MATLAB的根轨迹分析
- 格式:doc
- 大小:86.00 KB
- 文档页数:5
利用MATLAB进行根轨迹分析根轨迹分析是一种用于研究系统稳定性和动态特性的方法,通过研究系统的传递函数来绘制系统极点随参数变化的轨迹。
MATLAB提供了强大的工具和函数来进行根轨迹分析。
根轨迹是由系统的极点随参数变化所形成的轨迹,它可以反映系统的稳定性、阻尼比、上升时间、超调量等动态性能指标。
根轨迹的绘制通常包括以下步骤:1.定义系统传递函数:首先,需要根据具体的控制系统问题定义系统的传递函数。
传递函数是描述输入与输出间关系的数学模型,通常用分子多项式和分母多项式的比值来表示。
2. 极点位置确定:根据系统传递函数的分母多项式,可以求解系统的极点位置。
MATLAB提供了roots函数来计算多项式的根。
3. 绘制根轨迹:通过参数变化,将系统的极点位置代入传递函数的分子多项式中,可以计算得出系统的零点。
然后,使用MATLAB的plot函数将所有极点和零点绘制在复平面上。
4.判断稳定性:通过观察根轨迹的形状,可以判断系统的稳定性。
如果所有极点都位于左半平面,系统是稳定的。
如果存在极点位于右半平面,系统是不稳定的。
5.分析动态特性:根轨迹的形状可以提供许多关于系统动态特性的信息。
例如,阻尼比可以通过根轨迹上极点到原点的距离和纵坐标之比来估计;超调量可以通过根轨迹的形状和最大振幅来估计。
MATLAB提供了许多用于根轨迹分析的函数和工具箱,包括rlocus函数、nyquist函数和bode函数等。
这些函数可以方便地绘制根轨迹、Nyquist图和Bode图,从而帮助工程师分析系统稳定性以及设计和调整控制器。
根轨迹分析在控制系统设计和调优中具有重要作用。
通过根轨迹的绘制和分析,工程师可以深入了解控制系统的动态特性,并根据需要调整系统参数来达到设计要求。
同时,根轨迹分析也是控制系统教学和研究中常用的方法和工具。
总之,MATLAB是进行根轨迹分析的强大工具,通过绘制根轨迹和分析根轨迹的形状和特性,可以帮助工程师深入了解控制系统的稳定性和动态特性,从而有效地设计和调整控制器。
实验二 利用MATLAB 进行根轨迹分析一 实验目的1 掌握利用MA TLAB 绘制控制系统根轨迹图形等方法。
2 掌握利用绘制的根轨迹图形进行线性系统分析的方法二 实验内容1 初步掌握MA TLAB 根轨迹绘制以及分析中的基本命令;2 绘制系统的根轨迹图并进行性能分析三 实验步骤1 初步掌握MA TLAB 根轨迹绘制中的基本命令;可利用pzmap 函数绘制连续系统的零、极点图,也可以利用tf2zp 函数求出系统的零、极点。
如考虑函数432543232546()34276s s s s G s s s s s s ++++=+++++ 的零、极点及增益,并绘制其零、极点图。
执行如下程序:num=[3 2 5 4 6];den=[1 3 4 2 7 2];[Z,P,K]=tf2zp(num,den)pzmap(num,den)Title(‘Pole-Zore Map ’)或者num=[3 2 5 4 6];den=[1 3 4 2 7 2];sys1=tf(num,den)pzmap(sys1)Title(‘Pole-Zore Map ’)绘制结果如下:2 绘制系统的根轨迹考虑如下开环传递函数*2()()(3)(22)K G s H s s s s s =+++ 试绘制根轨迹执行如下命令:num=[0 0 0 0 1];den=[1 5 8 6 0];rlocus(num,den)grid绘制结果如下:四 作业1 设单位反馈系统的开环传递函数为(0.011)(0.021)K s s s ++,要求:(1)画出根轨迹;(2)从图中确定系统的临界稳定开环增益c K ;(3)从图中确定与系统临界阻尼比相应的开环增益K 。
2 设单位负反馈系统的开环传递函数(4)()(2)K s G s s s +=+,试绘制根轨迹图,并从图中找出系统具有最小阻尼比时的闭环极点和对应的增益K 。
|实验四 用MATLAB 绘制根轨迹图 (The Root Locus Using MATLAB )一、绘制系统的根轨迹在绘制根轨迹之前,先把系统的特征方程整理成标准根轨迹方程r num(s)1+G(s)H(s)=1+K =0den(s)⋅其中:rK为根轨迹增益;num(s)为系统开环传递函数的分子多项式;den(s)为系统开环传递函数的分母多项式。
绘制根轨迹的调用格式有以下三:rlocus(num,den) 开环增益k 的范围自动设定; rlocus(num,den,k) 开环增益k 的范围人工设定; [K,p]=rlocfind(G ) 确定所选定处的增益和对应的特征根。
例4.1 已知某系统的开环传递函数为s s s s K s r 424)(23+++⋅=G试绘制该系统的根轨迹。
解: 在Matlab 命令窗口键入 num=[1 4];den=[1 2 4 0]; rlocus(num,den)可得如图4-1的结果。
-5-4-3-2-11-10-8-6-4-20246810Real AxisI m a g i n a r y A x i sRoot Locus图4-1由于采用rlocus()函数绘制根轨迹时,不同的根轨迹分支之间只区分颜色而不区分线形,所以打印时是不容易分辨各个分支的,需要在运行Matlab 程序时注意观察曲线的颜色。
■例4-2 若要求例4-1中的r K 在1到10之间变化,绘制相应的根轨迹。
解 在MATLAB 命令窗口键入 num=[1 4];den=[1 2 4 0];k=[1:0.5:10]; rlocus(num,den,k)可得如图4-2.的结果。
-4.5-4-3.5-3-2.5-2-1.5-1-0.500.5Root LocusReal AxisI m a g i n a r y A x i s图4-2例4-3 设系统的开环传递函数为)22)(3(()(2+++=s s s K s s rs H G )试绘制其闭环系统的根轨迹图并在图上找出几点的相关数据。
基于MATLAB 的根轨迹分析一.实验目的:1.学习利用MATLAB 的语言绘制控制系统根轨迹的方法。
2.学习利用根轨迹分析系统的稳定性及动态特性。
二.实验内容:1.应用MATLAB 语句画出控制系统的根轨迹。
2.求出系统稳定时,增益k 的范围。
3.分析系统开环零点和极点对系统稳定性的影响。
三.实验步骤1.给定某系统的开环传递函数G(s)H(s)=k/s(s*s+4s+16),用MATLAB 与语言绘出该系统的根轨迹。
程序如下:num=[1];den=[1,4,16,0];G=tf(num,den)G1=zpk(G)Z=tzero(G)P=pole(G)pzmap(num,den);title('pole-zero Map')rlocus(num,den)根轨迹如图-12-10-8-6-4-2024-10-8-6-4-20246810Root LocusReal Axis I m a g i n a r y A x i s结论:由上图可知增益k 的取值范围:0<k<642.将系统的开环传递函数改为:G(s)H(s)=k/s(s*s+4s+5),绘出该系统根轨迹图,观察增加了开环零点后根轨迹图的变化情况。
程序如下:num=[1,1];den=[1,4,5,0];G=tf(num,den)G1=zpk(G)Z=tzero(G)P=pole(G)pzmap(num,den);title('pole-zero Map')rlocus(num,den)根轨迹如图-2.5-2-1.5-1-0.50-5-4-3-2-1012345Root LocusReal Axis I m a g i n a r y A x i s结论:增加了开环零点后根轨迹的变化3.将系统的开环传递函数改为:G(s)H(s)=k/s(s-1)(s*s+4s+5),绘出该系统的根轨迹图,观察增加了开环零点后根轨迹的变化情况。
基于MA TLAB 的根轨迹分析
一.实验目的:
1.学习利用MATLAB 的语言绘制控制系统根轨迹的方法。
2.学习利用根轨迹分析系统的稳定性及动态特性。
二.实验内容:
1.应用MATLAB 语句画出控制系统的根轨迹。
2.求出系统稳定时,增益k 的范围。
3.分析系统开环零点和极点对系统稳定性的影响。
三.实验步骤
1.给定某系统的开环传递函数G(s)H(s)=k/s(s*s+4s+16),用MATLAB 与语言绘出该系统的根轨迹。
程序如下:
num=[1];
den=[1,4,16,0];
G=tf(num,den)
G1=zpk(G)
Z=tzero(G)
P=pole(G)
pzmap(num,den);
title('pole-zero Map')
rlocus(num,den)
根轨迹如图
-12-10-8-6-4
-2024-10-8
-6
-4
-2
024
6
8
10
Root Locus
Real Axis I m a g i n a r y A x i s
结论:由上图可知增益k 的取值范围:0<k<64
2.将系统的开环传递函数改为:G(s)H(s)=k/s(s*s+4s+5),绘出该系统根轨迹图,观察增加了开环零点后根轨迹图的变化情况。
程序如下:
num=[1,1];
den=[1,4,5,0];
G=tf(num,den)
G1=zpk(G)
Z=tzero(G)
P=pole(G)
pzmap(num,den);
title('pole-zero Map')
rlocus(num,den)
根轨迹如图
-2.5-2-1.5
-1-0.50-5-4
-3
-2
-1
012
3
4
5
Root Locus
Real Axis I m a g i n a r y A x i s
结论:增加了开环零点后根轨迹的变化
3.将系统的开环传递函数改为:G(s)H(s)=k/s(s-1)(s*s+4s+5),绘出该系统的根轨迹图,观察增加了开环零点后根轨迹的变化情况。
程序如下:
num=[1];
den=[1,3,5,-5,0];
G=tf(num,den)
G1=zpk(G)
Z=tzero(G)
P=pole(G)
pzmap(num,den);
title('pole-zero Map')
rlocus(num,den)
-5-4-3-2-1
0123-4-3
-2
-1
01
2
3
4
Root Locus
Real Axis I m a g i n a r y A x i s
1、实验前利用图解法画出系统的根轨迹(2()()(416)K
G s H s s s s =++),
算出系统稳定的增益范围,与仿真界面所得的值相比较
2、利用图解法绘制根轨迹的8个规则是什么?
3.闭环极点为实根时响应曲线的形状如何?有共轭复根时响应曲线的形状如何?。