电动力学习题解答6
- 格式:doc
- 大小:508.50 KB
- 文档页数:7
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
《电动力学》简答题参考答案1. 分别写出电流的连续性方程的微分形式与积分形式,并简单说明它的物理意义。
解答:电流的连续性方程的微分形式为0J t ρ∂∇⋅+=∂K 。
其积分形式为d d d d S J S V t ρΩ⋅=−∫∫∫∫K K v 。
电流的连续性方程实际上就是电荷守恒定律的公式表示形式,它表示:当某区域内电荷减少时,是因为有电荷从该区域表面流出的缘故;相反,当某区域内电荷增加时,是因为有电荷通过该区域的表面流入的缘故。
2. 写出麦克斯韦方程组,并对每一个方程用一句话概括其物理意义。
解答:(1)f D ρ∇⋅=K 电荷是电场的源;(2)B E t∂∇×=−∂K K 变化的磁场产生电场; (3)0B ∇⋅=K 磁场是无源场;(4)f D H J t∂∇×=+∂K K K 传导电流以及变化的电场产生磁场。
3. 麦克斯韦方程组中的电场与磁场是否对称?为什么?解答:麦克斯韦方程组中的电场与磁场并不对称,因为电场是有源场,电荷是电场的源,而磁场是无源场,不存在磁荷。
4. 一个空间矢量场A K ,给出哪些条件能把它唯一确定?解答:由矢量场的唯一性定理:(1)位于空间有限区域内的矢量场,当它的散度,旋度以及它在区域边界上的场分布给定之后,该矢量场就被唯一确定;(2)对于无限大空间,如果矢量在无限远处减少至零,则该矢量由其散度和旋度唯一确定。
5. 写出极化电流与极化强度、磁化电流密度与磁化强度之间的关系式。
解答:极化电流与极化强度之间的关系式为P P J t ∂=∂K K ; 磁化电流密度与磁化强度之间的关系式为M J M =∇×K K 。
6. 简述公式d d d d d V V w V f V S tσ−=⋅+⋅∫∫∫v K K K K v 的物理意义。
解答:d d d Vw V t −∫表示单位时间区域V 内电磁场能量的减少,d V f V ⋅∫v K K 表示单位时间电磁场对该区域的电荷系统所作的功,d S σ⋅∫K K v 表示单位时间流出该区域的能量。
第六章 狭义相对论1. 证明牛顿定律在伽利略交换下是协变的,麦克斯韦方程在伽利略变换下不是协变的。
证明:根据题意,不妨分别取固着于两参考系的直角坐标系,且令t =0时,两坐标系对应轴重合,计时开始后,'∑系沿Σ系的x 轴以速度v 作直线运动,根据伽利略变换有:vt x x -=',y y =',z z =',t t ='1)牛顿定律在伽利略变换下是协变的以牛顿第二定律22dt d m x F =为例,在Σ系下,22dtd m xF =Θvt x x -=',y y =',z z =',t t ='∴''']',','[],,[22222222F x x F ==+===dtd m dt z y vt x d m dt z y x d m dt d m 可见在'∑系中牛顿定律有相同的形式22''dt d m x F =,所以牛顿定律在伽利略变换下是协变的。
2)麦克斯韦方程在伽利略变换下不是协变的以真空中的麦氏方程t ∂-∂=⨯∇/B E 为例,设有一正电荷q 位于O 点并随'∑系运动,在'∑系中q 是静止的,故:r r qe E 20'4'πε=, (1)0'=B (2)于是方程'/'''t ∂-∂=⨯∇B E 成立,将(1)写成直角分量形式:])'''(')'''(')'''('[4''23222'23222'232220z y x z y x z z y x y z y x x q e e e E ++++++++=πε 由伽利略变换关系,在∑中有:y x z y vt x yz y vt x vt x qe e E 23222232220])[(])[({4++-+++--=πε }])[(23222z z y vt x ze ++-+ ])()()[(])[(34232220z y x y vt x vt x z z y z y vt x q e e e E --++-+-++--=⨯∇∴πε可见E ⨯∇不恒为零。
电动力学试题及参考答案一、填空题(每空2分,共32分)1、已知矢径r,则 r = 。
2、已知矢量A 和标量φ,则=⨯∇)(Aφ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A 和标势φ,则E= ,B= 。
5、麦克斯韦方程组的微分形式 、 、 、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度 = 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)1、由0ερ=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。
( )2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( ) 3、电磁波在波导管内传播时,其电磁波是横电磁波。
( ) 4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )5、只要区域V 内各处的电流密度0=j,该区域内就可引入磁标势。
( )6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )7、在0=B的区域,其矢势A 也等于零。
( )8、E 、D 、B 、H四个物理量均为描述场的基本物理量。
( )9、由于A B⨯∇=,矢势A 不同,描述的磁场也不同。
( )10、电磁波的波动方程012222=∂∂-∇E tv E 适用于任何形式的电磁波。
( )三、证明题(每题9分,共18分)1、利用算符 的矢量性和微分性,证明0)(=∇⨯⋅∇φr式中r为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z c E E )sin(0ωω-=,求证此平面电磁波的磁场强度为j t z cc E B )sin(0ωω-=四、计算题(每题10分,共30分)1、迅变场中,已知)cos(0t r K A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E 和B。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )(, uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰S VV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=VV t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
第二章静电场1.一个半径为 R 的电介质球,极化强度为 PKr / r 2 ,电容率为。
( 1)计算约束电荷的体密度和面密度:( 2)计算自由电荷体密度;( 3)计算球外和球内的电势;( 4)求该带电介质球产生的静电场总能量。
解:( 1) p P K(r / r 2 )K [(1/ r 2 ) r r (1/ r 2 )]K / r 2pn ( P 2P 1 ) e rPr RK / R( 2) D 内0 E P P/()fD 内P /()K /(0 )r2( 3) E 内D 内 / P /()E 外 D 外f dVKR e r4 0 r 2 e r(20 )r外E 外 drKR(0 )rrRE 外 drK(ln R )内E 内 drrrR( 4) W1 1K 2R4 r 2 dr12K 2 R 24 r 2drD E dV222 R422 ()r 2( 0)r2 R(1)( K) 22.在平均外电场中置入半径为R 0 的导体球,试用分别变量法求以下两种状况的电势: ( 1)导体球上接有电池,使球与地保持电势差 0 ;( 2)导体球上带总电荷 Q解:( 1)该问题拥有轴对称性, 对称轴为经过球心沿外电场E 0 方向的轴线, 取该轴线为极轴,球心为原点成立球坐标系。
当 RR 0 时,电势知足拉普拉斯方程,通解为(a n R nb n 1 )P n (cos )n R n因为无量远处 E E 0 ,E 0 R cosE 0 RP 1 (cos )所以a 00 , a1E 0 , a n0, (n 2)当RR 0 时,所以E 0 R 0 P 1 (cos )b nP n (cos )n 1nR 0即: 0b 0 / R 0 0,b 1 / R 02 E 0 R 0所以b 0 R 0 (0 ), b 1 E 0 R 03, b n 0, (n 2)0 E 0 R cos R 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )(2)设球体待定电势为0 ,同理可得0 E 0 R cosR 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )当RR 0 时,由题意,金属球带电量Qn R RdS2Q(E 0 cosR 02E 0 cos ) R 0 sin d d4R 0 ()所以 (0 ) Q / 4R0 E 0 R cos Q / 4 0 R(E 0 R 03 / R 2 ) cos (RR 0 )Q / 4 0 R ( R R 0 )3. 平均介质球的中心置一点电荷Q f ,球的电容率为,球外为真空, 试用分别变量法求空间电势,把结果与使用高斯定理所得结果比较。
习题与参考答案第1章 电动力学的数学基础与基本理论1.1 A 类练习题1.1.1 利用∇算符的双重性质,证明(1)()A A A ϕϕϕ∇×=∇×+∇×r r r(2)2()()A A A ∇×∇×=∇∇⋅−∇r r r1.1.2 证明以下几个常用等式,其中()x r x x e ′=−r r ()()y z y y e z z e ′′+−+−r r ,a r为常矢量,(,,)u u x y z =。
(1)3r r ′∇⋅=−∇⋅=r r ,(2)0r ∇×=r,(3)r r r r ′∇=−∇=r ,(4)31r r r ∇=−r ,(5)30r r∇×=r, (6)330r r r r ⋅⋅′∇=−∇=r r (0)r ≠,(7)()a r a ∇⋅=r r r,(8)()dA A u u du∇×=∇×r r 。
1.1.3 从真空麦克斯韦方程出发,导出电荷守恒定律的微分形式和真空中的波动方程。
1.1.4证明均匀介质中的极化电荷密度与自由电荷密度满足关系式0(1/)p f ρεερ=−−。
1.1.5 已知电偶极子电势304p R R ϕπε⋅=r r ,试证明电场强度53013()[4p R R p E R Rπε⋅=−r r r r r 。
1.1.6 假设存在孤立磁荷(即磁单极),试改写真空中的麦克斯韦方程组以包括磁荷密度m ρ和磁流密度m J r的贡献。
答案:D ρ∇⋅=ur , m B ρ∇⋅=u r , m B E J t ∂∇×=−−∂u r u r u r , D H J t∂∇×=+∂ur uu r ur 。
1.1.7 从麦克斯韦方程出发导出洛伦茨规范下的达朗贝尔方程,并证明洛伦茨规范中的ψ满足齐次波动方程,即222210c tψψ∂∇−=∂。
1.1.8 证明:(1)在静电情况下,导体外侧的电场总是与表面垂直;(2)在稳恒电流的情况下,导体内侧的电场总是平行于导体表面。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 AA A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 AA A A )()(221∇⋅-∇=⨯∇⨯A 2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇= 3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d du u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇= 3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
第六章 狭义相对论1. 证明牛顿定律在伽利略交换下是协变的,麦克斯韦方程在伽利略变换下不是协变的。
证明:根据题意,不妨分别取固着于两参考系的直角坐标系,且令t =0时,两坐标系对应轴重合,计时开始后,'∑系沿Σ系的x 轴以速度v 作直线运动,根据伽利略变换有:vt x x -=',y y =',z z =',t t ='1)牛顿定律在伽利略变换下是协变的以牛顿第二定律22dt d m x F =为例,在Σ系下,22dtd m xF =Θvt x x -=',y y =',z z =',t t ='∴''']',','[],,[22222222F x x F ==+===dtd m dt z y vt x d m dt z y x d m dt d m 可见在'∑系中牛顿定律有相同的形式22''dt d m x F =,所以牛顿定律在伽利略变换下是协变的。
2)麦克斯韦方程在伽利略变换下不是协变的以真空中的麦氏方程t ∂-∂=⨯∇/B E 为例,设有一正电荷q 位于O 点并随'∑系运动,在'∑系中q 是静止的,故:r r qe E 20'4'πε=, (1)0'=B (2)于是方程'/'''t ∂-∂=⨯∇B E 成立,将(1)写成直角分量形式:])'''(')'''(')'''('[4''23222'23222'232220z y x z y x z z y x y z y x x q e e e E ++++++++=πε 由伽利略变换关系,在∑中有:y x z y vt x yz y vt x vt x qe e E 23222232220])[(])[({4++-+++--=πε }])[(23222z z y vt x ze ++-+ ])()()[(])[(34232220z y x y vt x vt x z z y z y vt x q e e e E --++-+-++--=⨯∇∴πε可见E ⨯∇不恒为零。
又在Σ系中观察,q 以速度x v e 运动,故产生电流x qv e J =,于是有磁场R qv πμ2/0=B ,(R 是场点到x 轴的距离)此时,有0/=∂∂-t B ,于是t ∂-∂≠⨯∇/B E 故麦克斯韦方程在伽利略变换下不是协变的。
2. 设有两根互相平行的尺,在各自静止的参考系中的长度均为,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子。
求站在一根尺上测量另一根尺的长度。
解:根据相对论速度交换公式可得2'∑系相对于1'∑的速度大小是)/1/(2'22c v v v += (1)∴在1'∑系中测量2'∑系中静长为0 l 的尺子的长度为220/'1c v l l -= (2)将(1)代入(2)即得:)/1/()/1(22220c v c v l l +-= (3)此即是在1'∑系中观测到的相对于2'∑静止的尺子的长度。
3. 静止长度为l 0的车厢,以速度v 相对于地面S 运行,车厢的后壁以速度u 0向前推出一个小球,求地面观察者看到小球从后壁到前壁的运动时间。
解:根据题意取地面为参考系S ,车厢为参考系S ’,于是相对于地面参考系S ,车长为220/1c v l l -=, (1)车速为v ,球速为)/1/()(200c v u v u u ++= (2)所以在地面参考系S 中观察小球由车后壁到车前壁l t v t u +∆=∆所以)/(v u l t -=∆ (3)将(1)(2)代入(3)得:220200/1)/1(cv u c v u l t-+=∆ (4)4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物时,看见其避雷针上跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线上的两铁塔。
求列车上观察者看到的两铁塔被电光照亮的时刻差。
设建筑物及两铁塔都在一直线上,与列车前进方向一致。
铁塔到建筑物的地面距离都是l 0。
解:取地面为静止的参考系∑,列车为运动的参 考系'∑。
取 x 轴与 x ′轴平行同向,与列车车速方向一致,令t=0时刻为列车经过建筑物时,并令此处为∑系与'∑的原点,如图。
在∑系中光经过c l t /0=的时间后同时照亮左右两塔,但在'∑系中观察两塔的位置坐标为)/1(/1/1'220220c v c v l c v vt l x --=--=右)/1(/1/1'220220c v cv l c v vtl x +--=---=左即:)/1(/1'220c v c v l d --=右,)/1(/1'220c v cv l d +--=左 时间差为2220/12''cv c vl c d c d t -=-=∆右左5. 有一光源S 与接收器R 相对静止,距离为0l ,S-R 装置浸在均匀无限的液体介质(静止折射率n )中。
试对下列三种情况计算光源发出讯号到接收器收到讯号所经历的时间。
(1)液体介质相对于S-R 装置静止; (2)体沿着S-R 连线方向以速度v 运动; (3)液体垂直于S-R 连线方向以速度v 运动。
解:(1)液体介质相对于S-R 装置静止时,cnl t 01=∆ (2)液体沿着S-R 连线方向以速度v 运动时,取固着于介质的参考系为'∑,'∑系沿x 轴以速度v 运动,在'∑系中测得光速在各个方向上均是c/n,由速度变换关系得在∑系中沿介质运动方向的光速为:cnv vn c v /1/'++=∴R 接收到讯号的时间为vn c l cn v t ++=∆/)/1(02 (3)液体垂直于S-R 连线方向以速度v 运动,取相对于S-R 装置静止的参考系为Σ系,相对于介质静止的系为'∑系,建立坐标系如图。
在'∑系中 v u x -='22)/(v n c u y -=' ∴在Σ系中测得y 方向上的速度为:222222222222/1)/(/)(1/1)/(/1/1c v v n c c v v c v v n c c v u c v u u xy y --=-+--='+-'= 222203)/(/1vn c c v l t --=∆6. 在坐标系∑中,有两个物体都以速度u 沿x 轴运动,在∑系看来,它们一直保持距离l不变,今有一观察者以速度v 沿x 轴运动,他看到这两个物体的距离是多少? 解:根据题意,取固着于观察者上的参考系为'∑系,又取固着于A B 两物体的参考系为"∑系.在∑中,A B 以速度 u 沿 x 轴运动,相距为l ;在"∑系中,A B 静止相距为l 0,有:220/1c u l l -=∴ 220/1cu ll -=又'∑系相对于∑以速度v 沿 x 轴运动,"∑系相对于∑系以速度u 沿x 轴运动, 由速度合成公式"∑系相对于'∑系以速度2/1'c uv v u v --=沿'x 轴运动,所以,在'∑系中看到两物体相距222220/1/1/'1'c uv c v l c v l l --=-=7. 一把直尺相对于Σ坐标系静止,直尺与x 轴交角θ,今有一观察者以速度v 沿x 轴运动,他看到直尺与x 轴交角θ'有何变化? 解:取固着于观察者上的参考系为'∑在∑系中 θcos l l x =,θsin l l y =在'∑系中 2222/1cos /1'c v l c v l l x x -=-=θθsin 'l l l y y ==22/1/'/''c v tg l l tg x y -==∴θθ8. 两个惯性系∑和'∑中各放置若干时钟,同一惯性系的诸时钟同步。
'∑相对于∑以速度v沿x 轴方向运动。
设两系原点相遇时,000='=t t 。
问处于∑系中某点(x ,y ,z )处的时钟与'∑系中何处时钟相遇时,指示的时刻相同?读数是多少?解:设∑系中),,(z y x P 点与'∑系中的)',','(z y x Q点相遇时,两系的钟读数分别为t 和't 。
首先,要相遇必定满足:y y =',z z =';其次,在∑系看来,相遇时:vt c v x x +-=22/1' (1) 在'∑系看来,相遇时:'/1'22vt c v x x --= (2) 并且 t t =' (3)将(2)、(3)代入(1)得:t c v v c x )/11)(/(222--= (4) 又由(2)可得:x t c v v c x -=--=)1/1)(/('222 (5) 将'x x -=用于(1)或(2)得P 、Q 相遇的时刻为:)/11)(/('22c v v x t t -+==9. 火箭由静止状态加速到c v 9999.0=,设瞬时惯性系上加速度为2s m 20||-v ⋅=&,问按照静止系的时钟和按火箭内的时钟加速火箭各需要多少时间?解:(1)在静止系中加速火箭,令静止系为∑系,瞬时惯性系为'∑系,且'∑相对于∑系的速度为u ,由题意可知u v v ,,&同向,令此方向为x 轴方向,由x 方向上的速度合成得到火箭相对于∑系的速度为:2/'1'cuv uv v ++=其中'v 是火箭相对于'∑系的速度。
所以在∑系中火箭的加速度为222322)/'1()/1('d /d -+-==c uv c u a t v a (1)'d /'d 't v a =本题中-2s m 20'⋅=a ,而'∑系相对于火箭瞬时静止,即v u =,0'=v ,代入(1)得2322)/1('d /d c v a t v -= (2)⎰⎰=-∴-tvt a v c v 02322d 'd )/1( (3)t a cv v '/122=-56.47209999.0100/1'22==-=cc v a vt 年在'∑系看来,火箭相对于∑系的加速度为)/1(')/'1)(/1(''d /d 222222c v a c uv c u a t v -=+-=- (4)⎰⎰=-∴-'122'd 'd )/1(t vt a v c v (5)''ln 2t a vc v c c =-+ 52.29999.019999.01ln '2ln '2'=-+=-+=a c v c v c a c t 年10. 一平面镜以速度v 自左向右运动,一束频率为0ω,与水平线成0θ夹角的平面光波自右向左入射到镜面上,求反射光波的频率ω及反射角θ。