第八章可靠性理论
- 格式:ppt
- 大小:319.00 KB
- 文档页数:28
可靠性基础理论摘要本文就可靠性的基础理论进行了综合的论述,着重论述了可靠性基本概念、可靠性指标、维修系统与不维修系统以及冗余系统,同时指出了提高可靠性的方法。
关键词可靠性维修系统与不维修系统冗余系统引言20 世纪人类社会的科技巨大发展,促使了可靠性学科的诞生。
可靠性理论及应用是以产品的寿命特征作为主要研究对象的一门新兴的边缘性学科,它涉及到基础科学、技术科学和管理科学的许多领域,其推广和应用已给企业和社会带来了巨大的经济效益。
产品的可靠性已成为衡量产品质量的重要指标之一。
近年来,世界各发达国家已把可靠性技术和全面质量管理紧密地结合起来,有力地提高了产品可靠性水平。
一、可靠性的发展概况可靠性理论的开始形成是在上世纪30~40 年代期间,这一阶段的活动主要集中在德国和美国。
20 世纪50年代初可靠性理论的兴起及形成,美国在朝鲜战争中发现不可靠的电子设年代初,美国在朝鲜战争中发现不可靠的电子设备不仅影响战争的进行,而且需要大量的维修费用。
1957年发表了第一份可靠性研究报告《军用电子设备可靠性》为标志。
上世纪60年代随着美国航空及航天工业迅速发展,可靠性理论得到了迅速的发展。
这时,前苏联、法国、日本、英国等国家也相继开展了可靠性工程的研究。
可靠性在我国的发展是在70年代初开始发展起来首先开展了电子产品的可靠性研究;相继在航天、核能及通信领域得到应用。
80年代以后,可靠性工程在我国得到全面、迅速的发展。
1982年制定了可靠性基本名词术语及国家标准,并成立了专门的研究机构;建立可靠性数据交换网,制定了各种可靠性标准;可靠性学术交流及可靠性教育也蓬勃发展起来。
20世纪90年代初,原机械电子工业部提出了“以科技为先导,以质量为主线”,沿着管起来一控制好一上水平的发展模式开展可靠性工作,兴起了我国第二次可靠性工作的高潮,取得了较大的成绩。
进入20世纪90年代后,由于软件可靠性问题的重要性更加突出和软件可靠性工程实践范畴的不断拓展,软件可靠性逐渐成为软件开发者需要考虑的重要因素,软件可靠性工程在软件工程领域逐渐取得相对独立的地位,并成为一个生机勃勃的分支。
可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。
可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。
可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。
产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。
产品可以是一个零件也可以是一个系统。
规定的条件包括使用条件、应力条件、环境条件和贮存条件。
可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。
可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。
所以,可靠性工程学是一门综合性较强的工作技术。
2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。
可靠度用字母R表示,它的取值范围为0≤R≤1。
因此,常用百分数表示。
若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。
其中F称为失效概率,亦称不可靠度。
设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。
所以可靠度是时间的函数,记成R(t),称为可靠度函数。
图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。
图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。
在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。
失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。
“可靠性理论”资料汇总目录一、基于可靠性理论的退化设备预防维修策略研究二、机械动态与渐变可靠性理论与技术评述三、基于可靠性理论的桥梁远程监测系统安全评价研究四、跌落碰撞下SMT无铅焊点可靠性理论与实验研究五、结构可靠性理论在桥梁工程中的应用六、应急系统响应可靠性理论及在火灾应急中的应用研究基于可靠性理论的退化设备预防维修策略研究随着科技的不断发展,设备变得越来越复杂,预防维修在保持设备运行状态、延长设备使用寿命方面的重要性日益凸显。
特别是在一些关键设备或者复杂系统中,设备故障可能会导致严重的后果,因此预防维修策略的制定和实施就变得尤为重要。
本文以可靠性理论为基础,对退化设备的预防维修策略进行深入研究。
可靠性理论:可靠性理论是研究设备在规定条件下,规定时间内,完成规定功能的能力的理论。
根据可靠性理论,设备的故障不是随机事件,而是由其固有可靠性决定的。
设备的固有可靠性受到其设计、制造、使用和维护等多个因素的影响。
预防维修策略:预防维修是指通过检查、检测等手段,提前发现设备存在的潜在问题,并采取相应的措施进行修复,以防止设备发生故障的维修方式。
常见的预防维修策略包括定期检修、状态检修、视情检修等。
退化设备是指在使用过程中,其性能逐渐下降的设备。
对于退化设备,除了实施常规的预防维修措施外,还需要进行针对性的退化设备预防维修策略。
设备退化检测:通过数据收集、定期检测等方式,及时发现设备的退化情况。
对于退化严重的设备,应立即进行维修或更换。
优化使用环境:通过对设备使用环境的改善,如改善设备的通风、降低设备的温度和湿度等,可以有效延缓设备的退化。
更新维修策略:对于退化严重的设备,需要调整其维修策略。
例如,对于已经无法通过常规预防维修方式处理的设备,可能需要采取视情检修或事后检修的方式进行处理。
本文基于可靠性理论,对退化设备的预防维修策略进行了研究。
通过可靠性理论的分析,我们可以更好地理解设备的故障模式和预防维修的必要性。
可靠性理论是以产品寿命特征为主要研究对象的一门综合性和边缘性科学,它涉及到基础科学、技术科学和管理科学的许多领域。
对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。
它的应用完善了传统的设计理论,极大地提升了结构和产品的质量,因此一直受到国内外学者的关注。
可靠性理论在其发展过程中主要经历了五个时期:(1)萌芽期可靠性理论早在十九世纪30~40年代已发展起来了。
十七世纪初期由伽利略、高斯、泊淞、拉普拉斯等人逐步建立了概率论,奠定了可靠性工程的主要理论基础。
十九世纪初布尔尼可夫斯基主编出版了一本概率论教程,同时他的学生马尔可夫建立了随机过程理论和大数定律,成为了维修性的理论基础。
1939年瑞典专家威布尔提出了描述材料疲劳强度的威布尔分布。
可靠性研究萌芽于飞机失事事件,1939年美国航空委员会出版的《适航性统计学注释》中,提出飞机事故率不应超过105 /h。
这里讲的事故率只是未能沿用可靠度的定义而已。
(2)摇篮期50年代的电子管事件揭开了可靠性研究的序幕。
50年代电子真空管的故障率增长迅速。
使电子技术进步与失效间的矛盾十分突出。
例如1941~1945年第二次世界大战期间,美国空军运往远东的机载电子设备在到达时就有60%已经失效,轰炸机的MTBF(无故障时间)不超过20小时。
另外,1945年12月美国制成的第一台电子管计算机,整个计算机共有18000只电子管。
但是,平均每33分钟就有一只失效。
与此同时,1943年德国火箭专家R.Lusser第一次用概率乘法法则定量算出了V-2火箭诱导装置的可靠度R的值为0.75。
第二次世界大战结束以后,美国国防部总结战争教训,提出了一个全新的问题——可靠性,并下令军队有关部门在今后的采购中只选择有可靠性指标的军需品。
(3)奠基期60年代,美国成为可靠性发展最早的国家。
质量管理学一、概述1.课程性质:主要立足培养产品和服务质量的改进和管理能力,特别是汽车维修质量和内部的质量管理,提高生产效益和市场竞争力。
2.课程基本理念:质量是市场竞争力的基础,是消费者合法权益的保障,是一个国家综合国力的象征,质量的重要性和如何提高质量管理,它的理论、概念、方法的介绍。
3.课程设计思路:我国已经加入“WTO”,正处于经济管理体制和经济增长方式的转变中,特别是汽车保有量的不断增长,必须实行质量振兴的基本国策,树立“质量第一,用户第一”的质量理念,了解质量竞争的特点和方式,并且,根据不同需要,掌握必要的质量管理理论和方法。
二、课程目标1.总目标:认识和熟悉质量管理基本理论、基本概念、基本方法,了解质量管理的发展趋势,追求产品质量与经济性的和谐统一,满足个性化需求。
2.具体目标:要求掌握和了解质量的概念、质量管理体系标准、质量审核的程序、质量监督和检验质量成本管理、顾客满意程度、工序质量控制等一些基本理论和方法,具备应用新的科技成果满足需求的多样化和产品高质量、低成本的能力和对有形资源统一和谐调配的素质。
第一章:概论1.第一层级教学目标:质量和质量管理的基本概念活动安排:上网查阅质量的发展史,讲述一遍考核评价:质量的内涵,质量管理与社会生产力进步之间的关系知识要点:质量、质量管理、全面质量管理技能要点:质量管理基础性工作第二章:六西格玛1.第一层级教学目标:六西格玛的产生和基本概念、六西格玛的组织结构和项目选择活动安排:六西格玛实施流程的培训考核评价:六西格玛成功的原因和存在的问题,如何根据实际情况选择2.第二层级知识要点:六西格玛组织管理和项目、六西格玛的概念和质量文化技能要点:六西格玛实施流程与改进方法第三章:质量管理常用统计方法1.第一层级教学目标:质量控制和质量统计的基本概念、常用的统计方法活动安排:因果分析法(因果图)来表示质量特性波动与其潜在的关系考核评价:对各类图表分析和应用以及举例说明2.第二层级知识要点:质量控制和质量统计的基本概念、常用的统计方法技能要点:绘制和分析各类图表第四章:工序控制1.第一层级教学目标:工序质量、工序能力、工序能力指数的概念,控制图的用途、基本格式和理论活动安排:工序能力调查考核评价:常用和通用控制图的设计与应用2.第二层级知识要点:控制图的原理和分析方法技能要点:工序能力和工序能力指数的计算方法第五章:质量检验1.第一层级教学目标:质量检验的概念、必要性、方法、管理制度。
可靠性理论基础复习资料目录第一章绪论第二章可靠性特征量第三章简单不可修系统可靠性分析第四章复杂不可修系统可靠性分析第五章故障树分析法第六章三态系统可靠性分析第七章可靠性预计与分配第八章寿命试验及其数据分析第九章马尔可夫型可修系统的可靠性第一章:可靠性特征量2.1可靠度2.2失效特征量2.3可靠性寿命特征2.4失效率曲线2.5常用概率分布2.1可靠度一、系统的分类:可修系统与不可修系统;可修系统是指系统的组成单元发生故障后,经过维修能够使系统恢复到正常工作状态。
不可修系统是指系统或其组成单元一旦发生失效,不在修复,系统处于报废状态。
二、可靠性定义产品在规定条件下,规定时间内,完成规定功能的能力。
1. 产品:可以是一个小零件,也可以指一个大系统。
2. 规定条件:主要是指使用条件和环境条件。
3. 规定时间:包括产品的运行时间、飞机起落架的起飞着陆次数、循环次数或旋转次数等。
产品可靠性是非确定性的,并且具有概率性质和随机性质。
广义可靠性与狭义可靠性指可修复产品在使用中或者不发生故障(通过预防性维修),或者发生故障也易于维修,因而经常处于可用状态的能力。
广义可靠性=狭义可靠性+可维修性广义可靠性典型事例:赛车可靠性的分类:固有可靠性和使用可靠性固有可靠性:通过设计、制造、管理等所形成的可靠性(通常体现在产品的固有寿命上)使用可靠性:产品在使用条件影响下,保证固有可靠性的发挥与实现的功能。
(通常体现在产品的实际使用寿命上)使用条件:包括运输、保管、维修、操作和环境条件等。
例1:判断下面说法的正确性:所谓产品的失效,即产品丧失规定的功能。
对于可修复系统,失效也称为故障。
(V)例2:可靠度R(t)具备以下那些性质? ( BCD) A. R(t)为时间的递增函数B. o w R(t) < 1C. R(0)=1D. R()=0若受试验的样品数是N o个,到t时刻未失效的有Ns(t)个;失效的有N f(t)个。
主要内容编辑分四个主要领域或四个独立学科。
(1)可靠性数学:可靠性数学是可靠性研究的最重要的基础理论之一。
它主要是研究与解决各种可靠性问题的数学方法和数学模型,研究可靠性的定量规律。
它属于应用数学范畴,涉及概率论、数理统计、随机过程、运筹学及拓朴学等数学分支。
它应用于可靠性的数据收集、数据分析、系统设计及寿命试验等方面。
(2)可靠性物理:可靠性物理又称失效物理,是研究失效的物理原因与数学物理模型、检测方法与纠正措施的一门可靠性理论。
它使可靠性工程从数理统计方法发展到以理化分析为基础的失效分析方法。
它是从本质上、从机理方面探究产品的不可靠因素,从而为研究、生产高可靠性产品提供科学的依据。
(3)可靠性工程:可靠性工程是对产品(零、部件,元、器件,设备或系统)的失效及其发生的概率进行统计、分析,对产品进行可靠性设计、可靠性预计、可靠性试验、可靠性评估、可靠性检验、可靠性控制、可靠性维修及失效分析的一门包含了许多工程技术的边缘性工程学科。
它是立足于系统工程方法,运用概率论与数理统计等数学工具(属可靠性数学),对产品的可靠性问题进行定量的分析;采用失效分析方法(可靠性物理)和逻辑推理对产品故障进行研究,找出薄弱环节,确定提高产品可靠性的途径,并综合地权衡经济、功能等方面的得失,将产品的可靠性提高到满意程度的一门学科。
它包括了对产品可靠性进行工作的全过程,即从对零、部件和系统等产品的可靠性方面的数据进行收集与分析做起,对失效机理进行研究,在这一基础上对产品进行可靠性设计;采用能确保可靠性的制造工艺进行制造;完善质量管理与质量检验以保证产品的可靠性;进行可靠性试验来证实和评价产品的可靠性;以合理的包装和运输方式来保持产品的可靠性;指导用户对产品的正确使用、提供优良的维修保养和社会服务来维持产品的可靠性。
即可靠性工程包括了对零、部件和系统等产品的可靠性数据的收集与分析、可靠性设计、预测、试验、管理、控制和评价。
质量管理学一、概述1.课程性质:主要立足培养产品和服务质量的改进和管理能力,特别是汽车维修质量和内部的质量管理,提高生产效益和市场竞争力。
2.课程基本理念:质量是市场竞争力的基础,是消费者合法权益的保障,是一个国家综合国力的象征,质量的重要性和如何提高质量管理,它的理论、概念、方法的介绍。
3.课程设计思路:我国已经加入“WTO”,正处于经济管理体制和经济增长方式的转变中,特别是汽车保有量的不断增长,必须实行质量振兴的基本国策,树立“质量第一,用户第一”的质量理念,了解质量竞争的特点和方式,并且,根据不同需要,掌握必要的质量管理理论和方法。
二、课程目标1.总目标:认识和熟悉质量管理基本理论、基本概念、基本方法,了解质量管理的发展趋势,追求产品质量与经济性的和谐统一,满足个性化需求。
2.具体目标:要求掌握和了解质量的概念、质量管理体系标准、质量审核的程序、质量监督和检验质量成本管理、顾客满意程度、工序质量控制等一些基本理论和方法,具备应用新的科技成果满足需求的多样化和产品高质量、低成本的能力和对有形资源统一和谐调配的素质.第一章:概论1.第一层级教学目标:质量和质量管理的基本概念活动安排:上网查阅质量的发展史,讲述一遍考核评价:质量的内涵,质量管理与社会生产力进步之间的关系知识要点:质量、质量管理、全面质量管理技能要点:质量管理基础性工作第二章:六西格玛1.第一层级教学目标:六西格玛的产生和基本概念、六西格玛的组织结构和项目选择活动安排:六西格玛实施流程的培训考核评价:六西格玛成功的原因和存在的问题,如何根据实际情况选择2.第二层级知识要点:六西格玛组织管理和项目、六西格玛的概念和质量文化技能要点:六西格玛实施流程与改进方法第三章:质量管理常用统计方法1.第一层级教学目标:质量控制和质量统计的基本概念、常用的统计方法活动安排:因果分析法(因果图)来表示质量特性波动与其潜在的关系考核评价:对各类图表分析和应用以及举例说明2.第二层级知识要点:质量控制和质量统计的基本概念、常用的统计方法技能要点:绘制和分析各类图表第四章:工序控制1.第一层级教学目标:工序质量、工序能力、工序能力指数的概念,控制图的用途、基本格式和理论活动安排:工序能力调查考核评价:常用和通用控制图的设计与应用2.第二层级知识要点:控制图的原理和分析方法技能要点:工序能力和工序能力指数的计算方法第五章:质量检验1.第一层级教学目标:质量检验的概念、必要性、方法、管理制度.活动安排:制定产品检验计划、不合格品的处置、纠正措施的实施考核评价:检验的质量职能活动知识要点:质量检验的方式和基本类型、检验的流程、质量检验的管理制度、抽样检验的原理和分类技能要点:计数型和计量型抽样方案的设计第六章:质量成本管理1.第一层级教学目标:质量成本管理的意义、科目、核算活动安排:制定质量成本计划考核评价:质量成本分析报告对各类图表分析和应用以及举例说明2.第二层级知识要点:质量成本的控制和合理构成,质量成本的分析、优化和决策方法技能要点:质量成本体系数据的汇总和分析第七章:服务质量管理1.第一层级教学目标:服务质量管理的基本概念、特征和分类以及形成的模式活动安排:确定直接或间接的服务质量活动考核评价:服务设计的职责和内容2.第二层级知识要点:服务质量体系的构成,服务过程质量管理,服务质量差距分析模型技能要点:服务质量的差距分析第八章:可靠性基础1.第一层级教学目标:可靠性工程的基本概念、度量可靠性的基本指标、常用分布、可靠性预测的基本方法活动安排:分析可靠性的常用分布考核评价:可靠性指标的计算和预测方法.2.第二层级知识要点:可靠性的定义、分类,可靠性的指标和分布类型,可靠性预测的基本方法与步骤。
《可靠性基础知识综合性概述》一、引言在当今科技飞速发展的时代,各种产品和系统的可靠性成为人们关注的焦点。
从日常生活中的电子产品到工业领域的大型设备,从交通运输工具到航天航空系统,可靠性都起着至关重要的作用。
可靠性不仅关系到产品的质量和性能,还直接影响着人们的生命财产安全和社会的稳定发展。
因此,深入了解可靠性基础知识,对于提高产品和系统的质量、降低风险、保障安全具有重要的意义。
二、可靠性的基本概念1. 定义可靠性是指产品在规定的条件下和规定的时间内,完成规定功能的能力。
这里的“规定条件”包括使用环境、操作方法、维护保养等;“规定时间”是指产品的使用寿命或工作时间;“规定功能”则是产品设计时所确定的功能和性能指标。
2. 指标(1)可靠度可靠度是产品在规定条件下和规定时间内,完成规定功能的概率。
通常用 R(t)表示,其中 t 为时间。
可靠度是可靠性的一个重要指标,它反映了产品在一定时间内保持正常工作的可能性。
(2)失效率失效率是指产品在某一时刻 t 后的单位时间内发生失效的概率。
通常用λ(t)表示。
失效率是衡量产品可靠性的另一个重要指标,它反映了产品在使用过程中的失效速度。
(3)平均寿命平均寿命是指产品的寿命的平均值。
对于不可修复产品,平均寿命是指产品从开始使用到失效的平均时间;对于可修复产品,平均寿命是指产品在两次相邻故障之间的平均时间。
三、可靠性的核心理论1. 可靠性模型可靠性模型是用于描述产品或系统的可靠性结构和关系的数学模型。
常见的可靠性模型有串联模型、并联模型、混联模型等。
(1)串联模型串联模型是指产品或系统由多个子系统组成,只有当所有子系统都正常工作时,整个产品或系统才能正常工作。
串联系统的可靠度等于各个子系统可靠度的乘积。
(2)并联模型并联模型是指产品或系统由多个子系统组成,只要有一个子系统正常工作,整个产品或系统就能正常工作。
并联系统的可靠度等于 1 减去各个子系统失效率的乘积。
(3)混联模型混联模型是指产品或系统由串联和并联子系统组成的复杂结构。