高2012级数学月考试题(理)及答案
- 格式:doc
- 大小:594.50 KB
- 文档页数:8
高2014级2012-2013学年度下期2月月考数学(理)一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.某雷达测速区规定:凡车速大于或等于70 km/h 的汽车视为“超速”,并将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有( ▲ ).A .30辆B .40辆C .60辆D .80辆 2.已知直线01)10ax y a x y -=-+-=与直线(平行,则a =( ▲ )( )A .0B .1C .21 D .21-3.已知3(0,)sin ,)254ππααα∈=-且=( ▲ )A .15B .15- C .75D .75-4.点E 是正四面体ABCD 的棱AD 的中点,则异面直线BE 与AC 所成的角的余弦值为( ▲ )ABCD .565.设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时,n 等于( ▲ ) A .6 B .7 C .8 D .96.设 A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确的是( ▲ )A. 若AC 与BD 共面,则AD 与BC 共面B. 若AC 与BD 是异面直线,则AD 与BC 是异面直线C. 若AB=AC,DB=DC,则AD ⊥BCD. 若AB=AC ,DB=DC,则AD=BC7.某单位员工按年龄分为A ,B ,C 三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C 组中甲、乙二人均被抽到的概率是,451则该单位员工总数为( ▲ ) A .110B .100C .90D .808. 某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2cm 的圆(包括圆心),则该零件的体积是( ▲ ) A .4π33cm B .8π33cm C .4π 3cm D .20π33cm第8题图9.阅读右侧的算法框图,输出的结果S 的值为( ▲ ) AB .C. D .010.四面体的四个面的面积分别为1S 、2S 、3S 、4S ,记其中最大的面积为S ,则SSi i341∑=的取值范围是( ▲ )A. ]231(, B. ]231[, C.[3432,] D. (3432,] 二、填空题:本大题共5小题,每小题5分,满分25分. 11.圆222430x y x y +-++=的圆心到直线1x y -=的距离为▲ .12. 已知递增的等比数列{}n a 中,28373,2,a a a a +=⋅=则1310a a = ▲ .13. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为___▲____.14.在△ABC 中,60ABC ∠= ,2AB =,5BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 ▲ .15.空间三条直线中,任何两条不共面,且两两互相垂直,直线l 与这三条直线所成的角都为α,则αtan = ▲ 。
11-12学年高二3月月考试题数学(理)一.选择题(本大题共12小题,每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项。
)1.设,,,a b c d R ∈,若a bic di+-为实数,则 ( ) A.0bc ad +≠ B.0bc ad -≠ C.0bc ad += D. 0bc ad -=2.设{1,2}M =,2{}Na =,则“1a =”是“N M⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.命题“所有能被2整除的数都是偶数”的否定..是( ) A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数4.设()ln f x x x =,若0'()2f x =,则0x =( )A. 2eB. eC.ln 22D. ln 25. 方程1x +2x +…+5x =7的非负整数解的个数为( ) A .15 B .330 C .21 D .4956.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A.(1,0)B.(2,8)C.(2,8)和(1,4)--D.(1,0)和(1,4)-- 7. 曲线x x x y 223++-=与x 轴所围成图形的面积为( )A .3712B .3C .3511D .48.若20092009012009(12)()x a a x a x x R -=+++∈ ,则20091222009222a a a +++ 的值为( )A .2B .0C .1-D .2-9. 直线x -y -1=0与实轴在y 轴上的双曲线x 2-y 2=m (m ≠0)的交点在以原点为中心,边长 为2且各边分别平行于坐标轴的正方形内部,则m 的取值范围是( ) A .0<m<1 B .m<0 C .-1<m<0 D .m<-110.如图所示的曲线是函数d cx bx x x f +++=23)(的大致图象,则2221x x +A .98 B .910 C . 916D .4511.已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f 的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A12.设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤二、填空题(共5小题,每小题4分,共20分)13.函数5523--+=x x x y的单调递增区间是___________________________14.设20lg 0()30a x x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a=15.由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积为16.下图是函数()y f x =的导函数()y f x '=的图象,给出下列命题: ①2-是函数()y f x =的极值点;②1不是函数()y f x =的极值点;③()y f x =在0x =处切线的斜率小于零; ④()y f x =在区间(2,2)-上单调递增;则正确命题的序号是 (写出所有正确命题的序号)三、解答题:(共70分.要求写出必要的文字说明、重要演算步骤。
2012-2013学年度下学期第二次月考高一数学试题【新课标】一、选择题:(每小题5分,共60分). 1.设角θ的终边经过点P (-3,4),那么sin θ+2cos θ=( )A .15 B .15- C .25- D .252. 若sin α>cos α,且 sin αcos α<0, 则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.已知tan 2,θ=则22sin sin cos 2cos θθθθ+-=( )A .43-54C .34-D .454. 在区间[,]22ππ-上随机取一个数x ,cos x 的值介于0到21之间的概率为 ( )A .31B .π2C .21D .325. x 是1x ,2x …100x 的平均数,a 是1x ,2x ,…,40x 的平均数,b 是41x ,42x ,…100x 的平均数,则下列各式正确的是( )A.4060100a b x +=B.6040100a bx += C.x a b =+D.2a bx +=6. 数据1x ,2x …n x 的方差为2S ,则数据135x +,235x +,…,35n x +的方差是( )A. 2S B. 23SC.29SD. 293025S S ++7. 若下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k 的条件是 ( ) A .9k = B .8k ≤C .8k <D .8k >8.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单C .向左平移8π个单位D .向右平移8π个单位9.函数),0)(sin(πϕωϕω<>+=x A y 的部分图像如图所示,则函数表达是( )A .)438sin(4ππ-=x yB .)48sin(4ππ-=x yC .)438sin(4ππ+=x yD .)48sin(4π+π=x y10. 若函数()f x 为R 上的奇函数,且在定义域上单调递减,又(sin 1)(sin )f x f x ->-,[0,]x π∈,则x 的取值范围是A .2(,)33ππB .2[0,](,]33πππC .5[0,)(,]66πππ D .5(,)66ππ11. 定义在R 上的函数()f x ,既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π02x ⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为 ( )A.12-C.D.1212. 已知函数π()(0)xf x R R=>图像上相邻的一个最大值点与一个最小值点恰好在圆222x y R +=上,则()f x 的最小正周期是( ) A.1 B.4 C.3 D.2. 二、填空题:(每小题5分,共20分).13.若扇形的周长是16cm ,圆心角是2弧度,则扇形的面积是14 .已知动点M 在圆x 2+y 2=4上运动,点A (3,4),则∣MA ∣的最大值和最小值分别为和15. 函数f (x )=2161tan xx -+的定义域是 .16. 关于函数π()4sin 2()3⎛⎫=+∈ ⎪⎝⎭R f x x x ,有下列命题:①()f x 的表达式可以变换成π()4cos 26f x x ⎛⎫=- ⎪⎝⎭)(R x ∈;②()f x 是以2π 为最小正周期的周期函数;③()f x 的图像关于点π06⎛⎫- ⎪⎝⎭,对称; ④()f x 的图象关于直线π6x =-对称.其中正确命题的序号是 ______. 三解答题:(解答应写出文字说明证明过程或演算步骤共70分)17.(10分)已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(1)化简()f α。
2011-2012学年高三第二次月考数学试卷注意:本试卷共2页,第1页为选择题和填空题,第2页为答题卡,解答题在答题卡上,满分为150分,考试时间为120分钟。
所有答案必须写在答题卡上,否则不予计分。
一、选择题:共15小题,每小题5分,共75分;在每小题给出的四个选项中,只有一项是符合题目要求。
1.设全集U={x ︱0<x <10,且N x ∈},集合A={2,4,6},则=A C UA .{1,3,5,7,8,9}B .{1,3,5,7,8,9,10}C .{2,4,6}D .{0,1,3,5,7,9} 2.等差数列{a n }中,若a 2+a 4+a 9+a 11=36,则a 6+a 7=A .9B .12C .18D .363.已知集合A={x ︱21=+x }, B={1,2,3,5},则A ∩B= A .{-3,1,2,3,5} B .{-2,1,2,3,5} C .{1} D .{2}4.如果0,0a b <>,那么下列不等式中正确的是 A .11a b< B.<C .22a b <D .||||a b >5.在等差数列{a n }中,已知a 9=3,a 11=13,那么a 15=A.23 B .33 C.28 D.18 6.设等比数列{a n }的公比q=2,且a 2·a 4=8,则a 1·a 7等于 A.16B.8 C .32 D.647.若点P (0,1)在函数y=x 2+ax+a 的图象上,则该函数图象的对称轴方程为 A.x=1 B.21=x C.x= -1 D .21-=x8.函数xy )21(1-=的定义域是A.),(+∞-∞ B .),0[+∞ C.),0(+∞ D.]0,(-∞9.三个数60.70.70.76log 6,,的大小关系为 A 60.70.70.7log 66<< B 60.70.70.76log 6<<C 0.760.7log 660.7<<D 60.70.7log 60.76<<10.若偶函数f (x)在()0,∞-上是减函数,则 A. f (-1)< f (3)< f (2) B . f (-1)< f (2)< f (3) C.f (2)< f (3)< f (-1) D. f (3)< f (2)< f (-1) 11.设集合}30{≤≤=x x M ,集合}021{<-+=x x xN ,则集合=N MA.{x ∣-1≤x ≤3}B.{x ∣-2<x ≤3} C .Ф D .{x ∣-1<x ≤3} 12.“0>>b a ”是“2323loglogb a>”成立的A .充分条件B .必要条件C .充要条件D .既非充分也非必要条件13.数列{a n }中,如果a n+1=21a n ( n ≥1)且a 1=2,则数列的前5项之和等于A .831 B.3231C.831-D.3231-14.设,x y R ∈,且5x y +=,则33x y +的最小值是 A. B.C. D.15.已知正数a 1,a 2,a 3成等差数列,且其和为12;又a 2,a 3,a 4成等比数列,其和为19,那么a 4=A.12B.16 C .9 D.10 二、填空题:共5小题, 每小题5分,共25分.答案请写在答题卡上.16.已知数列的通项为n a nn 2)1(+-=,那么1510a a +的值是 .17.已知不等式b a x <+的解集为)3,2(-,则=+b a .18.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x xx x x f ,且10)(=x f ,则x= .19.若{1,2,3}A ⊆{1,2,3,4},则A =______. 20.方程33131=++-xx 的解是 .2011—2012学年第一学期2009级数学科(第二次月考)期末考试卷_____级____班 姓名__________ 学号________ 得分_________===========密====封===线=======密====封===线=======密====封===线2011-2012学年高三第二次月考数学试卷答题卡一、选择题:共15小题,每小题5分,共75分填涂样例: 正确填涂 (注意:胡乱填涂或模糊不清不记分) 1 [A] [B] [C] [D]6 [A] [B] [C] [D] 11 [A] [B] [C] [D] 2 [A] [B] [C] [D]7 [A] [B] [C] [D] 12 [A] [B] [C] [D] 3 [A] [B] [C] [D]8 [A] [B] [C] [D] 13 [A] [B] [C] [D] 4[A ][B] [C] [D] 9 [A] [B] [C ][D] 14[A] [B] [C] [D] 5 [A] [B] [C] [D] 10 [A] [B] [C] [D]15 [A] [B] [C] [D]二、填空题:共5小题,每小题5分,共25分 16.17.18. 19. 20.三、解答题:共4小题,其中21题10分,22题12分,23、24题14分,共50分.解答应写出文字说明、证明过程或演算步骤.21.解不等式:)11lg()65lg(2x x x -<+- (10分)22.实数m 取何值时,关于x 的方程x 2+(m -2)x -(m+3)=0的两根的平方和2221x x +最小?并求出该最小值. (12分)23.某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利额为y 万元, (1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值)? (14分)24.已知数列{})(+∈N n a n 是等比数列,且130,2,8.n a a a >==(1)求数列{}n a 的通项公式; (2)求n a a a a 1111321++++;(3)设1log22+=n n a b ,求数列{}n b 的前100项和. (14分)2011—2012学年第一学期2009级数学科(第二次月考)期末考试卷_____级____班 姓名__________ 学号________ 得分_________===========密====封===线=======密====封===线=======密====封===线2011-2012学年高三第三次月考数学试卷参考答案一、选择题:共15小题,每小题5分,共75分 ACCAB CDBDB DAAAC二、填空题:共5小题,每小题5分,共25分16.50 17.2 18.-3 19.{1,2,3,4} 20.x= -1三、解答题:共4小题,其中21题10分,22题12分,23、24题14分共50分.解答应写出文字说明、证明过程或演算步骤.21.解:由不等式可得⎪⎩⎪⎨⎧-<+->->+-x x x x x x 116501106522 ……………………………4分 ⎪⎩⎪⎨⎧<<-<><⇒511132x x x x 或 ……………………………8分 ∴不等式的解是5321<<<<-x x 或 ……………………………10分22.解:由题意得:m m x x -=--=+21221,)3(1)3(21+-=+-=m m x x …………………4分∴2122122212)(x x x x x x -+=+ ……………………6分 )]3([2)2(2+-⨯--=m m ……………………7分 1022+-=m m ……………………8分 9)1(2+-=m ……………………9分 ∴当m=1时, 2221x x +有最小值9. ……………………………12分 23.解:(1)依题得:每年的维修、保养费用构成等差数列,且121=a ,d=4. …2分∴使用x 年后数控机床的维修、保养费用合计为42)1(12⨯-+=x x x S x (万元) ……………………4分又∵使用x 年数控机床的总收入合计为50x(万元), 总成本为98(万元) ………5分 ∴98)42)1(12(50-⨯-+-=x x x x y ……………………7分)(984022+∈-+-=N x x x……………………8分(2)解不等式2240980,:1010x x x -+->-<<+得…………11分∵+∈N x ∴3≤x ≤17,故从第3年开始盈利。
炎德·英才大联考雅礼中学2012届高三月考试卷(六)数学(理科)参考答案一㊁选择题选择题答题卡题 号12345678答 案B A D DC C B A 二㊁填空题9.5 10.2-1 11.26 12.4 13.33.6 14.28 15.32 16.(1)140 (2)3961三㊁解答题17.解:(1)m ∥n ,∴(c -a )c -(b -a )(a +b )=0,∴a 2+c 2-b 2=a c ,即a 2+c 2-b 22a c =12,∴c o s B =12,B =π3.(6分)……………………………………………………………………(2)∵B =π3,∴A +C =2π3.∵三角形A B C 为锐角三角形,∴0<A <π2,0<C =2π3-A <π2,∴π6<A <π2.∵a s i n A =b s i n B =c s i n C ,且b =1,∴a +c =b s i n A +b s i n C s i n B =s i n A +s i n (2π3-A )32=23(32s i n A +32c o s A )=3s i n A +c o s A =2s i n (A +π6).∵π6<A <π2,∴π3<A +π6<2π3,∴a +c ∈(3,2].(12分)……………………………………………………18.解:(1)由题意知ξ的可能取值为0,2,4.∵ ξ=0”指的是实验成功2次,失败2次,∴P (ξ=0)=C 24(13)2(1-13)2=2481. ξ=2”指的是实验成功3次,失败1次或实验成功1次,失败3次,∴P (ξ=2)=C 34(13)3(1-13)+C 14(13)(1-13)3=4081. ξ=4”指的是实验成功4次,失败0次或实验成功0次,失败4次,∴P (ξ=4)=C 44(13)4+C 04(1-13)4=1781,∴E ξ=0×2481+2×4081+4×1781=14881,故随机变量ξ的数学期望为14881.(6分)…………………………………(2)由题设: 不等式ξx 2-ξx +1>0的解集是实数集R ”为事件A .当ξ=0时,不等式化为1>0,其解集是R ,说明事件A 发生;当ξ=2时,不等式化为2x 2-2x +1>0,∵Δ=-4<0,所以解集是R ,说明事件A 发生;当ξ=4时,不等式化为4x 2-4x +1>0⇒(2x -1)2>0,其解集为{x |x ∈R ,x ≠12},说明事件A 不发生.∴P (A )=P (ξ=0)+P (ξ=2)=2481+4081=6481.即事件A 发生的概率为6481.(12分)…………………………………………………………………………………19.解:(1)由已知,易证△A D E 和△D C E 是等边三角形,所以A E =E C =2,所以A E =12B E .又∠A E B =60°,∴A B ⊥A E ,∴A B =23,A E =E F =2.取A E 中点O ,连接D O ,F O .由A D =D E ,所以A E ⊥D O ;由A F =E F ,所以A E ⊥F O ,所以A E ⊥平面D O F ,所以A E ⊥D F .(6分)………………………………………………………………………(2)以点O 为原点,以O F ,O E ,O D 为x ,y ,z 轴的正方向建立空间直角坐标系,则O (0,0,0),D (0,0,3),B (23,-1,0),E (0,1,0),A (0,-1,0),→D B =(23,-1,-3),→D E =(0,1,-3).设平面D B E 的法向量n 1=(x ,y ,z ),由→D B ㊃n 1=0,→D E ㊃n 1=0,求得n 1=(1,3,1);同理可求得平面A B D 的一个法向量n 2=(0,-3,1),所以c o s θ=|n 1㊃n 2|n 1||n 2||=55.(12分)…………………20.解:(1)当x ≥2时,f (x )=P (x )-P (x -1)=-3x 2+39x ,x =1也符合.故第x 个月的预期销售量f (x )=-3x 2+39x (x ≤12,x ∈N *).(5分)…………………………………………(2)设月利润为h (x )(千元),则h (x )=-3e x (x -13),1≤x ≤3且x ∈N *x 3-27x 2+240x +100,3<x ≤12且x ∈N {*.令H (x )=-3e x (x -13),1≤x ≤3x 3-27x 2+240x +100,3<x ≤{12,则H '(x )=-3e x (x -12),1≤x ≤33(x -8)(x -10),3<x ≤{12.当1≤x ≤3时,H '(x )>0⇒H (x )m a x =H (3)<30㊃33=810;当3<x ≤12时,H (8)=804,H (12)=820⇒H (x )m a x =H (12)=820.∴当x ∈N *,x ≤12时,h (x )m a x =h (12)=820.故在实际销售过程中,第12个月的月利润达到最大值,最大值是820千元.(13分)……………………………21.解:(1)设M (x ,y ),则由题意得x 2+(y -1)2=|y +1|,化简得x 2=4y .(4分)………………………………(2)由题意可设A B 的方程为y =k x +1,代入x 2=4y 得x 2-4k x -4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.由y =14x 2,y '=12x ,易求得l 1,l 2的方程分别为y =12x x 1-14x 21, ①y =12x x 2-14x 22, ②故由①②解得P 的坐标为P (x 1+x 22,14x 1x 2),即P (2k ,-1),从而k P F =-1k,所以k A B ㊃k C D =k (-1k)=-1,因此A B ⊥C D .设C (x 3,y 3),D (x 4,y 4),则同理可得x 3+x 4=-4k ,x 3x 4=-4,所以→A D ㊃→C B =(→A F +→F D )㊃(→C F +→F B )=→A F ㊃→C F +→A F ㊃→F B +→F D ㊃→C F +→F D ㊃→F B =→A F ㊃→F B +→F D ㊃→C F =|→A F ||→F B |+|→F D ||→C F |=(y 1+1)(y 2+1)+(y 3+1)(y4+1)=(k x 1+2)(k x 2+2)+(-1k x 3+2)(-1k x 4+2)=k 2x 1x 2+2k (x 1+x 2)+4+1k2x 3x 4-2k (x 3+x 4)+4=4(k 2+1k 2)+8≥4×2+8=16.当且仅当k 2=1k2,即k =±1时,→A D ㊃→C B 取最小值16.(13分)……………………………………………………22.解:(1)因为a 2n +1=2a 2n +a n a n +1,即(a n +1+a n )(2a n -a n +1)=0.又a n >0,所以有2a n -a n +1=0,所以2a n =a n +1,所以数列{a n }是公比为2的等比数列.由a 2+a 4=2a 3+4得2a 1+8a 1=8a 1+4,解得a 1=2.故数列{a n }的通项公式为a n =2n (n ∈N *).(4分)…………………………………………………………………(2)b n =n a n (2n +1)㊃2n =n 2n +1,所以b 1=13,b m =m 2m +1,b n =n 2n +1.若b 1,b m ,b n 成等比数列,则(m 2m +1)2=13(n 2n +1),即m 24m 2+4m +1=n 6n +3.由m 24m 2+4m +1=n 6n +3,可得3n =-2m 2+4m +1m2,所以-2m 2+4m +1>0,从而1-62<m <1+62.又m ∈N *,且m >1,所以m =2,此时n =12.故当且仅当m =2,n =12,使得b 1,b m ,b n 成等比数列.(8分)………………………………………………………(3)构造函数f (x )=l n (1+x )-x (x ≥0),则f '(x )=11+x -1=-x 1+x ,当x >0时,f '(x )<0,即f (x )在(0,+∞)上单调递减,所以f (x )<f (0)=0,∴l n (1+x )-x <0,所以l n c n =l n (1+n a n)=l n (1+n 2n )<n 2n ,所以l n T n <12+222+323+ +n 2n ,记A n =12+222+323+ +n 2n ,则12A n =122+223+324+ +n -12n +n 2n +1,所以A n -12A n =12+122+123+ +12n -n 2n +1=1-n +22n +1<1,即A n <2,所以l n T n <2,所以T n <e 2<9.(13分)…………………………………………………………………。
2011-2012学年高三第一次月考数学试卷答题卡注意:本试卷共2页,第1页为选择题和填空题,第2页为答题卡,解答题在答题卡上,满分为150分,考试时间为120分钟。
所有答案必须写在答题卡上,否则不予计分。
一、选择题:共15小题,每小题5分,共75分;在每小题给出的四个选项中,只有一项是符合题目要求.1。
下列关系正确的是A 。
2∈{(1,2)}B .{1,2,3}={3,2,1}C .φ=}0{D 。
N ∉02。
集合A={1,2,3}的真子集的个数是A.5 B 。
6 C 。
7 D 。
83.已知集合A={1,2,3,4,5}, B={2,3,5,7},则A ∪B=A .{1,2,3,4,4,7}B .{2,3,5}C 。
{1,2,3,4,5}D .{1,2,3,4,5,7}4.命题p :“12能被3整除",命题q :“2≥1”,则A .p ∧q 是真命题B 。
p ∨q 是假命题 C.¬p ∧q 是真命题 D.¬p ∧¬q 是真命题5.1=x 是12=x 的A .充分条件B 。
必要条件 C.充要条件 D.既非充分也非必要条件6。
下列说法正确的个数有A .1个B .2个C .3个D .4个①b a >⇒22+>+b a ②b a >⇒bc ac >③b a >,0<c ⇒cbc a < ④b a >⇒22b a >7。
当x 〉0时,xx y 9+=的最小值是A.9B.8C.7 D 。
6 8.不等式0322<--x x 的解集是A.RB.Ф C .{x ∣—1<x <3} D 。
{x ∣x 〈—1或x >3}9。
函数32)(-+-=x x x f 的定义域是A 。
{x ∣x ≤2 }B 。
RC 。
{x ∣x ≥2}D 。
{x ∣x ≤3} 10。
在区间),0(∞+上是减函数的是A.y=3x+2 B 。
新课标2012-2013学年度上学期第二次月考高一数学试题内附参考答案一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求) 1.若集合{}1A x x =>-,下列关系式中成立的为( )A .0A ⊆B .{}0A ∈C .A ∅∈D .{}0A ⊆2.设集合{}32M m Z m =∈-<<,{}13N n N n =∈-≤≤,则M N ⋂= ( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 3.设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -= ( )A .1B .1-C .2D .2-4.已知 1(1)1()(1)x x f x x ⎧≤⎪+=>,则[(2)]f f =( )A .0B .12C .1D .135.下列函数中是偶函数的是( )A .21,[1,2]y x x =-∈-B .2y x x =+C .3y x =D .2,[1,0)(0,1]y x x =∈-⋃6.{}{}02,03M x x N y y =≤≤=≤≤给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )A .0个B .1个C .2个D .3个7.已知函数()f x =的定义域是一切实数,则m 的取值范围是 ( )A. 04m <≤B. 01m ≤≤C. 4m ≥D. 04m ≤≤8.已知∅{}1,2,3,4,5,6M ⊆,若∈a M 且6a M -∈,则集合M 的个数为( )A .6B .7C .8D .159.把函数1xy x =+的图象向右平移1个单位,再向上平移3个单位,后将每个点的纵坐标伸长到原来的2倍,横坐标不变所得图象的函数关系式为( )A .226x y x -=+ B .223x y x -=+ C .2262x y x +=++D .2232x y x +=++ 10.已知()f x 是定义在R 上的偶函数,它在[0,)+∞上递减,那么一定有( )A .23()(1)4f f a a ->-+B .23()(1)4f f a a -≥-+C .23()(1)4f f a a -<-+D .23()(1)4f f a a -≤-+第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在题中横线上)11.已知元素(,)x y 在映射f 下的象是(2,2)x y x y +-,则(3,1)在f 下的原象..是 . 12.幂函数()f x 的图象过点3,9)(,则(2)f =_____,(21)f x += . 13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 . 14.定义集合A 、B 的一种运算:{}1212,,其中A B x x x x x A x B *==+∈∈,若{}1,2,3A =,{}1,2B =,则A B *中的所有元素数字之和为 .15.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,有以下说法:①9:00~10:00匀速行驶,平均速度是10千米/时; ②10:30开始第一次休息,休息了1小时; ③11:00到12:00他骑了13千米;④10:00~10:30的平均速度比13:00~15:00的平均 速度快;⑤全程骑行了60千米,途中休息了1.5小时.离家最远的距离是30千米;以上说法正确的序号是 .三、解答题(本大题共6小题,16~19题每小题各12分,20题每小题13分,21题每小题14分,共75分)16.已知全集{}{}{}221,2,,1,2,6U U x x A x C A =+=-=,求实数x 的值.17.设集合{}11A x a x a =-≤≤+,集合{}15B x x x =<->或,分别就下列条件求实数a 的取值范围:(1)A B ⋂=∅;(2)A B B ⋃=.18.已知21()3x f x x p+=+是奇函数.(1)求实数p 的值;(2)判断函数()f x 在(,1)-∞上的单调性,并加以证明.19.已知集合{}2|210M x ax x =-++=只有一个元素,{|A x y ==,{}2|21B y y x x ==-+-.(1)求A B ⋂;(2)设N 是由a 可取的所有值组成的集合,试判断N 与A B ⋂的关系.20.已知函数23,[1,2]()3,(2,5]x x f x x x ⎧-∈-=⎨-∈⎩.(1)在如图给定的直角坐标系内画出()f x(2)写出()f x 的单调递增区间及值域; (3)求不等式()1f x >的解集.21.已知函数2()(3)3,0.f x kx k x k k =+++≠其中为常数,且 (1)若(2)3f =,求函数()f x 的表达式;(2)在(1)的条件下,设函数()()g x f x mx =-,若()[2,2]g x -在区间上是单调函数,求实数m的取值范围;(3)是否存在k 使得函数()f x 在[1,4]-上的最大值是4?若存在,求出k 的值;若不存在,请说明理由.新课标2012-2013学年度上学期第二次月考高一数学试题参考答案一、选择题 DACBD CDBAB 二、填空题11.(1,1) 12.24,441x x ++ 13.12 14.14 15.①③⑤18.解:(1) ()f x 是奇函数,()()f x f x ∴-=- …………………………1分即221133x x x p x p ++=--++, …………………………2分 221133x x x p x p++∴=-+--,从而0p =; …………………………5分 (2)21()3x f x x +=在(,1)-∞上是单调增函数. …………………………6分证明:21()3x f x x+=,任取121x x <<-,则 …………………………7分22221212221112121211()()333x x x x x x x x f x f x x x x x +++---=-=…………………………8分12121212121212()()()(1)33x x x x x x x x x x x x x x -----==, …………………………10分 121x x <<- ,1212120,10,0x x x x x x ∴-<->>, …………………………11分 12()()0f x f x ∴-<,()f x ∴在(,1)-∞上是单调增函数.………………………12分20.解:(1)图像如下图所示; …………………………5分(2, …………………………7分值域为[1,3]-; …………………………9分 (3)令231x -=,解得x =; …………………………10分令31x -=,解得2x =。
2021-2022学年河南省灵宝市高二下学期第一次月考数学(理)试题一、单选题1.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则放入袋中,直到取到红球为止,若抽取的次数为X ,则表示“放入袋中5回小球”的事件为( )A .X=4B .X=5C .X=6D .X ≤4【答案】C【分析】“放入袋中回小球”也即是第次抽取到了红球,由此求得的值.56X 【详解】根据题意可知,如果没有抽到红球,则将黑球放回,然后继续抽取,所有“放入袋中回小5球”也即是前次都是抽到黑球,第六次抽到了红球,故,所以选C.56X =【点睛】本小题主要考查对离散型随机变量的理解,考查抽样方法的理解,属于基础题.2.若,则整数( )33235n n C A =n =A .B .C .D .891011【答案】A【分析】由排列数和组合数公式计算即可得到结果.【详解】,,33235nnC A = ()()()()221223512321n n n n n n --∴⨯=⨯--⨯⨯整理可得:,解得:或或,()()3298180n n n n n n -+=--=0n =1n =8n =,.3n ≥ 8n ∴=故选:A.3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有.A .280种B .240种C .180种D .96种【答案】B【详解】根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有种不同的情况,其中包含甲从事翻译工作有种,46360A =3560A =乙从事翻译工作的有种,若其中甲、乙两名支援者都不能从事翻译工作,3560A =则选派方案共有360-60-60=240种.故选:B.4.从2名教师和5名学生中,选出3人参加“我爱我的祖国”主题活动.要求入选的3人中至少有一名教师,则不同的选取方案的种数是( )A .20B .55C .30D .25【答案】D【分析】根据题意,用间接法分析:先计算从2名教师和5名学生中选出3人的选法,再计算其中“入选的3人没有教师”的选法数目,分析可得答案.【详解】解:根据题意,从2名教师和5名学生中,选出3人,有种选法,3735C =若入选的3人没有教师,即全部为学生的选法有种,3510C =则有种不同的选取方案,351025-=故选:D .5.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有A .16种B .18种C .37种D .48种【答案】C【分析】根据题意,用间接法:先计算3个班自由选择去何工厂的总数,再排除甲工厂无人去的情况,由分步计数原理可得其方案数目,由事件之间的关系,计算可得答案.【详解】根据题意,若不考虑限制条件,每个班级都有4种选择,共有种情况,44464⨯⨯=其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有种方案;33327⨯⨯=则符合条件的有种,642737-=故选C .【点睛】本题考查计数原理的运用,本题易错的方法是:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有种方案;显然这种方法中有重复的计算;解题时34448⨯⨯=特别要注意.6.已知的展开式中所有项的系数和为192,则展开式中的常数项为( )()62211x a x ⎛⎫++ ⎪⎝⎭A .8B .6C .4D .2【答案】A【分析】令,可求出,再写出的通项,再考虑展开式中的每一项与中的1x =2a =6211x ⎛⎫+ ⎪⎝⎭2x a +哪项之积为常数即可.【详解】令,则,所以.1x =()612192a +⨯=2a =在中,的展开式的通项,()622121x x ⎛⎫++ ⎪⎝⎭6211x ⎛⎫+ ⎪⎝⎭216621rr r rr T C C x x -+⎛⎫== ⎪⎝⎭所以的展开式中的常数项为.()622121x x ⎛⎫++ ⎪⎝⎭2120106666228x C x C C C -+⨯=+=故选:A【点睛】方法点睛:对于求多个二项式的和或积的展开式中某项的系数问题,要注意组合知识的运用,还要注意有关指数的运算性质.7.数学老师从6道习题中随机抽3道让同学检测,规定至少要解答正确2道题才能及格.某同学只能求解其中的4道题,则他能及格的概率是( )A .B .C .D .15253545【答案】D【分析】由超几何分布的概率公式结合排列组合即可求得.【详解】由超几何分布的概率公式可得,他能及格的概率是:.213042423366C C C C 4(2)(2)(3)C C 5P X P X P X ≥==+==+=故选:D .8.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8【答案】D【解析】直接利用枚举法写出所有的等比数列即可得到答案.【详解】(2)以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.故选:D.【点睛】本题考查了等比关系的确定,考查了学生观察问题的能力,是中档题.9.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,那么甲以4比2获胜的概率为( )A .B .C .D .5641564532516【答案】C【分析】先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,甲以4比2获胜,即前5局甲胜3局,最后一局甲胜,根据独立重复试验公式公式,列出算式,得到结果.【详解】解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是.12记“甲以4比2获胜”为事件,A 则.()335351115(()22232P A C -=⨯=故选:.C 【点睛】本题主要考查古典概型及其概率计算,相互独立事件的概率公式的应用,属于基础题.10.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( )A .恰有1名女生与恰有2名女生B .至多有1名女生与全是男生C .至多有1名男生与全是男生D .至少有1名女生与至多有1名男生【答案】A【分析】根据对立事件和互斥事件的概念对选项逐一分析,由此选出正确选项.【详解】“从中任选2名同学参加演讲比赛”所包含的基本情况有:两男、两女、一男一女.恰有1名女生与恰有2名女生是互斥且不对立的两个事件,故A 正确;至多有1名女生与全是男生不是互斥事件,故B 错误;至多有1名男生与全是男生既互斥又对立,故C 错误;至少有1名女生与至多有1名男生不是互斥事件,故D 错误.故选:A .11.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一次发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为,发球次数为X ,若X 的数学期望(0,1)p ∈,则P 的取值范围是( )() 1.75E X >A .B .C .D .70,12⎛⎫ ⎪⎝⎭7,112⎛⎫ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭【答案】C【分析】计算学生每次发球的概率,求出期望的表达式,求解,可解出值.() 1.75E X >p 【详解】根据题意,学生一次发球成功的概率为p ,即,发球次数为2即二次发球成(1)p X p ==功的概率为,发球次数为3的概率为,则期望(2)(1)P X p p ==-2(3)(1)P X p ==-,依题意有,22()2(1)3(1)33E X p p p p p p =+-+-=-+() 1.75E X >即,解得或,结合p 的实际意义,可得.233 1.75p p -+>52p >2p 1<102p <<故选:C .12.下列说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;a a ②设有一个回归方程,变量增加1个单位时,平均减少5个单位;35y x =-x y ③线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;r ④在某项测量中,测量结果服从正态分布,若位于区域的概率为0.4,则ξ()()21,0N σσ>ξ()0,1位于区域内的概率为0.6;ξ()1,+∞⑤利用统计量来判断“两个事件的关系”时,算出的值越大,判断“与有关”的把握就2χ,X Y 2χX Y 越大其中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】利用统计的相关知识逐一分析判断即可.【详解】逐一判断所给的说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍,原说法错误;a a②设有一个回归方程,变量增加1个单位时,平均减少5个单位,原说法正确;35y x =-x y ③线性相关系数的绝对值越大,两个变量的线性相关性越强;反之,线性相关性越弱,原说法错r 误;④在某项测量中,测量结果服从正态分布,若位于区域的概率为0.4,而ξ()()21,0N σσ>ξ()0,1位于区域内的概率为0.5,原说法错误;ξ()1,+∞⑤利用统计量来判断“两个事件的关系”时,算出的值越大,判断“与有关”的把握就2χ,X Y 2χX Y 越大,原说法正确.故选:B.二、填空题13.某市倡导高中学生暑假期间参加社会公益活动.据调查统计,全市高中学生参加该活动的累计时长(小时)近似服从正态分布,人均活动时间约40小时.若某高中学校1000学生中参加该活X 动时间在30至50小时之间的同学约有300人.据此,可推测全市名学生中,累计时长超过50n 小时的人数大约为________.【答案】0.35n【分析】利用正态分布的对称性求解即可【详解】解:由题意,,则,40μ=()240,X N σ 由,可得,()30500.3P X ≤≤=()10.3500.352P X ->==故累计时长超过50小时的人数大约有人.0.35n 故答案为:.0.35n 14.的展开式中,含项的系数为______.(用数字作答)()()532x y x y -+24x y 【答案】110-【分析】的展开式的通项公式为,采取赋值法令和令,进()52x y +()5152rr rr T C x y -+=51r -=52r -=一步求出答案.【详解】的展开式的通项公式为,令得,令得,()52x y +()5152rr rr T C x y -+=51r -=4r =52r -=3r =∴的展开式中,的系数为,故答案为.()()522x y x y -+24x y 42255232110C C ⋅-⋅=-110-故答案为:.110-【点睛】本题考查二项展开式的通项公式,赋值法是解决二项展开式的系数和问题的工具,属于基础题型.15.若的方差为2.则的方差为____________.128,,,k k k ()()()12823,23,,23k k k --- 【答案】8【分析】根据给定条件,利用方差的定义直接计算作答.【详解】设的平均数为,则,128,,,k k k k ()()()222128128k k k k k k ⎡⎤-+-++-=⎢⎥⎣⎦ 而的平均数为,()()()12823,23,,23k k k --- 2(3)k -则其方差为.()()()222212814444288s k k k k k k ⎡⎤=-+-++-=⨯=⎢⎥⎣⎦ 故答案为:8.16.某地区数学考试的成绩服从正态分布,正态分布密度函数为X 2~(,)X N μσ()22()2x x f x σ--=,其密度曲线如图所示,则成绩位于区间的概率是__________.(结果保留3(,)x ∈-∞+∞X (86,94]为有效数字)本题用到参考数据如下:,()0.6826,(22)0.9544P X P X μσμσμσμσ-<≤+=-<≤+=.(33)0.9974P X μσμσ-<+=≤【答案】0.0215【分析】利用图象求出,利用参考数据计算,再利用对称性即μσ,(5486)P X <<,(4694)P X <<可得出答案.【详解】由图像可知,所以,8,70σμ==(70167016)0.9544P X -<<+=即;又,(5486)0.9544P X <<=(70247024)0.9974P X -<<+=即,(4694)0.9974P X <<=故结合图形可知,1(8694)(0.99740.9544)0.02152P X <<=-=故答案为:.0.0215三、解答题17.在平面直角坐标系xOy 中,曲线C 的参数方程为(为参数),在以原点为极点,3cos sin x y αα=⎧⎨=⎩αx 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为.sin 4πρθ⎛⎫-= ⎪⎝⎭(1)求C 的普通方程和l 的倾斜角;(2)设点,l 和C 交于A ,B 两点,求.(0,2)P ||||PA PB +【答案】(1) .. (2)2219x y +=4π||||PA PB +=【分析】(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点在直线l 上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.(0,2)P 【详解】(1)消去参数α得,3cos ,sin ,x y αα=⎧⎨=⎩2219x y +=即C 的普通方程为.2219x y +=由,得,(*)sin 4πρθ⎛⎫-= ⎪⎝⎭sin cos 2ρθρθ-=将,代入(*),化简得,cos sin x y ρθρθ=⎧⎨=⎩+2y x =所以直线l 的倾斜角为.4π(2)由(1),知点在直线l 上,可设直线l 的参数方程为(t 为参数),(0,2)P cos 42sin 4x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩即(t 为参数),2x y ⎧=⎪⎪⎨⎪=⎪⎩代入并化简,得,2219x y +=25270t ++=,245271080∆=-⨯⨯=>设A ,B 两点对应的参数分别为,,1t 2t 则,,120t t +=<122705t t =>所以,,所以10t<20t<()1212 ||||PA PBt t t t+=+=-+=【点睛】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算. 18.在二项式的展开式中,n(1)若所有二项式系数之和为,求展开式中二项式系数最大的项.64(2)若前三项系数的绝对值成等差数列,求展开式中各项的系数和.【答案】(1);(2) .52-1256【详解】试题分析:(1)由所有二项式系数之和为,,根据中间项的64264n=6n∴=二项式系数最大可得结果;(2)由前三项系数的绝对值成等差数列可得n=8,,令计算的大小,即可得答案.1x=n试题解析:(1)由已知得,,0164nn n nC C C+++=264n=6n∴=展开式中二项式系数最大的项是6331130334611520282T C x x x--⎛⎫⎛⎫⎛⎫=-=⋅-⋅=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)展开式的通项为,23112r n rrr nT C x-+⎛⎫=- ⎪⎝⎭()0,1,,r n=由已知:成等差数列,∴n=8,02012111,,222n n nC C C⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12112124nnC C⨯=+在中令x=1,得各项系数和为n125619.设.求:8878710(31)x a x a x a x a-=++++(1) ;871a a a+++(2) .86420a a a a a++++【答案】(1)255;(2)32896【详解】试题分析:(1)令,求得,再令,即可求解的值;x=01a=1x=871a a a+++(2)由(1),再令,即可求解的值.=1x-86420a a a a a++++试题解析:令,得.x=01a=(1)令得,①1x =()8871031a a a a -=++++ ∴.88721022561255a a a a a ++++=-=-= (2)令得.②1x =-()88761031a a a a a --=-+--+①+②得,()8886420242a a a a a +=++++∴.()8886420124328962a a a a a ++++=+=20.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望.(注:方差,其中为,,…… 的平均数)()()()2222121n s x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦x 1x 2x n x 【答案】(Ⅰ)平均数为 方差为3541116(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P (Y=17)=同理可得所以随机变量Y 的分布列为:Y 1718192021P17(17)18(18)19(19)20(20)EY P Y P Y P Y P Y =⨯=+⨯=+⨯=+⨯=21(21)P Y +⨯===1911111171819202184448⨯+⨯+⨯+⨯+⨯【分析】(Ⅰ)当X =8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10. 所以平均数为=;x 8+8+9+1035=44方差s 2=+ ++ =.2135(8)44-235(84-235(9)4-235(10)4-1116(Ⅱ)当X =9时,由茎叶图可知,甲组同学的植树棵数是9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果.因此P (Y =17)==.21618同理可得P (Y =18)=,P (Y =19)=,1414P (Y =20)=,P (Y =21)= .1418所以随机变量Y 的分布列为Y1718192021P1814141418E (Y )=17×P (Y =17)+18×P (Y =18)+19×P (Y =19)+20×P (Y =20)+21×P (Y =21)=17×+18× +19×+20× +21×=19.181414141821.某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:喜欢不喜欢合计大于40岁2052520岁至40岁102030合计302555(1)判断是否有的把握认为喜欢“人文景观”景点与年龄有关?99.9%(2)已知20岁到40岁喜欢“人文景观”景点的市民中,有3位还比较喜欢“自然景观”景点,现在从20岁到40岁的10位市民中,选出3名,记选出喜欢“自然景观”景点的人数为,求的分布X X 列、数学期望.(参考公式:,其中)22()()()()()n ad bc K a b c d a c b d -=++++n a b c d =+++2()P K k ≥0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828【答案】(1)有的把握认为喜欢“人文景观”景点与年龄有关;(2)见解析99.9%【分析】(1)计算K 2的值,与临界值比较,即可得到结论;(2)X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和.()E X 【详解】(1)由公式,所以有的把握认为喜欢“人()22552020105K 11.97810.82830252530⨯-⨯=≈>⨯⨯⨯99.9%文景观”景点与年龄有关.(2)随机变量可能取得值为0,1,2,3.X ∴,()37310C 7P X 0C 24===,()2173310C C 21P X 1C 40⋅===,()1273310C C 7P X 2C 40⋅===,()33310C 1P X 3C 120===∴的分布列为XX 0123P72421407401120则.()72171E X 01230.9244040120=⨯+⨯+⨯+⨯=【点睛】本题考查独立性检验、离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,属于中档题.22.某生物小组为了研究温度对某种酶的活性的影响进行了一组实验,得到的实验数据经整理得到如下的折线图:(1)由图可以看出,这种酶的活性与温度具有较强的线性相关性,请用相关系数加以说明;y x (2)求关于的线性回归方程,并预测当温度为时,这种酶的活性指标值.(计算结果精确y x 30C ︒到0.01)参考数据:,.6152.5i i y ==∑()()6185i ii x x y y =--=∑ 5.5= 2.65≈参考公式:相关系数.r =回归直线方程,,.y a bx =+()()()121niii nii x x y y b x x ==--=-∑∑a y bx =-【答案】(1)详见解析(2)线性回归方程为;预测当温度为时,这种酶的活3.020.34y x =+30C ︒性指标值为13.22【解析】(1)根据题中所给数据,利用公式求得,非常接近1,从而得到酶的活性与0.97r ≈ry 温度具有较强的线性关系;x (2)根据公式求得关于的线性回归方程为,将代入回归方程,即可求得y x 3.020.34y x =+30x =结果.【详解】解:(1)由题可知,,1(81114202326)176x =+++++=,()622222221(817)(1117)(1417)(2017)(2317)(2617)252ii x x =-=-+-+-+-+-+-=∑则,0.97r ===≈因为非常接近1,所以酶的活性与温度具有较强的线性相关性.||r y x (2)由题可知,,61152.58.7566i i y y ====∑,()()()61621850.34252iii i i x x y y b x x ==--==≈-∑∑,858.7517 3.02252a y bx =-=-⨯=所以关于的线性回归方程为,y x 3.020.34y x =+当时,.30x =ˆ 3.020.343013.22y=+⨯=故预测当温度为时,这种酶的活性指标值为13.22.30C ︒【点睛】本题考查线性回归分析,线性相关关系的判断以及求线性回归方程,正确利用公式是解题的关键,考查计算能力.。
高二12月月考(数学)(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)1.直线x﹣y+1=0的斜率为()A.B.﹣C.D.﹣2.(5分)2.已知向量=(2,3,1),=(1,2,0),则|+|等于()A.B.3C.D.93.(5分)3.如图,在三棱柱ABC﹣A1B1C1中,M为A1C1的中点,若=,=,=,则下列向量与相等的是()A.﹣﹣+B.+﹣C.﹣++D.++4.(5分)4.《周髀算经》是中国最古老的天文学和数学著作,书中提到冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为()A.6.5尺B.13.5尺C.14.5尺D.15.5尺5.(5分)5.在正方体ABCD﹣A1B1C1D1中,M、N分别为棱A1B1和BB1的中点,那么异面直线AM和CN所成角的余弦值是()A.B.C.D.﹣6.(5分)6.历时23天嫦娥五号成功携带月球样品返回地球,标志着中国航天向前迈出一大步.其中2020年11月28日晚,嫦娥五号成功进行首次近月制动,进入一个大椭圆轨道.该椭圆形轨道以月球球心为一个焦点F1,若其近月点A(离月球表面最近的点)与月球表面距离为r1公里,远月点B(离月球表面最远的点)与月球表面距离为r2公里,并且F1,A,B在同一直线上已知月球的半径为R公里,则该椭圆形轨道的离心率为()A.B.C.D.7.(5分)7.已知动点P在直线l1:3x﹣4y+1=0上运动,动点Q在直线l2:6x+my+4=0上运动,且l1∥l2,则|PQ|的最小值为()A.B.C.D.8.(5分)8.若等差数列{a n}的前n项和为S n,首项a1>0,a2020+a2021>0,a2020•a2021<0,则满足S n>0成立的最大正整数n是()A.4039B.4040C.4041D.4042二、多选题(本题共计4小题,总分20分)9.(5分)9.关于双曲线C1:=1与双曲线C2:=1,下列说法正确的是()A.它们的实轴长相等B.它们的渐近线相同C.它们的离心率相等D.它们的焦距相等10.(5分)10.已知圆C1:x2+y2=1和圆C2:x2+y2﹣4x=0的公共点为A,B,则()A.|C1C2|=2B.直线AB的方程是x=C.AC1⊥AC2D.|AB|=11.(5分)11.若数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N+),则称数列{a n}为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用则下列结论成立的是()A.a7=13B.a1+a3+a5+……+a2019=a2020C.S7=54D.a2+a4+a6+……+a2020=a202112.(5分)12.已知正方体ABCD﹣A1B1C1D1的棱长为2,点E,F在平面A1B1C1D1内,若|AE|=,AC⊥DF,则()A.点E的轨迹是一个圆B.点F的轨迹是一个圆C.|EF|的最小值为﹣1D.AE与平面A1BD所成角的正弦值的最大值为三、填空题(本题共计3小题,总分15分)13.(5分)13.若直线x﹣y+1=0与直线mx+3y﹣1=0互相垂直,则实数m的值为.14.(5分)14.若双曲线的渐近线为,则双曲线C的离心率为.15.(5分)16.在平面直角坐标系中,O为坐标原点,过点(,0)的直线l与圆C:x2+y2﹣4x+8=0交于A,B两点,则四边形OACB面积的最大值为.四、解答题(本题共计7小题,总分75分)16.(5分)15.已知四面体ABCD的顶点分别为A(2,3,1),B(1,0,2),C(4,3,﹣1),D(0,3,﹣3),则点D到平面ABC的距离.17.(10分)17.在:①圆C与y轴相切,且与x轴正半轴相交所得弦长为2;②圆C经过点A(4,1)和B(2,3);③圆C与直线x﹣2y﹣1=0相切,且与圆Q:x2+(y﹣2)2=1相外切。
高2012级第一次月考数 学 试 题(理科卷)数学试题卷共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
第Ⅰ卷(选择题 共50分) 一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数sin 4y x =的周期是 A.2π B.2π C.4πD.4π 2.在α的终边上取一点为()3,4P -,则cos α= A.45 B.35 C.45- D.35- 3.若3cos 2α=,其中(02)απ<<,则角α所有可能的值是A.6π或116π B.6π或76π C.3π或23π D.3π或53π4.已知定义在[1,1]-上的函数()y f x =的值域为[2,0]-,则函数(cos 2)y f x =的值域为 A.[1,1]- B.[3,1]-- C.[2,0]- D.不能确定5.在等差数列{}n a 中,首项14a =-,2d =,则12345a a a a a ++++= A.0 B.10 C.-10 D.126.函数lg(sin )y x =的定义域为 A.2,22k k k Z πππ⎛⎫+∈ ⎪⎝⎭B.()2,2k k k Z πππ+∈ C.2,22k k k Z πππ⎡⎤+∈⎢⎥⎣⎦D.[]2,2k k k Z πππ+∈7.已知函数()213f x ax ax =+-的定义域是R ,则实数a 的取值范围是 A. 13a > B.13a ≤ C.120a -<< D.120a -<≤ 8.函数2cos 1y x =-2()33x ππ-≤≤的值域是 A.[]2,0- B.[]3,0- C.[]2,1- D.[]3,1- 9.函数)62sin(π+-=x y 的单调递减区间是A.2,263k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B.52,266k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ C.,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.5,66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦10.已知1sin cos 5θθ+=,且θ是第二象限的角,则44sin cos θθ-= A .125 B .725- C .725± D .725第Ⅱ卷(非选择题 共100分)二.填空题(本大题共5小题,每题5分,满分25分,把答案填写在答题卡相应位置上) 11.在等比数列{}n a 中,24a =,5256a =,则公比q = . 12.54sin 28tan 45tan 62tan 36sin 22++= . 13.若3()log (1)f x x =+的反函数为1()y fx -=,则方程1()8f x -=的解x = .14.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 . 15.给出下列命题:○1不等式12x≥的解集是12x x ⎧⎫≤⎨⎬⎩⎭; ○2若,αβ是第一象限角,且αβ>,则sin sin αβ>;○3tan 20tan 403tan 20tan 403++=;○4()()2sin 31f x x =+的图象可由2sin 3y x =的图象向左平移1个单位得到; ○5函数()cos 2cos sin xf x x x=-的值域是()2,2-.其中正确的命题的序号是____________________(要求写出所有正确命题的序号).三.解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分13分)已知()()tan tan sin()cos()2f x x x x x πππ⎛⎫=-++-+⎪⎝⎭. (1)化简()f x ;(2)当tan 2x =时,求()f x 的值.17. (本小题满分13分)已知3sin()5αβ+=,5cos 13β=-;且α为锐角,β为钝角. (1)求cos()αβ+和sin β; (2)求αsin 的值.18. (本小题满分13分)已知函数()sin()cos()f x x x θθ=+++的定义域为R . (1)当0θ=时,求()f x 的单调递减区间; (2)若(0,)θπ∈,当θ为何值时,()f x 为奇函数.19.(本小题满分12分)已知函数()22sin 2sin cos 3cos f x x x x x =++其中x R ∈. (1)求函数()f x 的最小正周期; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;20.(本小题满分12分)一般地,对于函数()y f x =,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点.若函数2()(1)1f x ax b x b =+++-其中0a ≠. (1)当1a =,2b =-时,求()f x 的不动点;(2)若对于任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围.21. (本小题满分12分)已知函数()44(4)f x x x x =-+≥的反函数为1()fx -,数列{}n a 满足:11a =,()11n n a f a -+=,*n N ∈,数列121321,,,,n n b b b b b b b ----是首项为1,公比为13的等比数列.(1)求证:数列{}na 为等差数列;(2)求数列{}n b 的通项公式;(3)若n n n c b a =,求数列{}n c 的前n 项和n S .数学试题参考答案2010.4.8一.选择题:ABACD BDCCD二.填空题:11.4; 12.2; 13.2; 14. 2; 15.○3、○5 三.解答题: 文16、理16解:(1)()()()cot tan sin cos f x x x x x =+-- 1sin cos x x =+---------------------6分 (2)()22sin cos 1sin cos x x f x x x =++2tan 1tan 1xx =++2271215=+=+---------------------13分 文17、理17 解:(1)0,22ππαβπ<<<<322παβπ∴<+< 又3sin()5αβ+=,5cos 13β=- 4cos()5αβ∴+=-,12sin 13β=---------------------7分 (2)由(1)可知:()()sin()sinααββ=+-354123351351365⎛⎫⎛⎫=⨯---⨯= ⎪ ⎪⎝⎭⎝⎭---------------------13分 文18解:(1)由77S =,1575S =得()17772a a +⨯=,()11515752a a +⨯= 41a =,85a =---------------------6分 (2)由(1)知:8451144a a d --=== ()()441413n a a n d n n ∴=+-=+-⨯=- 12a ∴=-()()1223152222n n a a n n n S n n +-+-∴===----------------------13分文19、理18解:(1)0θ=时,()sin cos 2sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭又由322242k x k πππππ+≤+≤+,得 52244k x k ππππ+≤≤+ ∴()f x 的单调递减区间为52,244k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈---------------------6分 (2)()2sin 4f x x πθ⎛⎫=++ ⎪⎝⎭,又若()f x 为奇函数,则(0)0f =sin 04πθ⎛⎫∴+= ⎪⎝⎭又0θπ<<,从而5444ππθπ<+< 4πθπ∴+=即34θπ∴=---------------------12分(理科13分) 文20、理19 解:(1)1cos 21cos 2()sin 2322x xf x x -+=++⨯ sin 2cos 22x x =++2sin 224x π⎛⎫=++ ⎪⎝⎭∴函数()f x 的最小正周期22T ππ==---------------------6分 (2)由(1)知:()2sin 224f x x π⎛⎫=++ ⎪⎝⎭又 0,2x π⎡⎤∈⎢⎥⎣⎦,则 52,444x πππ⎡⎤+∈⎢⎥⎣⎦ 所以 当242x ππ+=,即 8x π=时,()max 22f x =+当5244x ππ+=,即 2x π=时,()min 1f x = 所以,()f x 的值域为1,22⎡⎤+⎣⎦---------------------12分文21、理20解:(1)当1a =,2b =-时,2()3f x x x =--从而00()f x x =可化为20003x x x --=即01x =-或3所以()f x 的不动点为1-或3---------------------4分 (2)由00()f x x =可化为20010ax bx b ++-=函数()f x 恒有两个相异的不动点∴关于0x 的方程20010ax bx b ++-=恒有两不等实根从而0a ≠且()2410b a b ∆=-->对任意实数b 都成立---------------------8分即关于b 的不等式2440b ab a -+>恒成立216160a a ∴∆=-<即01a <<---------------------12分 理21(1)证明:()2()442f x x x x =-+=-由4x ≥,得()0f x ≥ 所以()21()2f x x -=+所以()211()2n n n a f a a -+==+即:12n n a a +=+故数列{}na 是以11a =为首项,2为公差的等差数列---------------------4分(2)由题意知,11b =,1113n n n b b --⎛⎫-= ⎪⎝⎭所以121321()()()n n n b b b b b b b b -=+-+-++-21111311133323n n -⎛⎫⎛⎫⎛⎫=++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以数列{}n b 的通项公式为31123n n b ⎛⎫=- ⎪⎝⎭---------------------8分 (3)由(1)得:()12121n a n n =+-=-,即:()221n a n =-由(2)得:31123n n b ⎛⎫=- ⎪⎝⎭所以()3121123n n n n c b a n ⎛⎫==-- ⎪⎝⎭12n n S c c c =+++()233135211352123333nn n ⎡-⎤⎛⎫=++++--++++⎪⎢⎥⎝⎭⎣⎦------------------10分 令23135213333n n n T -=++++ 则234111352321333333n n n n n T +--=+++++ 得:23412111112123333333n n n n T +-⎛⎫=+++++- ⎪⎝⎭ 111112113333n n n -+-⎛⎫=+-- ⎪⎝⎭ 所以113n nn T +=- 又()213521n n ++++-=所以231123n n n S n +⎛⎫=-+ ⎪⎝⎭---------------------12分。