大型锻造毛坯件感应加热时间的决定因数
- 格式:pdf
- 大小:35.39 KB
- 文档页数:1
热处理原理与工艺课后习题第一章一.填空题1.奥氏体形成的热力条件()。
只有在一定的()条件下才能转变为奥氏体。
()越大,驱动力越大,奥氏体转变速度越快。
2.共析奥氏体形成过程包括()()()和()四个阶段。
3.( )钢加热时奥氏体晶粒长大的倾向小,而()钢加热时奥氏体晶粒长大的倾向小。
4.本质晶粒度是钢的热处理工艺性能之一,对于()钢可有较宽的热处理加工范围,对于()钢则必须严格控制加热温度,以免引起晶粒粗化而是性能变坏。
5.()晶粒度对钢件冷却后的组织和性能影响较大。
6.控制奥氏体晶粒长大的途径主要有()()( )( )和()。
7.()遗传对热处理工件危害很大,它强烈降低钢的强韧性,使之变脆,必须避免和消除。
、二、判断正误并简述原因1.奥氏体晶核是在珠光体中各处均匀形成的。
()2.钢中碳含量越高,奥氏体转变速度越快,完全奥氏体化所需时间越短。
()3.同一种钢,原始组织越细,奥氏体转变速度越慢。
()4.本质细晶粒钢的晶粒在任何加热条件下均比本质粗晶粒钢细小。
()5.在一定加热的温度下,随温度时间延长,晶粒将不断长大。
()6.所有合金元素都可阻止奥氏体晶粒长大,细化奥氏体晶粒。
()三、选择题1.Ac1、A1、Ar1的关系是__________。
A..Ac1>A>1Ar1 B. Ar1>A1>Ac1 C.A1>Ar1>Ac1 D.A1>Ac1>Ar12. Ac1、Ac3、Ac cm是实际()时的临界点。
A. 冷却B.加热C.平衡D.保温3.本质晶粒度是指在规定的条件下测得的奥氏体晶粒()A.长大速度B. 大小C. 起始尺寸D. 长大极限4.实际上产中,在某一具体加热条件下所得到的奥氏体晶粒大小称为()A. 起始晶粒度B.本质晶粒度C.实际晶粒度D.名义晶粒度四、简答题1.以共析碳钢为例,说明:1.奥氏体的形成过程;2. 奥氏体晶核为什么优先在铁素体和渗碳体相界面上形成;3. 为什么铁素体消失后还有部分渗碳体未溶解。
锻造工艺学复习题1、开式模锻:变形金属的流动不完全受模腔限制的一种锻造方式;2、闭式模锻:也称无毛边模锻,在变形过程中,金属始终被封闭在型腔内不能排出,迫使金属充满型槽而不形成毛边的一种锻造方式。
3、锤上模锻的工步:1模锻工步(顶锻和终锻工步)、2制坯工步(墩粗、拔长、滚挤、卡压、成形、弯曲)、3切断工步4、模锻的斜度:为便于模锻件从型槽中取出,必须将型槽壁部做成一定的斜度,称为模锻斜度或出模角。
模锻斜度可以是锻件侧壁附加的斜度也可以是侧壁的自然斜度。
5、模锻的圆角:为了使金属易于流动和充满型槽,提高锻件的质量并延长锻模的寿命,模锻件上所有的转接处都要用圆弧连接,使尖角、尖边呈圆弧过渡,此过渡处陈锻件的圆角。
钳口:终锻型槽和预锻型槽前端留下的凹腔叫钳口。
钳口主要用来容纳夹持坯料的夹钳和便于从型槽中取出锻件;另一作用是作为浇注检验用的铅或金属类样件的浇口。
6、模具设计怎么做?1、绘制锻件图、计算锻件的主要参数3、确定锻锤吨位4确定毛边槽型式和尺寸5、确定终锻型槽形式和尺寸5确定终锻型槽6、设计预锻型槽7、绘制计算毛坯图8、制坯工步选择9、确定坯料尺寸10、制坯型槽设计11、锻模结构设计7、平锻工艺的特点和应用范围?特点:(1)锻造过程中坯料水平放置,其长度不受设备工作空间的限制,可锻出立式锻压设备不能锻造的长杆类锻件,也可用长棒料逐渐连续锻造。
(2)有两个分模面,因而可以短处一般锻压设备难以锻成的,在两个方向上有凹槽、凹孔的锻件,锻件形状更接近零件形状。
(3)平锻机导向性好,行程固定,锻件长度方向尺寸稳定性比锤上模锻高。
(4)平锻机可进行开式和闭式模锻,可进行终锻成形和制坯,也可进行弯曲、压扁、切料、穿孔、切边等工步。
应用范围:随着工业的不断进步和发展到目前平锻机以用于大批量生产汽门、汽车半轴、环类锻件等。
8、曲柄压力机和模锻锤比较各有什么特点?应用范围有何不同?曲柄压力机的特点:(1)由于变形力由设备本身封闭系统的弹性变形所平衡,滑块的压力基本上属静力性质,因而工作时无震动,噪音小。
感应加热表面淬火常见缺陷分析及预防方法硬度不足火软点、软带1.淬火件含碳量过低应预先化验材料化学成分,保证淬火件ωc>0.4%2.表面氧化、脱碳严重淬火前要清理零件表面的油污、斑迹和氧化皮3. 加热温度太低或加热时间太短正确调整电参数和感应器与工件件相对运动速度,以提高加热温度和延长保温时间。
可以返淬,但淬前应进行感应加热退火。
4.零件旋转速度和零件(感应器)移动速度不协调而形成软带调整零件转速和零件(或感应器)移动速度。
5.感应圈高度不够火感应器中有氧化皮适当增加感应圈高度,经常清理感应器。
6.汇流条之间距离太大调整汇流条之间距离为1-3mm。
7.淬火介质中优杂质或乳化剂老化更滑淬火介质。
8.冷却水压力太低锅冷却不及时增加水压,加大冷却水流量,加热后及时喷水冷却。
9.零件在感应器中的位置偏心或零件弯曲严重调整零件和感应器的相对位置,使个边间隙相等;如是零件弯曲严重,淬火钱应进行校直处理。
淬硬层深不足1.频率过高导致涡流透入深度过浅调整电参数,降低感应加热频率。
2.连续淬火加热时零件与感应器之间相对运动速度过快采用预热-加热淬火。
3.加热时间过短可以返淬,但返淬前应金属感应加热退火。
淬硬层剥落产生的原因是表面淬硬层硬度梯度太大,或硬化层太浅,表面马氏体组织导致体积膨胀等。
应对措施是正确调整电参数,采用预热-加热淬火,加深过渡层深度。
淬火开裂1.钢中碳和锰的含量偏高可在试淬试调整工艺参数,也可调整淬火介质,2.钢中夹杂物多、呈网状或成分有偏析或含有有害元素多检查非金属夹杂物含量和分布状况,毛坯需要反复锻造。
3.倾角处或键槽等尖角处加热时出现瞬时高温而淬裂中尖角倒圆,淬火前用石棉绳火金属棒料堵塞沟槽、空洞。
4.冷却速度过大而且不均匀降低水压,减少喷水量,缩短喷水时间。
5. 淬火介质选择不当更具工艺要求选择合适的淬火介质。
6.回火不及时或回火不足淬火后应及时回火,淬火与回火之间的停留时间,对于碳钢或铸件不应超过4h,合金钢不应超过0.5h。
一.钢锭内部组织结构怎样钢锭内部组织结构,取决于浇筑时钢液在锭模内的结晶条件,即结晶热力学和动力学条件。
钢锭表层为细小的等轴结晶区,向里为柱状结晶区,再往里为倾斜树枝状结晶区,心部为粗大等轴结晶区。
由于选择结晶的缘故,心部上端聚集着轻质夹杂物和气体,并形成巨大的收缩孔,其周围还有严重疏松。
心部底端为沉积区,含有密度较大的夹杂物或合金元素。
二.大型钢锭与型材有哪些内部缺陷?如何防止?钢锭:1.偏析:通过反复镦-拔变形工艺才能使其化学成分趋于均匀化2.夹杂:3.气体:4.疏松和缩孔:锻造时将缩孔和冒口一并切除,要求大变形,以便锻透钢锭将疏松消除型材:1.碳化物偏析:采用反复镦-拔工艺,彻底打碎碳化物,使之均匀分布,并为其后的热处理做好组织准备。
2.白点:提高钢的冶炼质量,尽可能降低氢的含量;其次在热加工后采用缓慢冷却却的方法,让氢充分逸出并尽可能减小各种内应力。
3.非金属夹杂流线三.常用的下料方法有哪些?各自的适用范围及其优缺点?1剪切法:在专用剪床上进行,也可以借助模具在一般曲柄压力机,液压机和锻锤上进行。
优点;生产率高,操作简单,切口无金属损耗缺点:坯料局部被压扁,坯料断面不平整,剪切面常有毛刺和裂纹2.冷折法:适用于硬度较高的碳钢和高合金钢优点:生产率高,端口金属损耗小,所用工具简单。
3.锯切法:适用于锯切直径在350mm以内的棒料优点:下料长度准确,钜割端面平整。
缺点:生产率较低,锯口损耗较大。
4.砂轮片切割法:适用于切割小截面棒料,管料以及异形截面材料。
高温合金,钛合金等。
优点:设备简单,操作方便,下料长度准确,切割效率不收材料硬度限制缺点:砂轮片消耗量大,容易崩碎,切割噪音大。
5.气割法:适用于厚板材料进行曲线切割优点:设备简单,便于野外作业,可切割各种截面材料缺点:切割面不平整,精度差,断口金属损耗大,生产效率低。
四.为什么轴向加压法能提高下料质量?常用于那些情况下?由于轴向加压提高了静水压力,改善了材料的塑性,抑制了上下裂纹的错移,从而使上下裂纹可以重合或上下裂纹错移量减小,最终获得平整光洁的剪切断面。
钛及钛合金塑性变形加工的感应加热(上)李韵豪【摘要】根据钛及钛合金塑性变形加工(锻造)前加热的特点,以工业纯钛、TC4钛合金为例,论述钛及其合金的热物理参数、加热温度范围、加热规范、避免坯料因加热不当而引起的各种缺陷。
提出针对不同品种的钛及其合金感应加热频率、功率、加热(含保温)时间的确定,感应加热方案的制订及感应器参数的计算、测温温控。
【期刊名称】《金属加工:热加工》【年(卷),期】2016(000)011【总页数】6页(P31-36)【作者】李韵豪【作者单位】【正文语种】中文【编者按】常用的有色金属如铝、铜、钛、锆、钽、铌、镁等及其合金因具有一系列非常优异的特性,其塑性变形制品在航空航天、国防、汽车、机车及民用等诸多领域得到越来越广泛的应用。
这些有色金属及其合金塑性变形前的加热,也正由传统火焰炉加热向高效节能的感应加热过渡,更多的锻造厂家已意识到,感应加热是有色金属及其合金诸多加热方式中更先进、更理想的加热方式。
1. 钛及钛合金的分类钛及钛合金是20世纪50年代才兴起的一种新型金属材料。
钛及其合金具有密度小、比强度高、热导率低、无磁性、耐高低温、耐腐蚀等特点。
由于钛及其合金特殊的物理性能和化学性能,作为一种重要的战略物资,被广泛应用于航空航天、舰船、兵器、石油、化工、能源、海洋工程、核电工程及民用产品等领域。
关于钛及其合金的分类,不同文献有较大差异,采用麦克格维伦60年前提出按照钛及其合金退火状态相组成来分类(塑性变形加工前的钛及其合金基本都是退火态)。
按此方法,大致将钛及其合金划分为α型合金、α+β型合金、β型合金三大类。
随着钛及其合金品种的扩大,后人将其分为五类,对于退火后的基本组织:①α相的称之为α型合金。
②α相+β相,但以α相为主的称为近α型合金。
③α相+β相称为(α+β)型合金。
④β相,但有一定α相的称为近β型合金。
⑤β相称为β型合金。
工业纯钛(TA1~TA4等)属于α型钛合金;T C4(Ti-6AL-4V)属于(α+β)型钛合金。
大型锻造毛坯件感应加热时间的决定因数
在锻造或冲压前使用加热通常为1200—1300℃,实际允许的毛坯表面和中心部的温度差在100―150℃。
在中频电炉加热终了与开锻以前的间隔时间里,由于向外界介质的散热和热传导的作用,毛坯的稳定已很均匀。
成型毛坯透热炉感应加热时间的计算,主要是确定在保证径向温差不大于给定值时,所需要的最短加热时间,对一定的感应器来说,生产率要求越高,加热时间则要求越短,单位面积功率势必增大,则相应地增大径向温差,根据最短的加热时间与生产率的要求,来确定中频电炉感应器的长度,但是感应器的长度由于受到结构与制造的制约而不能无限加长,中频炉必要时就需增加感应加热设备来满足生产率的要求。
在计算时必须考虑到在推导计算式时没有顾及到的下列两种情况。
由于加热时间较长,单位面积功率很小,因此,中频电炉向周围空间的热损失对沿截面温度分布的特性发生重大影响,由于存在热损失,使有效层范围内的温度差比计算所得的小,使计算所得加热时间短。
由于加热开始时毛坯的铁磁性比加热终了时要大,因此用加热开始时的单位面积功率会使计算所得的加热时间短。
为了缩短感应加热时间,可采用一种快速加热的方法,即在开始加热时用大功率,快速地把毛坯表面加热都最终温度,然后把功率降到维持毛坯表面温度不变的数值,这种快速加热的方法,在开始加热时表面和中心的温度差较大,热量快速向中心部分传导,通常不采用次方法。