第8章材料非线性问题的有限元法解读
- 格式:ppt
- 大小:416.50 KB
- 文档页数:7
材料力学有限元法知识点总结材料力学是一门研究物质内部结构、性质和变形行为的学科,而有限元法则是一种在工程和科学领域中广泛应用的数值计算方法。
有限元法可以将一个复杂的实体划分为无数小的单元,通过对这些小单元进行分析和计算,最终得到整个实体的力学性质和行为。
本文将对材料力学有限元法的一些核心概念和知识点进行总结。
1. 有限元法基础概念有限元法基于将实际连续的物体离散为有限数量的单元,通过计算每个单元的受力、变形等性质,再通过组合这些单元的结果来近似整个物体的行为。
它包含以下几个基础概念:1.1 单元(Element):有限元法中的基本组成单元,可以是一维的线段、二维的三角形或四边形,或三维的四面体、六面体等。
1.2 节点(Node):单元的角点或边上的点,用于定义单元之间的连接关系和边界条件。
1.3 自由度(Degree of Freedom):每个节点与力学性质相关的物理量,如位移、应力等。
根据问题的不同,在每个节点上可能有一个或多个自由度。
1.4 单元刚度矩阵(Element Stiffness Matrix):描述单元内部受力和变形关系的矩阵,在有限元法中通过组合所有单元的刚度矩阵来得到整个系统的刚度矩阵。
1.5 全局刚度矩阵(Global Stiffness Matrix):由所有单元刚度矩阵组合而成的整个系统的刚度矩阵,用于计算节点的位移和应力。
2. 有限元法的数学原理有限元法的数学原理主要基于以下两个方面:2.1 变分原理(Variational Principle):有限元法的数学基础是根据变分原理推导实现的。
它通过对结构的势能进行变分并进行最小化,得到满足结构力学行为和边界条件的位移和应力场。
2.2 加权残差法(Weighted Residuals Method):有限元法通过将变分原理中的势能函数展开为一系列基函数的线性组合,并使用权重函数对残差进行加权求和的方式进行近似。
这样可以将求解连续问题转化为离散问题,进而进行数值计算。
有限元法的基本原理
有限元法是一种用于求解物体结构和材料行为的数值分析方法。
它将连续的物理问题离散化为一个由一系列小的单元构成的简化模型,每个单元都有自己的特性和行为。
有限元法的基本原理是将物体分割成离散的有限元素,并在每个元素上建立适当的数学模型。
这些数学模型可以描述元素的行为以及相邻元素之间的相互作用。
然后,通过在元素级别上求解这些模型,得到整个物体的行为。
在有限元法中,首先将物体网格化成一系列有限元素。
常用的有限元素包括三角形、四边形和六面体等。
然后,在每个元素上构建适当的数学模型,通常使用微分方程或代数方程来描述元素的行为。
这些方程可以是弹性、塑性、热传导等物理现象的方程。
为了求解整个物体的行为,有限元法需要在每个元素上求解数学模型。
一般来说,这涉及到在每个元素的内部和边界上施加恰当的边界条件,并使用数值方法进行求解。
常用的数值方法包括有限差分方法、有限体积方法和有限元法等。
通过在每个元素上求解数学模型,并根据元素之间的相互作用来求解整个物体的行为,有限元法可以提供物体的应力、应变、位移等各种物理量的分布和变化情况。
这对于分析和设计工程结构、优化材料性能等都具有重要意义。
总的来说,有限元法的基本原理是将物体离散化,并在每个元
素上构建适当的数学模型,然后通过数值方法求解这些模型,以获得整个物体的行为。
它是一种强大的工具,可以在工程和科学领域中广泛应用。
有限元法原理
有限元法是一种工程计算方法,主要用于求解连续介质的力学问题。
它的基本原理是将连续介质离散成有限个小单元,然后利用有限元的形状函数对每个小单元进行近似,最终利用这些近似解来求解整个连续介质的力学问题。
有限元法的主要思想是将问题的解表示为一个有限个数的基函数的线性组合。
这些基函数与小单元的形状函数相联系,通过对小单元的形状函数进行合适的选取和调整,可以确保解在小单元内满足边界条件。
然后,通过将所有的小单元的解进行组合,就可以得到整个连续介质的解。
在实际的计算中,有限元法通常分为以下几个步骤:首先,需要根据实际问题确定合适的有限元模型,包括选择适当数量和类型的有限元单元。
然后,需要确定边界条件,即确定整个连续介质的边界约束条件。
接下来,根据小单元的形状函数和基函数,可以建立刚度矩阵和荷载向量。
最后,通过求解线性方程组,可以得到整个连续介质的解。
有限元法具有广泛的应用范围,在工程领域中可以用于求解各种静力学、动力学、热力学、流体力学等问题。
它不仅能够提供精确的解,同时也具有较高的计算效率和灵活性。
因此,有限元法已经成为工程计算领域中一种非常重要的数值分析方法。
非线性有限元方法非线性有限元方法是大量应用于工程领域的计算方法,它主要用于求解复杂结构的力学问题,例如材料的变形、破坏和变形控制等。
与线性有限元方法不同,非线性有限元方法考虑因为载荷和边界条件的非线性导致问题的非线性本质,以及材料的非线性行为。
在这篇文章中,我们将讨论非线性有限元方法,包括其应用、工作原理以及其在工程领域中的重要性等内容。
首先,我们来研究一下非线性有限元方法的应用。
非线性有限元方法在许多方面都有应用。
其中最重要的领域是结构力学,包括建筑、航空航天、汽车等领域。
由于这些结构需要承受复杂的载荷,因此非线性有限元方法可以很好地模拟这些结构的行为,预测它们的性能和寿命。
此外,非线性有限元方法还可以应用于材料力学研究中,例如破碎、断裂和塑性变形等方面。
其次,我们来了解一下非线性有限元方法的工作原理。
与线性有限元方法类似,非线性有限元方法通过将结构分成小块进行离散,然后在每个小块中进行力学分析,最后将分析结果合并为整个结构的行为。
但是,与线性有限元方法不同的是,非线性有限元方法考虑到材料的非线性行为,采用迭代的方法计算结构的响应。
通常,在每一次迭代中,我们都将结构的当前状态作为一个初始猜测,然后求解出该状态下的切应力和位移场。
然后我们将这个位移场的结果代入底部,从而更新结构的状态。
如果解决方案收敛,则完成计算,否则就将新的状态再次代入求解。
这种方法的本质是将非线性问题转化为一系列线性问题的求解,通过迭代求解来逼近非线性问题的解。
最后,我们来讨论一下非线性有限元方法在工程领域中的重要性。
非线性有限元方法已成为现代工程设计和分析的不可或缺的工具。
它允许工程师们模拟和预测各种工程机构的行为,以及设计和优化各种结构。
例如,它可以帮助我们了解在不同载荷下建筑和桥梁行为的变化,预测材料的破坏和失效,以及优化汽车和飞机的结构以提高其性能。
总之,非线性有限元方法是一种复杂但十分有用的计算方法,它可以模拟各种结构的行为并预测其性能和寿命。
一、材料非线性问题的有限单元法1.1 引言以前各章所讨论的均是线性问题。
线弹性力学基本方程的特点是1.几何方程的应变和位移的关系是线性的。
2.物性方程的应力和应变的关系是线性的。
3.建立于变形前状态的平衡方程也是线性的。
但是在很多重要的实际问题中,上述线性关系不能保持。
例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。
又如长期处于高温条件下工作的结构,将发生蠕变变形,即在载荷或应力保持不变的情况下,变形或应变仍随着时间的进展而继续增长,这也不是线弹性的物性方程所能描述的。
上述现象都属于材料非线性范畴内所要研究的问题。
工程实际中还存在另一类所谓几何非线性问题。
例如板壳的大挠度问题,材料锻压成型过程的大应变问题等,这时需要采用非线性的应变和位移关系,平衡方程也必须建立于变形后的状态以考虑变形对平衡的影响。
由于非线性问题的复杂性,利用解析方法能够得到的解答是很有限的。
随着有限单元法在线性分析中的成功应用,它在非线性分析中的应用也取得了很大的进展,已经获得了很多不同类型实际问题的求解方案。
材料非线性问题的处理相对比较简单,不需要重新列出整个问题的表达格式,只要将材料本构关系线性化,就可将线性问题的表达格式推广用于非线性分析。
一般说,通过试探和迭代的过程求解一系列线性问题,如果在最后阶段,材料的状态参数被调整得满足材料的非线性本构关系,则最终得到问题的解答。
几何非线性问题比较复杂,它涉及非线性的几何关系和依赖于变形的平衡方程等问题,因此,表达格式和线性问题相比,有很大的改变,这将在下一章专门讨论。
这两类非线性问题的有限元格式都涉及求解非线性代数方程组,所以在本章开始对非线性代数方程组的求解作—一般性的讨论。
这对下一章也是必要的准备。
正如在前面已指出的,材料非线性问题可以分为两类。
有限元法的基本原理有限元法(Finite Element Method, FEM)是一种数值分析方法,用于求解边界值问题和偏微分方程。
它将连续的物理问题离散化为有限数量的小区域,通过对每个小区域进行数学建模和计算,最终得到整个问题的近似解。
有限元法在工程、物理学、地质学、生物学等领域都有着广泛的应用。
有限元法的基本原理可以分为以下几个步骤,建立数学模型、离散化、建立方程、求解方程、后处理。
下面将逐一介绍这些步骤。
首先,建立数学模型。
将实际问题抽象为数学模型是使用有限元法的第一步。
这需要对问题进行合理的假设和简化,以便将其表达为数学形式。
例如,对于结构力学问题,可以假设材料是均匀、各向同性的,结构是线性弹性的。
然后,将问题的几何形状、材料性质、边界条件等信息输入模型中。
其次,离散化。
将连续的问题划分为有限数量的小区域,即有限元。
这需要选择合适的离散化方法和网格划分技术,以确保模型的准确性和计算效率。
通常情况下,问题的复杂性会决定有限元的数量和类型。
然后,建立方程。
利用变分原理或最小势能原理,可以得到问题的弱形式,再通过有限元离散化,得到线性方程组。
这些方程通常是大型、稀疏的,需要采用合适的数值方法进行求解,如直接法、迭代法等。
接着,求解方程。
通过数值计算方法,求解得到方程组的近似解。
在这一步中,需要考虑数值稳定性、收敛性和计算精度等问题,以确保结果的可靠性。
最后,进行后处理。
对求解得到的数值结果进行分析和解释,得出对实际问题有意义的结论。
这包括计算应力、应变、位移等物理量,评估结构的安全性和稳定性,优化设计等。
总之,有限元法是一种强大的数值分析工具,可以有效地解决各种工程和科学问题。
通过建立数学模型、离散化、建立方程、求解方程和后处理,可以得到问题的近似解,并为实际工程和科学研究提供有力的支持。