CH6信道编码解析
- 格式:ppt
- 大小:708.50 KB
- 文档页数:7
第六章信源的信息速率失真函数☆主要内容:(1)信息率失真函数的基本概念(2)信息率失真函数的计算方法(3)限失真信源编码定理和信源信道编码定理☆要 求: (1)理解信息率失真函数的物理含义(2)掌握信息率失真函数的性质和计算方法(3)理解限失真信源编码定理和信源信道编码定理的含义信源的信息速率失真函数是限失真信源编码的理论基础。
Shannon在1948年就提出了这一理论,但直到1959年他才完全发展和完善了这个理论,给出了保真度准则下的信源编码定理。
6.1 基本概念一.信源的冗余度压缩编码和熵压缩编码1.冗余度压缩编码(1) 无失真编码可以从编码后的信息中精确地恢复出原始信息(2) 编码器的输入和输出具有一一对应的确定性关系(3) 编码前后的熵保持不变(4) 编码后信息的冗余度小于编码前的信息冗余度。
最佳编码时,编码后的信息冗余度为0。
2.熵压缩编码(1) 有失真编码不可能从编码后的信息中精确地恢复出原始信息(2) 编码器的输入和输出不具有一一对应的确定性关系,而是具有某种统计依赖关系(3) 编码后的熵小于编码前的熵二.熵压缩(限失真)编码器的一般模型由于熵压缩(限失真)编码器的输入和输出是具有某种统计依赖关系,所以熵压缩(限失真)编码器可以用信道模型来描述。
熵压缩编码器当信源U 是离散信源时,熵压缩编码器可以等效为一个离散信道;当信源U 是连续信源时,熵压缩编码器可以等效为一个连续信道; 当信源U 是模拟信源时,熵压缩编码器可以等效为一个模拟信道;基于上述模型,熵压缩编码器的特性可以用信道的特性来描述,即用信道的输入输出的条件转移概率(|)q v u 来表示熵压缩编码器的特性。
从编码的角度来看,熵压缩编码器的映射是多对一的映射,或者说,源字集合中的源字总数不小于码字集合中的码字总数。
三.失真函数和平均失真度1.失真函数设熵压缩编码器的输入和输出分别为u 和v ,则定义一个非负的函数(,)0d u v ≥称(,)d u v 为输入为u ,输出为v 时的失真函数,或失真度。
无线网络中的信道编码技术及其应用无线网络是指通过无线通信技术实现的网络,它已经成为现代社会中不可或缺的一部分。
而无线网络的关键问题之一就是如何提高数据传输的可靠性和稳定性。
为了解决这一问题,信道编码技术应运而生。
本文将介绍无线网络中的信道编码技术以及它们的应用。
首先,我们来介绍一下信道编码的基本概念。
信道编码是将原始数据进行编码转换,从而增加数据传输的冗余度,使得接收端能够纠正信道传输中的错误。
信道编码可以分为两种类型,即前向纠错编码和逆向纠错编码。
前向纠错编码是最常见的信道编码技术之一。
它在数据传输之前对数据进行编码,将原始数据和冗余信息进行组合,然后发送给接收端。
接收端在接收到编码数据后,通过解码算法进行解码,从而提取出原始数据。
常用的前向纠错编码技术包括海明码、卷积码和低密度奇偶校验码等。
海明码是一种最早被广泛应用的前向纠错编码技术。
它通过在原始数据中添加冗余信息,使得接收端可以检测到并纠正传输中的错误。
海明码通过添加奇偶校验位的方式实现错误检测和纠正。
卷积码是一种流水线处理的编码技术,它将输入数据通过一个滑动窗口的方式进行编码,并在接收端进行解码。
低密度奇偶校验码则是一种高效的前向纠错编码技术,它通过构建树状的校验位来实现错误检测和纠正。
逆向纠错编码是另一种常见的信道编码技术。
它在接收端实现对传输数据的纠正,通过对接收到的数据进行解码,提取出原始数据。
逆向纠错编码常用于无法对传输数据进行编码的场景,比如卫星通信和光纤通信等。
常用的逆向纠错编码技术包括RS码和LDPC码等。
RS码是一种非二元的逆向纠错编码技术,它通过对数据进行切割和编码来提高传输系统的可靠性。
RS码在接收端通过解码算法对接收到的数据进行解码,从而提取出原始数据。
LDPC码是一种分布式码,它通过矩阵乘法和硬/软判决等方式实现对传输数据的解码。
信道编码技术在无线网络中有着广泛的应用。
首先,它可以提高无线网络的数据传输速率和可靠性。
信道编码基础知识培训讲义信道编码,也叫差错控制编码,就是所有现代通信系统得基石。
几十年来,信道编码技术不断逼近香农极限,波澜壮阔般推动着人类通信迈过一个又一个顶峰。
5G到来,我们还能突破自我,再创通信奇迹吗?所谓信道编码,就就是在发送端对原数据添加冗余信息,这些冗余信息就是与原数据相关得,再在接收端根据这种相关性来检测与纠正传输过程产生得差错。
这些加入得冗余信息就就是纠错码,用它来对抗传输过程得干扰。
1948年,现代信息论得奠基人香农发表了《通信得数学理论》,标志着信息与编码理论这一学科得创立。
根据香农定理,要想在一个带宽确定而存在噪声得信道里可靠地传送信号,无非有两种途径:加大信噪比或在信号编码中加入附加得纠错码。
这就像在嘈杂得酒吧里,酒喝完了,您还想来一打,要想让服务员听到,您就得提高嗓门(信噪比),反复吆喝(附加得冗余信号)。
但就是,香农虽然指出了可以通过差错控制码在信息传输速率不大于信道容量得前提下实现可靠通信,但却没有给出具体实现差错控制编码得方法。
人类在信道编码上得第一次突破发生在1949年。
R、Hamming与M、Golay提出了第一个实用得差错控制编码方案。
受雇于贝尔实验室得数学家R、Hamming将输入数据每4个比特分为一组,然后通过计算这些信息比特得线性组合来得到3个校验比特,然后将得到得7个比特送入计算机。
计算机按照一定得原则读取这些码字,通过采用一定得算法,不仅能够检测到就是否有错误发生,同时还可以找到发生单个比特错误得比特得位置,该码可以纠正7个比特中所发生得单个比特错误。
这个编码方法就就是分组码得基本思想,Hamming提出得编码方案后来被命名为汉明码。
汉明码得编码效率比较低,它每4个比特编码就需要3个比特得冗余校验比特。
另外,在一个码组中只能纠正单个得比特错误。
M、Golay先生研究了汉明码得缺点,提出了Golay码。
Golay码分为二元Golay码与三元Golay码,前者将信息比特每12个分为一组,编码生成11个冗余校验比特,相应得译码算法可以纠正3个错误;后者得操作对象就是三元而非二元数字,三元Golay码将每6个三元符号分为一组,编码生成5个冗余校验三元符号,这样由11个三元符号组成得三元Golay码码字可以纠正2个错误。
高级英语(考研方向)信道编码一、介绍信道编码是数字通信领域中的重要概念,是通过一定的编码规则将原始信息转换为编码信息,以提高信道传输的可靠性和传输速率。
在高级英语(考研方向)的学习中,信道编码是一个重要的基础知识。
本文将从信道编码的基本概念、常见的信道编码技术以及在高级英语考研中的应用等方面展开讨论。
二、基本概念1.1 信道编码的定义信道编码是指利用编码技术对数字信号进行处理,以提高信号传输的可靠性和抗干扰能力。
通过引入冗余信息,信道编码能够在一定程度上纠正或检测传输过程中产生的错误,提高信息传输的可靠性。
1.2 信道编码的作用在数字通信中,信号在传输过程中可能会受到各种干扰和噪声的影响,导致信号质量下降甚至出现错误。
信道编码通过增加冗余信息的方式,能够在一定程度上恢复或纠正传输中产生的错误,提高信号的可靠性。
1.3 信道编码的分类常见的信道编码方式包括奇偶校验码、循环冗余校验码(CRC)、汉明码、卷积码等。
每种编码方式都有其独特的特点和适用范围,可以根据具体的应用场景选择合适的编码方式。
三、常见的信道编码技术2.1 奇偶校验码奇偶校验码是最简单的一种信道编码方式,通过对数据位进行奇偶校验,来检测并纠正传输中的错误。
奇偶校验码适用于数据量较小、传输距离较短的场景。
2.2 循环冗余校验码(CRC)CRC是一种广泛应用于数据通信中的信道编码方式,通过生成多项式计算和校验来检测和纠正数据传输中的错误。
CRC能够有效地检测出多比特位的错误,并且计算简单高效。
2.3 汉明码汉明码是一种能够检测和纠正1位错误的奇偶校验码,能够有效应对单比特错误的情况。
汉明码在数据通信领域应用广泛,可以提供较好的纠错能力。
2.4 卷积码卷积码是一种复杂度较高但纠错能力较强的信道编码方式,能够有效地应对信道中的噪声和干扰。
在高速数据传输和无线通信领域,卷积码被广泛应用。
四、高级英语考研中的应用3.1 英语学习资源的信道编码在高级英语考研学习中,英语学习资源的信道编码能够提高学习资源的传输速率和可靠性。