的速度为12km/h.【解答】解:设乙步行的速度为xkm/h,则甲骑自行车的速度为1.2xkm/h,根据题意得﹣=,解得x=12.经检验,x=12是原分式方程的解,答:乙骑自行车的速度为12km/h.四.解一元一次不等式组(共2小题)4.(2021•广东)解不等式组.【答案】见试题解答内容【解答】解:解不等式2x﹣4>3(x﹣2),得:x<2,解不等式4x>,得:x>﹣1,则不等式组的解集为﹣1<x<2.5.(2022•广东)解不等式组:.【答案】1<x<2.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.五.函数的表示方法(共1小题)6.(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x (kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【答案】(1)y与x的函数关系式为y=2x+15(x≥0);(2)所挂物体的质量为2.5kg.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15(x≥0);(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.六.反比例函数与一次函数的交点问题(共1小题)7.(2021•广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.【答案】(1)m=4;(2)k=2或k=6.【解答】解:(1)∵P(1,m)为反比例函数y=图象上一点,∴代入得m==4,∴m=4;(2)令y=0,即kx+b=0,∴x=﹣,A(﹣,0),令x=0,y=b,∴B(0,b),∵PA=2AB,由图象得,可分为以下两种情况:①B在y轴正半轴时,b>0,∵PA=2AB,过P作PH⊥x轴交x轴于点H,又B1O⊥A1H,∠PA1O=∠B1A1O,∴△A1OB1∽△A1HP,∴,∴B1O=PH=4×=2,∴b=2,∴A1O=OH=1,∴|﹣|=1,∴k=2;②B在y轴负半轴时,b<0,过P作PQ⊥y轴,∵PQ⊥B2Q,A2O⊥B2Q,∠A2B2O=∠PB2Q,∴△A2OB2∽△PQB2,∴,∴AO=|﹣|=PQ=,B2O=B2Q=OQ=|b|=2,∴b=﹣2,∴k=6,综上,k=2或k=6.七.全等三角形的判定与性质(共1小题)8.(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【答案】证明见解答过程.【解答】证明:∵PD⊥OA,PE⊥OB,∴∠ODP=∠OEP=90°,∵∠AOC=∠BOC,∴∠DOP=∠EOP,在△OPD和△OPE中,,∴△OPD≌△OPE(AAS).八.圆内接四边形的性质(共1小题)9.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【答案】(1)等腰直角三角形,证明见解答过程;(2).【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.九.解直角三角形(共1小题)10.(2021•广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.【答案】(1)1;(2).【解答】解:(1)如图,连接BD,设BC垂直平分线交BC于点F,∴BD=CD,C△ABD=AB+AD+BD=AB+AD+DC=AB+AC,∵AB=CE,故△ABD的周长为1.(2)设AD=x,∴BD=3x,又∵BD=CD,∴AC=AD+CD=4x,在Rt△ABD中,AB===2.∴tan∠ABC===.一十.解直角三角形的应用(共1小题)11.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【答案】A、B的距离大约是15.3m.【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.一十一.条形统计图(共1小题)12.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)图形见解析;(2)众数为:4万元,中位数为:5万元,平均数为:7万元;(3)根据(2)中结果应确定销售目标为7,激励大部分销售人员达到平均销售额.(答案不唯一).【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4(万元),中位数为:5(万元),平均数为:=7(万元),(3)应确定销售目标为7万元,激励大部分的销售人员达到平均销售额.一十二.众数(共1小题)13.(2021•广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.【答案】见试题解答内容【解答】解:(1)由统计图中90分对应的人数最多,因此这组数据的众数应该是90分,由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是90分,因此这组数据的中位数应该是90分,平均数是:=90.5(分);(2)根据题意得:600×=450(人),答:估计该年级获优秀等级的学生人数是450人.一十三.方差(共1小题)14.(2023•广东)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表12345678910实验序号15321516341821143520 A线路所用时间25292325272631283024 B线路所用时间根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a= 19 ;b= 26.8 ;c= 25 ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【答案】(1)19,26.8,25.(2)选择B路线更优.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b==26.8,众数c=25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.。
近五年广东数学中考试题知识点分析近五年广东省中考数学试题知识点分析时间06年 07年 08年 09年 10年知识点题号大题1 实数运算科学记数法绝对值算术平方根相反数分一2 取值范围实数科学记数法幂的运算平行线 )、选3 科学记数法因式分解完全平方公视图中位数与众择题式数 )154 平行四边形概率轴对称科学记数法三视图5 展开图三角形中位数折叠二次根式6 众数角相反数因式分解科学记数法7 因式分解平行线反比例函数圆、解直角三分式化简二角形、填8 全等三角形统计正三角形打折解直角三角空形题)209 分母有理化代数式平行线、三角概率一次函数与形内角和反比例函数分 )10 圆柱体上最菱形圆几何找规律几何找规律短路线问题11 二次函数实数综合运算(零指数次幂、负指数次幂、特殊三角函数值、三二次根式。
)、12 实数运算不等式不等式分式方程解方程组解答13 圆一次函数作图(中垂一次函数作图(网格) 题线) )3014 概率作图(中垂一次函数、反作图题(作垂圆分线) 比例函数线) ) 15 作图(网格圆应用题(图形解直角三角根的判别式、变换) 形韦达定理16 统计应用题列方程解应增长率应用概率四用题题、17 不等式组应相似、全等概率统计二次函数解答用题题18 一次函数、反一次函数、反三角形四边形三角形与四)28比例函数比例函数边形综合分19 圆统计解直角三角几何找规律方案设计(不 )形(坡度) 等式组)20 平行四边形几何找规律阅读理解题旋转旋转分五(韦达定理) )、解21 一元二次方几何综合(相旋转变换阅读理解(换代数找规律答题程应用题似、全等、圆) 元法) )2722 压轴题(相似、三角形、三角函数、二次函数、极值。
)。
广东中考数学九年级知识点在广东省中考数学中,九年级的学生将面临一项重要考试,这个考试涵盖了多个数学知识点。
在本文中,我们将深入探讨这些知识点,并向学生们介绍如何准备和应对这个考试。
第一个知识点是整式运算。
整式是由常数项、x 的各次幂及它们的积和商组成的代数式。
整式的加减法和乘法是我们需要掌握的运算法则。
此外,学生们还需要了解整式除法的相关概念和方法,学会使用余式定理和因式定理等解决问题。
第二个知识点是分式运算。
分式是两个整式的比值,其中分母不能为零。
在解决分式运算问题时,我们需要掌握分式的加减法、乘除法等基本运算法则,同时要注意约分和通分的相关方法。
接下来是一元一次方程与方程组的应用。
这部分内容涉及到方程的基本概念和解题方法。
学生们需要掌握通过列方程、解方程的方法来解决实际问题,并注意解方程过程中的运算步骤和合理性。
另一个重要的知识点是一元二次方程。
学生们需要了解一元二次方程的一般形式以及解方程的方法,例如配方法、公式法等。
此外,对于二次函数的图像和性质,学生们也需要有基本的了解。
几何部分对于考生来说同样重要。
学生们需要掌握平面图形的性质和计算,例如三角形的内角和、正多边形的面积、圆的面积和弧长等。
此外,对于空间几何的学习也是必不可少的,学生们需要了解空间中各种几何体的性质和计算公式。
另外,概率统计是中考数学中的一个较为新颖的知识点。
学生们需要掌握概率的基本概念和计算方法,例如事件的概率、排列组合、条件概率等。
在统计学方面,学生们需要了解数据的收集和整理方法,以及如何通过图表和统计量进行数据分析和阐释。
除了上述知识点,在中考数学中还有许多其他重要的内容,例如函数、立体几何、比例与相似等。
对于学生们来说,充分理解和掌握这些知识点是提高数学成绩的关键。
如何备考呢?首先,学生们应该详细阅读教材,并重点关注习题和例题,做到理论联系实际。
其次,通过做大量的练习题,巩固知识点并提升解题能力。
此外,参加模拟考试和习题集训练习对于提高应试能力也很有帮助。