权重的确定方法
- 格式:ppt
- 大小:988.00 KB
- 文档页数:48
权重的确定方法汇总一、指标权重的确定1.概述目前关于属性权重的确定方法很多,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法、组合赋权法。
主观权重法是根据决策者(专家)的主观注意力来确定属性权重的方法。
其原始数据由专家根据经验进行主观判断获得。
常用的主观赋权方法有专家调查法(德尔菲法)、层次分析法(AHP)[106-108]、二项系数法、链式比较评分法、最小二乘法等。
本文利用人类经验和知识选择了有序二元比较定量法。
主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。
但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。
针对主观赋权法的不足,人们提出了客观赋权法。
其原始数据由决策方案中每个属性的实际数据构成。
其基本思想是,属性权重应该是度量属性集中每个属性的变化程度以及对其他属性的影响,权重的原始信息应该直接来自客观环境,信息处理的过程应该是深入探索属性之间的关系和影响,然后根据属性的关联程度或属性提供的信息量确定属性权重。
如果一个属性对所有决策方案没有差异(即每个决策方案的属性值相同),则该属性对方案的识别和排序没有影响,其权重应为0;如果某个属性在所有决策方案的属性值中存在较大差异,则该属性将在方案的识别和排序中发挥重要作用,简而言之,应该给出较大的权重,每个属性的权重应该根据该属性下每个方案的属性值之间的差异来确定。
差异越大,属性的权重就越大,反之亦然。
常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。
其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。
客观赋权法主要根据原始数据之间的关系确定权重。
加权平均法中权重的定量确定方法探析确定权重的方法有很多种,下面将介绍几种常用的方法。
1.主观法:主观法是指根据研究者的经验和专业知识来确定权重。
这种方法相对简单,但容易受个人主观性的影响。
2.统计法:统计法是根据历史数据或统计模型来确定权重。
可以使用回归分析等方法来找到不同变量与结果变量之间的关系,进而确定权重。
这种方法比较科学和客观,但需要有足够的历史数据或者建立合适的统计模型。
3.专家法:专家法是通过专家的意见来确定权重。
专家可以根据其在相关领域的专业知识和经验来判断不同变量对结果的重要程度。
这种方法比较主观,但可以综合考虑多个专家的意见,以减少主观性的影响。
4.层次分析法:层次分析法是一种结构化的决策方法,可以用来确定权重。
该方法要求将问题分解成多个层次,然后对每个层次进行比较和判断。
可以使用专家意见或者问卷调查等方法来获取数据,然后通过计算得到权重。
这种方法比较科学和客观,但需要进行一定的计算和分析。
5.问卷调查法:问卷调查法是通过向受访者发放问卷来确定权重。
问卷中包含了一系列关于变量的问题,受访者需要根据其主观判断给出权重。
通过汇总和统计问卷结果,可以得到权重。
这种方法比较客观,但需要有足够的样本量和代表性的受访者。
需要注意的是,确定权重的方法应该根据具体的研究问题和数据特点而定。
不同的方法可能适用于不同的情况,需要综合考虑多个因素来选择合适的方法。
此外,确定权重的过程中应该尽量保证客观性和科学性,避免主观偏见的影响。
确定权重的7种方法主观赋权德尔菲专家法简介依据“德尔菲法”的基本原理,选择企业各方面的专家,采取独立填表选取权数的形式,然后将他们各自选取的权数进行整理和统计分析,最后确定出各因素,各指标的权数。
德尔菲法的主要缺点是过程比较复杂,花费时间较长。
实现方法选择专家。
一般情况下,选本专业领域中既有实际工作经验又有较深理论修养的专家10-30人左右,需征得专家本人同意。
将待定权重的p个指标和有关资料以及统一的确定权重的规则发给选定的各位专家,请他们独立给出各指标的权数值。
回收结果并计算各指标权数的均值和标准差。
将计算的结果及补充资料返还给各位专家,要求所有的专家在新的基础上确定权数。
重复3和4步骤,直至各指标权数与其均值的离差不超过预先给定的标准为止,也就是各专家的意见基本趋于一致,以此时各指标权数的均值作为该指标的权重。
此外,为了使判断更加准确,令评价者了解己确定的权数把握性大小,还可以运用“带有信任度的德尔菲法”,该方法需要在上述第5步每位专家最后给出权数值的同时,标出各自所给权数值的信任度。
这样,如果某一指标权数的任任度较高时,就可以有较大的把握使用它,反之,只能暂时使用或设法改进。
AHP层次分析法简介层次分析法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各指标的重要程度。
但该方法主观因素对判断矩阵的影响很大,当决策者的判断过多地受其主观偏好的影响时,结果不够客观。
实现方法构建层次评价矩阵构造判断矩阵构造判断矩阵就是通过各要素之间相互两两比较,并确定各准则层对目标层的权重。
简单地说,就是把准则层的指标进行两两判断,通常使用Santy的1-9标度方法给出。
对于m 个指标,构建m*m的判断矩阵,并使用确定的标度方法完成该判断矩阵A。
3. 层次单排序根据构成的判断矩阵,求解各个指标的权重。
有两种方式,一种是方根法,一种是和法。
权重的确定方法汇总一、指标权重的确定1.综述主观赋权法是根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,其原始数据由专家根据经验主观判断而得到。
常用的主观赋权法有专家调查法(Delphi法)、层次分析法(AHP)[106-108]、二项系数法、环比评分法、最小平方法等。
本文选用的是利用人的经验知识的有序二元比较量化法。
主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。
但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。
常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。
其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。
客观赋权法主要是根据原始数据之间的关系来确定权重,因此权重的客观性强,且不增加决策者的负担,方法具有较强的数学理论依据。
但是这种赋权法没有考虑决策者的主观意向,因此确定的权重可能与人们的主观愿望或实际情况不一致,使人感到困惑。
因为从理论上讲,在多属性决策中,最重要的属性不一定使所有决策方案的属性值具有最大差异,而最不重要的属性却有可能使所有决策方案的属性值具有较大差异。
这样,按客观赋权法确定权重时,最不重要的属性可能具有最大的权重,而最重要的属性却不一定具有最大的权重。
而且这种赋权方法依赖于实际的问题域,因而通用性和决策人的可参与性较差,没有考虑决策人的主观意向,且计算方法大都比较繁锁。
从上述讨论可以看出,主观赋权法在根据属性本身含义确定权重方面具有优势,但客观性较差;而客观赋权法在不考虑属性实际含义的情况下,确定权重具有优势,但不能体现决策者对不同属性的重视程度,有时会出现确定的权重与属性的实际重要程度相悖的情况。
确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W 1 2 3 …m-1 m0.2 √√√0.4 √√√0.6 √√0.8 √1.0a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W 1 2 3 …m-1 m0.2 √√√0.4 √√√0.6 √√0.8 √1.0a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
确定权重系数方法
确定权重系数的方法有很多种,下面是几种常见的方法:
1. 主观赋权法:根据经验和专业知识进行主观判断,给每个因素赋予一个权重系数。
这种方法适用于专家判断和个人意见时使用。
2. 一致性指标法:通过对一致性指标的计算来确定权重系数。
一致性指标反映了判断矩阵的一致性程度,如果一致性指标小于一定的阈值,则认为判断矩阵具有一定的一致性。
这种方法适用于有多个决策者,需要对各个决策者的意见进行综合时使用。
3. 层次分析法(AHP):将决策问题分解成多个层次,并通过构造专家判断矩阵,计算权重系数。
AHP方法通过层次结构和专家判断矩阵的建立,使复杂决策问题简化为一系列层次结构的比较判断问题。
这种方法适用于多因素影响一决策问题,需要对多个因素进行比较和排序时使用。
4. 熵权法:通过计算信息熵来确定权重系数。
信息熵反映了多个因素的不确定性程度,熵权法使用信息熵对各因素的重要性进行排序,权重系数与信息熵成反比。
这种方法适用于缺乏主观判断,需要从数据中提取权重信息时使用。
5. 数学模型法:利用数学模型对决策问题进行建模,并通过求解数学模型来确定权重系数。
这种方法适用于决策问题可以通过数学模型表达的情况,例如线性
规划、最优化等。
以上只是常见的一些确定权重系数的方法,具体选择哪种方法应根据具体的决策问题和数据情况进行综合考虑。
确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W 1 2 3 …m-1 m0.2 √√√0.4 √√√0.6 √√0.8 √1.0a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W 1 2 3 …m-1 m0.2 √√√0.4 √√√0.6 √√0.8 √1.0a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
主成分分析确定权重方法主成分分析是一种常用的多元数据降维技术,它的基本思想是通过线性变换将原始数据转换为新的变量,使得这些变量间相互独立且包含原始数据的绝大部分信息。
在实际分析过程中,主成分分析需要对原始数据进行权重确定,以确保转换后的变量能够更好地反映原始数据的特征。
确定权重的方法有很多种,下面将介绍几种常用的方法。
1.方差最大化法方差最大化法是最常用的确定权重的方法之一、根据主成分分析的目标,我们希望新变量间的协方差尽可能地小,即新变量互相独立。
通过最大化新变量的方差,可以使新变量间的协方差最小。
权重的确定可以通过最大化新变量的方差来实现。
2.主成分负荷矩阵法主成分负荷矩阵法是另一种常用的确定权重的方法。
主成分分析的目标是将原始数据转换为相互独立的新变量,而这些新变量的线性组合就是主成分。
主成分负荷矩阵表示各个原始变量在主成分中的权重。
具体来说,主成分负荷矩阵的每一列代表一个主成分,矩阵的每个元素表示原始变量在相应主成分中的权重。
主成分分析的过程就是通过线性变换将原始变量转换为主成分,而这个变换的权重就是主成分负荷矩阵中的元素。
通过计算协方差矩阵的特征值和特征向量,可以得到主成分负荷矩阵。
3.最小平方负荷矩阵法最小平方负荷矩阵法是一种通过最小化原始变量和主成分之间的残差平方和来确定权重的方法。
这个方法可以使得主成分能够最好地拟合原始数据。
具体来说,最小平方负荷矩阵法通过最小化残差平方和的方式确定权重。
首先,通过特征值分解计算出主成分负荷矩阵。
然后,对于每个原始变量,通过线性变换计算出对应的主成分。
最后,计算原始变量和主成分之间的残差平方和,并通过最小化这个平方和来确定权重。
4.最大似然估计法最大似然估计法是一种统计方法,它通过最大化样本的似然函数来确定权重。
在主成分分析中,最大似然估计法可以用于确定主成分负荷矩阵的权重。
具体来说,最大似然估计法首先假设原始数据是来自多元正态分布。
然后,通过最大化样本的似然函数,确定主成分负荷矩阵的权重。
一、指标权重的确定1.综述目前关于属性权重的确定方法很多,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法、组合赋权法。
主观赋权法是根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,其原始数据由专家根据经验主观判断而得到。
常用的主观赋权法有专家调查法(Delphi法)、层次分析法(AHP )[106-108]、二项系数法、环比评分法、最小平方法等。
本文选用的是利用人的经验知识的有序二元比较量化法。
主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。
但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。
鉴于主观赋权法的各种不足之处,人们又提出了客观赋权法,其原始数据由各属性在决策方案中的实际数据形成,其基本思想是:属性权重应当是各属性在属性集中的变异程度和对其它属性的影响程度的度量,赋权的原始信息应当直接来源于客观环境,处理信息的过程应当是深入探讨各属性间的相互联系及影响,再根据各属性的联系程度或各属性所提供的信息量大小来决定属性权重。
如果某属性对所有决策方案而言均无差异(即各决策方案的该属性值相同),则该属性对方案的鉴别及排序不起作用,其权重应为0;若某属性对所有决策方案的属性值有较大差异,这样的属性对方案的鉴别及排序将起重要作用,应给予较大权重.总之,各属性权重的大小应根据该属性下各方案属性值差异的大小来确定,差异越大,则该属性的权重越大,反之则越小。
常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。
其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。
客观赋权法主要是根据原始数据之间的关系来确定权重,因此权重的客观性强,且不增加决策者的负担,方法具有较强的数学理论依据。
权重的确定方法在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。
权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。
按照权重的表现形式的不同,可分为绝对数权重和相对数权重。
相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。
按照权重的形成方式划分,可分为人工权重和自然权重。
自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。
人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重。
按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。
如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。
按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。
独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。
相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。
相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。
比如评估环境质量多采用“变权综合”模型。
(一)统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。
其基本步骤是:第一步,确定专家。
一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。
将待定权数的指标提交给各位专家,并请专家在不受外界干扰的前提下独立的给出各项指标的权数值;第三步,回收专家意见。
确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W123…m-1m√√√√√√√√√a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
不知道怎样计算权重?告诉你8种确定权重⽅法⽬录计算权重是⼀种常见的分析⽅法,在实际研究中,需要结合数据的特征情况进⾏选择,⽐如数据之间的波动性是⼀种信息量,那么可考虑使⽤CRITIC权重法或信息量权重法;也或者专家打分数据,那么可使⽤AHP层次法或优序图法。
本⽂列出常见的权重计算⽅法,并且对⽐各类权重计算法的思想和⼤概原理,使⽤条件等,便于研究⼈员选择出科学的权重计算⽅法。
⾸先列出常见的8类权重计算⽅法,如下表所⽰:计算权重⽅法汇总这8类权重计算的原理各不相同,结合各类⽅法计算权重的原理⼤致上可分成4类,分别如下:· 第⼀类为因⼦分析和主成分法;此类⽅法利⽤了数据的信息浓缩原理,利⽤⽅差解释率进⾏权重计算;· 第⼆类为AHP层次法和优序图法;此类⽅法利⽤数字的相对⼤⼩信息进⾏权重计算;· 第三类为熵值法(熵权法);此类⽅法利⽤数据熵值信息即信息量⼤⼩进⾏权重计算;· 第四类为CRITIC、独⽴性权重和信息量权重;此类⽅法主要是利⽤数据的波动性或者数据之间的相关关系情况进⾏权重计算。
第⼀类、信息浓缩(因⼦分析和主成分分析)计算权重时,因⼦分析法和主成分法均可计算权重,⽽且利⽤的原理完全⼀模⼀样,都是利⽤信息浓缩的思想。
因⼦分析法和主成分法的区别在于,因⼦分析法加带了‘旋转’的功能,⽽主成分法⽬的更多是浓缩信息。
‘旋转’功能可以让因⼦更具有解释意义,如果希望提取出的因⼦具有可解释性,⼀般使⽤因⼦分析法更多;并⾮说主成分出来的结果就完全没有可解释性,只是有时候其解释性相对较差⽽已,但其计算更快,因⽽受到⼴泛的应⽤。
⽐如有14个分析项,该14项可以浓缩成4个⽅⾯(也称因⼦或主成分),此时该4个⽅⾯分别的权重是多少?此即为因⼦分析或主成分法计算权重的原理,它利⽤信息量提取的原理,将14项浓缩成4个⽅⾯(因⼦或主成分),每个因⼦或主成分提取出的信息量(⽅差解释率)即可⽤于计算权重。
主成分分析确定权重方法确定权重的方法有很多,下面将介绍几种常用的方法。
1.方差解释率方差解释率是一种常见的确定权重的方法。
在PCA中,数据的每一个主成分都包含一定的方差,而方差解释率衡量了每个主成分所占总方差的比例。
通常,我们希望选择那些具有较高方差解释率的主成分,因为它们可以更好地代表原始数据。
通过排序主成分的方差解释率,可以确定每个主成分的权重。
2.特征值特征值也可以用于确定权重。
在PCA过程中,我们计算协方差矩阵的特征值和特征向量。
特征值表示了数据在对应特征向量方向上的重要性。
通常,特征值较大的特征向量对应的主成分权重较高。
因此,我们可以根据特征值的大小确定权重。
3.贡献度贡献度是用来评估每个主成分对原始数据的贡献程度。
在PCA中,我们可以计算每个主成分的贡献度。
贡献度定义为每个主成分所占总方差的比例。
通过排序主成分的贡献度,可以确定每个主成分的权重。
4.固有值和因子载荷在因子分析中,固有值和因子载荷用于确定因子的权重。
固有值表示了因子对原始变量的解释程度,固有值较大的因子权重较高。
而因子载荷表示了每个因子与原始变量之间的相关性,因子载荷较高的变量在对应因子上的权重较高。
5.方差贡献度方差贡献度是用来判断每个主成分在整个数据集中的重要性程度。
在PCA中,我们可以计算每个主成分的方差贡献度。
方差贡献度定义为每个主成分的方差与总方差的比例。
方差贡献度越大,主成分在整个数据集中的重要性越高。
总之,确定权重是PCA中的关键步骤,它决定了数据在主成分方向上的重要性。
根据实际需求和数据特点,可以选择不同的权重确定方法,如方差解释率、特征值、贡献度、固有值和因子载荷、方差贡献度等。
综合考虑这些方法,可以得到较为准确的主成分权重,从而实现对高维数据的降维和信息保留。