数字式飞行控制系统
- 格式:ppt
- 大小:1.52 MB
- 文档页数:119
简述飞控系统的部件组成飞控系统是飞机上的一个重要组成部分,它负责控制飞机的飞行姿态、导航、通信等功能。
飞控系统由多个部件组成,下面将对其进行简要描述。
1. 飞行控制计算机:飞行控制计算机是飞控系统的核心部件,它负责对飞机进行姿态控制和飞行控制。
飞行控制计算机通过接收各种传感器的数据,如加速度计、陀螺仪等,进行数据处理和算法运算,然后输出控制指令,控制飞机的运动。
2. 飞行控制面板:飞行控制面板是飞行员操纵飞机的界面,通过控制面板上的按钮、开关和操纵杆等,飞行员可以对飞机进行控制。
飞行控制面板通常包括驾驶员控制器、显示器、指示灯等,它们与飞行控制计算机相连,将飞行员的指令传递给飞行控制计算机,然后由飞行控制计算机来执行。
3. 传感器:飞控系统中的传感器负责感知飞机的各种状态和环境信息,并将其转化为数字信号,供飞行控制计算机进行处理。
常见的传感器包括加速度计、陀螺仪、气压计、GPS接收器等,它们分别用于测量飞机的加速度、角速度、气压和位置等参数。
4. 电动舵机:电动舵机是飞控系统中用于控制飞机各个舵面的执行器。
飞行控制计算机通过控制电动舵机的转动角度,可以改变飞机的姿态和航向。
电动舵机通常包括副翼舵机、升降舵舵机、方向舵舵机等,它们分别用于控制飞机的滚转、俯仰和偏航运动。
5. 通信设备:飞控系统中的通信设备用于与地面站、其他飞机或空中交通管制进行通信。
通信设备包括无线电台、数据链等,它们能够传输语音、数据和导航信息,以保证飞机在飞行过程中的安全和顺利。
6. 电源系统:飞控系统的电源系统提供电力供应,以保证各个部件正常工作。
电源系统通常包括电池、发电机和电源管理模块等,它们能够为飞行控制计算机、传感器和电动舵机等提供稳定可靠的电力。
飞控系统由飞行控制计算机、飞行控制面板、传感器、电动舵机、通信设备和电源系统等部件组成。
这些部件相互配合,共同完成飞机的飞行控制和导航任务。
飞控系统的稳定性和可靠性对飞机的安全飞行至关重要。
飞行控制计算机的组成飞行控制计算机(Flight Control Computer,FCC)是指安装在飞机上的可编程数字计算机,旨在控制和监测飞行器的动力、飞行控制和导航系统。
飞行控制计算机的主要构成包括以下组件:处理器、存储器、输入/输出接口和操作系统。
处理器是飞行控制计算机的核心组件,它能够执行各种指令,包括算术运算、逻辑运算、数据传送等,以完成各种比较复杂的计算任务。
处理器的性能对飞行控制计算机的工作效率和稳定性有着重要的影响。
常用的处理器有Intel Pentium类、ARM Cortex-A系列等。
存储器包括固定存储器和可变存储器,主要用于存储程序和数据。
固定存储器包括只读存储器(ROM)、可擦除只读存储器(EPROM)和闪存存储器(Flash Memory),用于存储操作系统和飞行控制软件等。
可变存储器包括随机存储器(RAM)、电子闪存存储器(EEprom)等,用于存储各种飞行数据和传感器数据等。
输入/输出接口是飞行控制计算机与其他部件之间进行数据传送的通道,包括传感器接口、操作员接口和通讯接口等。
传感器接口与飞行器内部各种传感器(如惯性导航系统、GPS收发器、飞行气象雷达等)相连,用来获取各种飞行数据。
操作员接口是用来与飞行员进行数据和命令交互的,例如飞行员通过控制柄和仪表板向计算机输入指令。
通讯接口是飞行控制计算机与地面基地、其他飞机和气象雷达等设备进行信息交流的通道。
操作系统是飞行控制计算机的基础软件,控制各种硬件和软件资源,使各种软件应用能够运行在飞行控制计算机上。
常用的操作系统有VxWorks、Linux等。
除此之外,飞行控制计算机还会搭载一些辅助模块,例如与通讯设备相关的调制解调器模块,与数字信号处理相关的DSP 模块等等。
总的来说,飞行控制计算机是现代飞行器上不可或缺的组件,提高了飞行安全性、精度和可信度。
通过不断升级技术,提高硬件和软件的性能和可靠性,飞行控制计算机正变得越来越成熟和精细。
飞行自动控制系统统一、电传操纵系统(FIY-BY-Wire)及其余度技术装有控制增稳系统的高性能飞机,适应了现代飞行的需要提高了飞机性能和操纵品质。
但是驾驶员还必须通过机械操纵系统才能操纵飞机。
而机械操纵系统的传输线在分布上较集中,所以在战斗中飞机一旦被火力击中后,很可能使整个操纵系统失灵,造成机毁人亡的事故。
所以为了现代高性能军用机的战斗生存性,在控制增稳的基础上又出现了一种电传操纵系统。
这种系统从驾驶杆到助力器之间的联系全部由电气方式联系起来。
从而克服了机械操纵系统所固有的摩擦、间隙、弹性、时间滞后等缺陷。
同时该系统布局灵活,可分散安装,这样就可大大提高战斗机的生存能力。
因此近年来在美国的F-16、F-18等飞机上己广泛获得应用。
简单电传操纵系统的方块图如图8.25所示。
由图可知,简单的电传操纵系统类似于控制增稳系统它也有杆力或杆位移传感器输出电指令信号,以及测飞机运动的角速度和法向加速度等返馈信号。
所不同的是它没有驾驶杆产生的机械信号输入到助力器去直接操纵舵面的偏转,所以它实际上是一个全权限的控制增稳系统。
操纵时,驾驶员操纵驾驶杆经杆力或杆位移传感器、指令模型形成所需的指令信号,并与来自测量飞机运动参数的速率陀螺仪和法向加速度计综合后的信号相比较,产生误差信号,经放大校正后送入舵回路,使得舵面偏转,操纵飞机作相应的运动。
当飞机运动参数达到驾驶员所希望的控制值时,比较后的误差信号也随趋于零,舵面则停止偏转,使飞机保持在驾驶员所期望的运动状态。
如果飞机受到扰动,破坏了该运动状态,那么速率陀螺和法向加速度计输出信号与所期望的电指令信号相比较产生误差信号,操纵舵面偏转,使飞机恢复到原来运动状态。
从上面的工作原理可看出,电传操纵是一种全电的闭环飞行自动控制系统。
而不能仅仅理解为把机械联接换成电的联接。
由于电传操纵系统己不再保留机械操纵系统作备份系统,所以一旦电传操纵系统失灵会造成机毁人亡。
为此对电传操纵系统提出很高的可靠性要求所允许的事故率为10-7数量级(即每一千万飞行小时只准发生一次故障)显然要实现这样高的可靠性,单套系统是不能保证的,必须采用余度技术来保证。
Chapter 22 自动控制22-11 数字飞行控制系统(Digital Flight Control System)1、数字式飞行控制系统(DFCS)有如下功能:—自动驾驶:自动驾驶仪在以下飞行阶段控制飞机的姿态:爬升、巡航、下降、进近、复飞、拉平。
—飞行指引—高度警戒—速度配平:这一功能主要在起飞阶段起作用,且仅当自动驾驶未衔接时工作,飞行指引仪开,关均可。
—马赫配平:当飞机空速大于0.615马赫时,马赫配平功能控制升降舵上偏,以保持机头不俯。
不论自动驾驶或飞行指引衔接与否,该功能均有效。
2、自动驾驶可以有两种工作状态:指令(CMD)状态和驾驶盘操纵(CWS)状态。
CMD状态下:FCC计算A/P作动筒指令→动力控制组件(PCU)→控制副翼和升降舵。
CWS状态下:力传感器感受施加在驾驶杆上的操纵力→FCC指令→①驾驶仪作动筒→控制副翼和升降舵。
→②安定面配平电动作动筒→配平安定面。
3、倾斜CWS力传感器位于机长的驾驶杆的下方。
4、完成维护工作后,给DFCS系统上电的最佳步骤是:AFDS(自动驾驶飞行指引系统)MCP DC 1(2)→AFCS A(B)(自动飞行控制系统)FCC DC。
5、两个FCC将A/P警告信号送至机长、副驾驶的ASA及飞行数据获得组件,并且使红色A/P灯稳定的亮。
如果任何下面一种情况出现,便产生这一警告信号:—两个FCC工作不一致—DFCS在BITE状态—安定面配平警告出现且为FCC双通道进近,高度小于800英尺6、当DFCS从CMD方式转换到CWS方式时,MCP将CWS警告信号送到机长、副驾驶的ASA,使琥珀色A/P灯闪亮。
7、当以下情况出现时,MCP将A/P警告信号送到机长和副驾驶的ASA,使红色A/P 灯稳定的亮:—在地面,一个FCC上电测试失败—在A/P复飞时,FCC不能获得MCP高度—在A/P俯仰复飞阶段,MCP汇流条失效8、在双通道工作时,每个FCC必须使用相互隔离的电源。
飞机自动驾驶原理
飞机自动驾驶是现代飞机的一项重要技术,它可以使飞机在自动模式下运行。
其系统包括一个自动驾驶头架、一个自动驾驶仪和一个数字自动飞行控制系统。
自动驾驶头架是飞机的核心部件,它能接收来自自动驾驶仪的信号并根据这些信号来控制飞机的航向、高度和速度。
自动驾驶仪可以控制飞机的方向和速度,并且可以根据飞行员输入的指令来改变飞机的飞行轨迹。
数字自动飞行控制系统可以捕捉飞机的位置、速度和朝向,它还可以结合当前的飞行状况,控制飞机的航向、高度和速度,以使飞机可以顺利到达目的地。
此外,飞机还配备有一个高精度的GPS系统,可以精确地定位飞机的位置,这使得飞机在高空飞行时更加安全。
当飞行员在飞行状态下启动自动驾驶时,飞机将自动地按照规定的航线飞行,而且不会受到飞行员的干预。
自动驾驶系统在飞行中会定期检查飞机的状态,如果发现有任何异常,它会立即警告飞行员,以便及时处理。
总之,飞机自动驾驶是一项重要的技术,它可以使飞机在自动模式下运行,以提高飞行的安全性和可靠性。
系统综述飞行仪表音频面板& CNS飞行管理危险回避附加功能EISAFCS附录 索引自动飞行控制系统第 7章 自动飞行控制系统(AFCS )GFC700是完全集成在G1000系统航电架构里面的数字式自动飞行控制系统(AFCS )。
系统综述章里面有框流图说明该系统。
赛斯纳大篷车飞机上的GFC 700 AFCS 功能分布在以下LRU 上:• GDU 1040A 主飞行显示器(PFD) (2台)• GDU 1040A 多功能显示器 (MFD)• GMC 710 AFCS 控制组件• GIA 63W 集成航电组件 (IAU) (2台)• GSA 80 AFCS 伺服器 (2个)• GSA 81 AFCS 伺服器 (2个)• GSM 85 伺服机构 (4个)GFC 700 AFCS 的主要功能分为:• 飞行指引仪 (FD) —赛斯纳大篷车飞机有两台飞行指引仪,分别在飞行员侧与副驾驶侧的IAU 里面工作。
飞行指引仪的指令显示在两台PFD 上。
飞行指引仪提供:– 显示俯仰/滚转指引的指令杆– 选择和执行各种垂直/水平模式– 与自动驾驶仪通讯• 自动驾驶仪 (AP) — 自动驾驶仪通过俯仰、滚转和俯仰配平伺服器进行操作。
它根据飞行指引仪的指令杆、AHRS 姿态、速率信息和空速,对伺服器监测和进行自动飞行控制。
• 偏航阻尼器 (YD) — 偏航伺服器是自监测的,它用于克服荷兰滚,并响应偏航率、滚转角、横向加速度和空速,进行转弯协调。
• 人工俯仰电配平 (MEPT) — 自动驾驶仪不接通时,俯仰配平伺服器提供人工俯仰电配平的功能。
190-00749-00 Rev. B Garmin G1000 Pilot’s Guide for the Cessna Caravan 347附加功能危险回避飞行管理音频面板 & C N S飞行仪表系统综述索引附录E I S自动飞行控制系统7.1 AFCS 控制AFCS 控制组件位于MFD 的上方,有以下控制:1HDG 键 选择/撤消 航向选择 模式 2 APR 键选择/撤消 进近 模式 3NAV 键 选择/撤消 导航 模式 4 FD 键仅打开/关闭 飞行指引仪按下一次以默认的垂直和水平模式打开飞行指引仪 再次按下关闭飞行指引仪并关闭指令杆 该键在自动驾驶仪接通时失效5XFR 键 切换现用飞行指引仪和备用飞行指引仪 6 ALT 键 选择/撤消 高度保持 模式 7 VS 键 选择/撤消 垂直速度 模式 8 FLC 键选择/撤消 飞行高度层改变 模式917 CRS 旋钮在相应PFD 的水平状态显示仪(HSI)上以1° 的增量调整预选航道。
1飞行管理系统(FMS)由 ( )组成数字式飞行控制系统(DFCS)、惯性基准系统(IRS)、飞行管理计算机系统(FMCS)和自动油门(A/T)3自动飞行控制系统(AFCS)由() 组成数字式飞行控制系统(DFCS)、飞行指引系统(F/D)和自动油门(A/T)2数字式飞行控制系统(DFCS)不能实现的控制功能是( )自动驾驶(A/P)和飞行指引(F/D)6方式控制面板(MCP)安装位置在( )驾驶舱头顶板(P5)8飞行控制计算机(FCC)提供的A/P输出指令不能控制( )升降舵9自动油门系统(A/T)( )起飞后才能接通10A/T伺服机构安装在( )左,右发动机上12自动驾驶(A/P)的切断电门安装在( )正驾驶仪表板(P1)13起飞/复飞(TO/GA)电门安装在()正驾驶仪表板(P1)18液压系统的控制面板安装在()头顶板(P5)19飞行控制面板安装在( )头顶板(P5)21安定面配平作动器组件安装在()驾驶舱25安定面配平可以通过( ) 来完成主电配平28自动驾驶可工作在( ) 方式人工操纵(MAN)32高度警告功能的作用是( )只在飞机接近MCP选择高度时发出警告46B737-300飞机上装有( ) 个迎角传感器114速度配平(SPEED TRIM)是指()在低速低推力的情况下通过控制安定面增加飞机的稳定15马赫配平(MACH TRIM)的作用是为了提高在空速大于( ) 时的稳定性0.52 M70当驾驶盘上有操纵力时,( )A/P可以衔接82B737-300飞机装有( ) 个FMC和( ) 个CDU1,134HF系统用于飞机与地面电台之间的( )通讯远距离55VHF系统提供( )的短距通讯联络飞机与地面台2服务内话电门位于:( )P1板5飞机外表上有多少个服务内话插孔:( )5个10地面人员呼叫喇叭安装于:( )电子舱12机组呼叫电门位于:( )P1板21使用前,后服务员面板上的电话能否进行旅客广播( )不能47HF天线耦合器的调谐时间为( )2秒51两套HF系统有几个天线( )2个53HF天线位于( )垂直安定面的顶部56两套VHF系统工作于( )合用一个VHF天线57VHF天线分别安装于( )机身背部和机身下部(腹部)73选择呼叫系统的作用是( )便于呼叫机组83话音记录器用于( )记录飞机的通讯和通话内容连续84话音记录器记录的是飞行的( )内机组的通讯和通话的内容最后30分钟88话音记录器抹除已记录的音频信号的前提条件是( )飞机在滑行中1服务员站位和服务站位之间有无区别:( )无区别8服务内话系统提供:( )服务员站位之间的通话85话音记录器控制面板上的拾音器的作用是( )拾取驾驶舱内的声音信号95音响警告系统中具有最高优先权警告是( )间断的喇叭声1发动机灭火瓶有( )个2设备舱过热附件装置( M237 )位于( )电子/电气设备舱3机翼机身过热探测元件左边部分包括多少探测元件( )6个6APU灭火系统地面控制板位于( )电子/电气设备舱24确认发动机灭火瓶压力是否正常应该( )直接从灭火瓶压力表上指示来确认机械Ⅱ级1当接通电瓶电源后,测量发动机灭火瓶爆炸帽电压时,发现有16伏电压。
民用航空器飞行控制系统研究第一章引言随着航空技术的不断发展,民用航空器的使用越来越广泛。
而飞行控制系统作为民航行业中非常重要的一部分,其功能广泛且高度复杂。
本篇文章将探讨民用航空器飞行控制系统的研究,以期有助于读者更深入地了解现代民用航空器飞行控制系统。
第二章飞行控制系统的定义飞行控制系统是现代民用航空器的核心部分,包括以下几个方面:1. 姿态控制系统:负责控制民航机身的俯仰角、滚转角和偏航角。
2. 推力控制系统:负责控制发动机的推力大小和方向。
3. 导航系统:负责计算民航器的位置和动向,并指导航向调整。
4. 通信系统:负责机组和地面的通讯。
5. 自动驾驶系统:负责自动控制和纠正民航机的飞行轨迹。
第三章飞行控制系统的原理飞行控制系统的核心原理是飞行动力学,即适用于航空器运动的牛顿力学和流体力学定律,以及气动学和控制理论。
1. 姿态控制系统:通过控制航空器的机翼,以引起对旋转力矩的抵消或产生,通过反馈调整机翼的角度、扭曲和完整性来调整民航机的姿态。
2. 推力控制系统:通过发动机喷口的方向调整和喷口的喷气量的变化来实现动力推进的变化。
3. 导航系统:通过GPS、惯性导航、地面雷达和天线来获取目标物体的精确位置和速度,并依靠复杂的导航计算来确定航向和飞行路线。
4. 通信系统:通过无线电和声音系统来实现机组和地面的通讯。
5. 自动驾驶系统:通过控制飞机方向、高度、速度和其他问题来保持飞机的稳定飞行,驾驶员坐在座位上,仅需要关注能否控制系统实现出现问题时的安全回避。
第四章飞行控制系统的发展随着现代航空技术的发展,民用航空器的飞行控制系统也随之不断改进和升级。
目前,民航飞机上的飞行控制系统已发展为以下几个阶段:1. 硬线式飞行控制系统:该系统是最早期的飞行控制系统,主要通过机械互锁和弹簧等物理元件工作,可以实现较为简单的自动驾驶控制。
2. 模拟式飞行控制系统:该系统建立在电控制器和传感器之上,电子元器件包括放大器、电感、电容、二极管、晶体管、稳压器、光电器件等,以完成飞行控制和自动驾驶等功能。