2011年 湖南省高考数学试卷(理科)
- 格式:doc
- 大小:104.50 KB
- 文档页数:5
2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。
参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==-2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 3.设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+C .942π+D .3618π+由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关”5.设双曲线221(0)x y a -=>的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .1 6. 由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( )A .12 B .1 C.2D7. 设1m >,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A .1 B .12 CD二填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。
2011年普通高等学校招生全国统一考试(湖南卷)数 学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。
参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则 A .1,1a b == B .1,1a b =-= C .1,1a b =-=- D .1,1a b ==-2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 3.设图一是某几何体的三视图,则该几何体的体积为A .9122π+B .9182π+C .942π+D .3618π+由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯参照附表,得到的正确结论是A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关”5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1 6. 由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为A .12B .1 CD7. 设1m >,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为A.(1,1+ B.(1)++∞ C .(1,3) D .(3,)+∞ 答案:A8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为A .1B .12C.2 D.2二填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。
2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B .1,1a b =-= C.1,1a b =-=- D.1,1a b ==- 答案:D2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( ) A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件答案:A解析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。
3.设图一是某几何体的三视图,则该几何体的体积为( ) A.9122π+ B.9182π+ C.942π+ D .3618π+ 答案:B解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
:由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别有关”答案:C解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选C. 5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A .4 B.3 C.2 D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a =±,故可知2a =。
2011年湖南高考理科数学试题详细解析理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii +-的共轭复数是 (A )35i - (B )35i (C )i - (D )i【解析】212i i+-=(2)(12),5i i i ++=共轭复数为i -,故选C (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2xy -=【解析】由偶函数排除A,由在+∞(0,)单调递增,排除C ,D,故选B(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040【解析】由程序框图知,k=1,p=1;k=2,p=2;k=3,p=6;k=4,p=24;k=5,p=120;k=6,p=720.故选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=,故选A (5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35 (D )45【解析】由已知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为【解析】由题设知该几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
2011年普通高等学校招生全国统一考试数学理试题(湖南卷,解析版)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。
参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 答案:D解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。
2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 答案:A解析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。
3.设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+ B .9182π+ C .942π+ D .3618π+答案:B解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:正视图侧视图俯视图 图1由22()()()()()n ad bcKa b c d a c b d-=++++算得22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别有关”答案:C解析:由27.8 6.635K≈>,而2( 6.635)0.010P K≥=,故由独立性检验的意义可知选C.5.设双曲线2221(0)9x yaa-=>的渐近线方程为320x y±=,则a的值为()A.4 B.3 C.2 D.1答案:C解析:由双曲线方程可知渐近线方程为3y xa=±,故可知2a=。
2011年湖南高考数学(理工农医类)试卷本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分.参考公式:(1)()()()P AB P B A P A =,其中A ,B 为两个事件,且P (A )>0.(2)柱体体积公式V=Sh ,其中S 为底面面积,h 为高.(3)球的体积公式343V R π=,其中R 为求的半径.一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若a ,b ∈R ,i 为虚数单位,且(a +i )i=b+i ,则( )A .a =1,b =1B .a =-1,b =1C .a =-1,b =-1D .a =1,b =-1 2.设M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.某几何体的三视图如图所示,则该几何体的体积为( )A .9122π+B .9182π+ C .942π+ D .3618π+4.通过随机询问110名性别不同的大学生是否爱好某项运动,由2()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关”5.设双曲线2221(0)9x y a a -=>的渐近线方程为3x ±2y =0,则a 的值为( )A .4B .3C .2D .16.由直线,,033x x y ππ=-==与曲线y =cos x 所围成的封闭图形的面积为( )A .12B .1CD 正视图 侧视图7.设m>1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,+∞) 8.设直线x=t 与函数f (x )=x 2, g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1B .12 C.2 D.2二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。
2011年普通高等学校招生全国统一考试数学理试题(湖南卷,解析版)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。
参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 答案:D解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。
2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 答案:A解析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。
3.设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+C .942π+D .3618π+答案:B解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:正视图侧视图俯视图 图1由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关” 答案:C解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选C.5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a的值为( ) A .4 B .3 C.2 D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。
2011年全国高考理科数学试题-湖南卷1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A. 1,1a b ==B. 1,1a b =-=C. 1,1a b =-=-D. 1,1a b ==- 答案:D分析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-.2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分又不必要条件 答案:A分析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”.3.设图1是某几何体的三视图,则该几何体的体积为( )A.9122π+ B. 9182π+C. 942π+D. 3618π+ 答案:B分析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积3439()33218322V ππ=+⨯⨯=+.4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯. 附表:参照附表,得到的正确结论是( )A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C. 有99%以上的把握认为“爱好该项运动与性别有关”D. 有99%以上的把握认为“爱好该项运动与性别无关” 答案:C分析:由3K 7.8 6.635≈>,而3(6.35)0.10P K ≥=,故由独立性检验的意义可知选C .5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A. 4 B. 3 C. 2 D. 1 答案:C分析:依题意知,双曲线的渐近线为,3y x a=±,故可知2a =.6.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( )A.12B. 1C.D. 答案:D分析:由定积分知识可得3333cos sin |(22S xdx x ππππ--===--=⎰D .7.设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A. (1,1B. (1)+∞C. (1,3)D. (3,)+∞ 答案:A分析:画出可行域如图所示,可知5z x y =+在点1(,)11mm m++取最大值,由21211m m m+<++,解得11m <<.8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A. 1B. 12C.D. 2答案:D分析:由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1()2h x x x'=-,令()0h x '=解得2x =,因(0,)2x ∈时,()0h x '<,当(,)2x ∈+∞时,()0h x '>,所以当x =时,||MN 达到最小,即t =9.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,1sin x y αα=⎧⎨=+⎩(α为参数)在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为_____. 答案:2分析:曲线221:(1)1C x y +-=,2:10C x y -+=,由圆心到直线的距离01d ==<,故1C 与2C 的交点个数为2.10.设,x y R ∈,则222211()(4)x y y x++的最小值为_____. 答案:9分析:由柯西不等式可知2222211()(4)(12)9x y y x++≥+=.11.如图,,A E 是半圆周上的两个三等分点,直径4BC =,AD BC ⊥,垂足为D ,BE 与AD 相交与点F ,则AF 的长为_____.分析:由题可知,60AOB EOC ︒∠=∠=,2OA OB ==,得1OD B D ==,DF =,又23AD BD CD =⋅=,所以AF AD DF =-=12.设n S 是等差数列*{}()n a n N ∈的前n 项和,且141,7a a ==,则9S =_____. 答案:25分析:∵数列{}n a 为等差数列, ∴1(1)n a a n d =+-,1(1)2n n n S na d -=+, ∵141,7a a ==,∴41(41)7a d =+-=,∴2d =,99(91)912812S ⨯-∴=⨯+⨯=. 故答案为:81 .13.若执行如图所示的框图,输入1231,2,3,2x x x x ====,则输出的数等于_____.答案:23分析:由框图的算法功能可知,输出的数为三个数的方差,则222(12)(22)(32)233S -+-+-==.14.在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则AD BE ⋅=_______ . 答案:14-分析:由题12AD CD CA CB CA =-=-,13BE CE CB CA CB =-=-, 所以111171()()232364AD BE CB CA CA CB CB CA ⋅=-⋅-=--+⋅=-.15.如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1) ()P A =_____;(2) (|)=P B A _____.答案:见解析分析:(1)由几何概型概率计算公式可得;(2)由条件概率的计算公式可得21()14(|)===2()4P AB P B A P A ππ⨯.16.对于*n N ∈,将n 表示为1210012122222k k k k k n a a a a a ---=⨯+⨯+⨯++⨯+⨯,当0i =时,1i a =,当1i k ≤≤时,i a 为0或1,记()I n 为上述表示中i a 为0的个数,(例如0112=⨯,2104120202=⨯+⨯+⨯:故(1)0,(4)2I I ==)则 (1)(12)I =_____ ;(2)127()12I n n ==∑_____.答案:(1)2 ;(2)1093分析:(1)因32101212+120202=⨯⨯+⨯+⨯,故(12)2I =;(2)在2进制的(2)k k ≥位数中,没有0的有1个,有1个0的有11k C -个,有2个0的有21k C -个,……有m 个0的有1mk C -个,……有1k -个0的有111k k C --=个. 故对所有2进制为k 位数的数n ,在所求式中的()2I n 的和为:01122111111122223k k k k k k C C C ------⋅+⋅+⋅++⋅=. 又712721=-恰为2进制的最大7位数,所以1277()1122231093I n k n k -===+=∑∑.。
2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的.1.若,a b ∈R ,i 为虚数单位,且(i)i i a b +=+,则 ( ) A .1,1a b == B .1,1a b =-= C .1,1a b =-=- D .1,1a b ==-【测量目标】复数的四则运算.【考查方式】利用复数相等的条件直接求值. 【难易程度】容易 【参考答案】D【试题解析】因(i)i 1i i a a b +=-+=+,根据复数相等的条件可知1,1a b ==-. 2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【测量目标】集合间的关系,充分必要条件. 【考查方式】给出两个集合直接考查. 【难易程度】容易 【参考答案】A【试题解析】因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”.3.如图一是某几何体的三视图,则该几何体的体积为 ( )第3题图A .9π122+ B .9π182+ C .9π42+ D .36π18+【测量目标】由三视图求几何体的体积.【考查方式】给出三视图,通过判断直接求体积. 【难易程度】容易 【参考答案】B【试题解析】由三视图可知该几何体是一个长方体和球构成的组合体, 其体积3439π()332π+18322V =+⨯⨯=. 4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计爱好40 20 60 不爱好20 30 50 总计60 50 110由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:2()P K k … 0.0500.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是 ( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关” 【测量目标】独立性检验.【考查方式】给出统计图表直接考查. 【难易程度】容易 【参考答案】C【试题解析】由27.8 6.635,K ≈>而2( 6.635)0.010P K =…,故由独立性检验的意义可知选C.5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 ( )A .4B .3C .2D .1【测量目标】双曲线的简单几何性质.【考查方式】由双曲线方程直接求出渐近线方程,再结合给出的渐近线方程比较求解. 【难易程度】容易 【参考答案】C【试题解析】:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =. 6. 由直线ππ,,033x x y =-==与曲线cos y x =所围成的封闭图形的面积为( ) A .12 B .1 C.2D【测量目标】定积分的几何意义.【考查方式】直接给出曲线和直线方程求面积. 【难易程度】容易 【参考答案】D【试题解析】由定积分知识可得ππ33ππ33cosd sin |(22S x x --===-=⎰7. 设1m >,在约束条件1y xy mx x y ⎧⎪⎨⎪+⎩………下,目标函数z x my =+的最大值小于2,则m 的取值范围为 ( ) A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞ 【测量目标】线性规划求最值.【考查方式】给出约束条件和目标函数的范围求目标函数y 轴系数的值. 【难易程度】容易 【参考答案】A【试题解析】可知z x my =+在点1(,)11m m m++取最大值,由 21211m m m+<++解得11m <<. 8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为 ( )A .1B .12C .2D .2【测量目标】利用导数判断单调性求最值.【考查方式】利用直线与曲线相交,求相交直线方程再运用导数性质求解. 【难易程度】容易 【参考答案】D【试题解析】由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1()2h x x x'=-,令()0h x '=解得2x =,因(0,)2x ∈时,()0h x '<,当()2x ∈+∞时,()0h x '>,所以当2x =时,||MN 达到最小,即2t =.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上.一、选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题记分) 9.在直角坐标系xOy 中,曲线C 1的参数方程为cos ,1sin x y αα=⎧⎨=+⎩(α为参数)在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 . 【测量目标】坐标系与参数方程.【考查方式】给出极坐标方程与参数方程,将其转化为普通方程后解不等式求解. 【难易程度】容易【参考答案】2【试题解析】曲线221:(1)1C x y +-=,2:10C x y -+=,由圆心到直线的距离01d ==<,故1C 与2C 的交点个数为2. 10.设,x y ∈R ,则222211()(4)x y y x++的最小值为 . 【测量目标】不等式选讲.【考查方式】给出两个乘式直接考查. 【难易程度】中等 【参考答案】9【试题解析】由柯西不等式可知2222211()(4)(12)9x y y x+++=…. 11.如图,,A E 是半圆周上的两个三等分点,直径4BC =,AD BC ⊥,垂足为D , BE 与AD 相交与点F ,则AF 的长为 .第11题图【测量目标】几何证明选讲.【考查方式】通过线段和圆的位置关系考查. 【难易程度】容易【参考答案】3【试题解析】由题可知,60AOB EOC ∠=∠=,2OA OB ==,得1OD BD ==,3DF =,又23AD BD CD ==,所以3AF AD DF =-=. 二、必做题(12~16题)12.设n S 是等差数列*{}()n a n ∈N 的前n 项和,且141,7a a ==,则5______S = 【测量目标】等差数列的前n 项和.【考查方式】给出等差数列某两项的值求出通项再求和. 【难易程度】容易 【参考答案】25【试题解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 13.若执行如图所示的框图,输入1231,2,3,2x x x x ====, 则输出的数等于 .第13 题图【测量目标】循环结构的程序框图. 【考查方式】直接给出程序框图考查. 【难易程度】中等 【参考答案】23【试题解析】由框图的算法功能可知,输出的数为三个数的方差,则222(12)(22)(32)233S -+-+-==. 14.在边长为1的正三角形ABC 中,设2,3BC BD CA CE == ,则________AD BE =.【测量目标】平面向量在平面几何中的运用. 【考查方式】给出向量间的关系求解. 【难易程度】容易 【参考答案】14-【试题解析】由题12AD CD CA CB CA =-=- ,13BE CE CB CA CB =-=-,所以111171()()232364AD BE CB CA CA CB CB CA =--=--+=-. 15.如图, EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)=______P A ();(2)=______P B A (|)第15题图【测量目标】几何概型.【考查方式】利用两个图形面积的比值求解. 【难易程度】容易 【参考答案】(1)2π;(2)1=4PB A (|) 【试题解析】(1)由几何概型概率计算公式可得2==πS P A S 正圆(); (2)由条件概率的计算公式可得21×1π4===24πP AB P B A P A ()(|)().16.对于*n ∈N ,将n 表示为1210012122222k k k k k n a a a a a ---=⨯+⨯+⨯++⨯+⨯ ,当0i =时,1i a =,当1i k 剟时,i a 为0或1.记()I n 为上述表示中i a 为0的个数,(例如0112=⨯,2104120202=⨯+⨯+⨯:故(1)0,(4)2I I ==)则(1)(12)_____I = (2)127()12______I n n ==∑【测量目标】排列组合及其应用. 【考查方式】利用特定的条件求解. 【难易程度】较难 【参考答案】(1)2;(2)1093【试题解析】(1)因3211212+120202=⨯⨯+⨯+⨯,故(12)2I =;(2)在2进制的(2)k k …位数中,没有0的有1个,有1个0的有11C k -个,有2个0的有21C k -个,……有m 个0的有1C m k -个,……有1k -个0的有11C 1k k --=个.故对所有2进制为k 位数的数n ,在所求式中的()2I n 的和为:0112211111112C 2C 2C 23k k k k k k ------⨯++++=. 又712721=-恰为2进制的最大7位数,所以1277()1122231093I n k n k -===+=∑∑.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =.(I )求角C 的大小;(II πcos()4A B -+的最大值,并求取得最大值时角,A B 的大小. 【测量目标】正弦定理,三角函数的最值. 【考查方式】给出边角之间的关系求解. 【难易程度】容易 【试题解析】(I )由正弦定理得sin sin sin cos .C A A C = 因为0π,A <<所以sin 0.A >πsin cos .cos 0,tan 1,4C C C C C =≠==从而又所以则.(步骤1) (II )由(I )知3π.4B A =-于是 πcos()cos(π)4A B A A -+=--πcos 2sin().6A A A =+=+3πππ11ππππ0,<+<,=,,46612623A A A A <<∴+= 从而当即时π2sin()6A +取最大值2.(步骤2)πcos()4A B -+的最大值为2,此时π5π,.312A B ==(步骤3) 18. 某商店试销某种商品20天,获得如下数据:当天营业结束后检查存货,若发现存货少于2件,则当天进货补充..至3件,否则不进货...,将频率视为概率.(Ⅰ)求当天商品不进货...的概率; (Ⅱ)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 【测量目标】对立事件的概率,离散型随机变量的期望. 【考查方式】运用实际生活背景考查.【难易程度】容易 【试题解析】(I )P (“当天商店不进货”)=P (“当天商品销售量为0件”)+P (“当天商品销售量1件”)=153202010+=.(步骤1) (II )由题意知,X 的可能取值为2,3.51(2)()204P X P ====“当天商品销售量为1件”; (3)()+()+(1953)++32020204P X P P P ====“当天商品销售量为0件”“当天商品销售量为2件”“当天商品销售量为3件”(步骤)故X 的分布列为X2 3 P 14 34 X 的数学期望为13112+3=444EX =⨯⨯.(步骤4)19.(本题满分12分)如图,在圆锥PO 中,已知PO O = 的直径2,,A B C A B D A C=是的中点,为的中点. (I )证明:;POD PAC ⊥平面平面 (II )求二面角B PA C --的余弦值.第18题图【测量目标】面面垂直,二面角.【考查方式】在圆锥中考查. 【难易程度】容易 【试题解析】(I )连接OC , 因为OA OC =,D 为AC 中点,所以AC OD ⊥. 又,,.PO O AC O AC PO ⊥⊂⊥ 底面底面所以因为,OD PO 是平面POD 内的两条相交直线,所以AC POD ⊥平面而AC PAC ⊂平面,所以POD PAC ⊥平面平面.(步骤1)(II )在平面POD 中,过O 作OH PD ⊥于H ,由(I )知,POD PAC ⊥平面平面,所以,OH PAC ⊥平面又,PA PAC ⊂平面所以PA OH ⊥.在平面PAO 中,过O 作OG PA G ⊥于,连接HG ,则有PA OGH ⊥平面, 从而PA HG ⊥,所以OGH ∠是二面角B PA C --的平面角.(步骤2)在Rt ,sin 452ODA OD OA ==△中在Rt ,POD OH ===△中在Rt ,POA OG ===△中在Rt ,sin OH OHG OGH OG ∠===△中所以cos 5OGH ∠=. 故二面角B PA C --的余弦值为5.(步骤3)第19题图20. 如图,长方形物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为(0)v v >,雨速沿E 移动方向的分速度为()c c ∈R .E 移动时单位时间....内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与v c -×S 成正比,比例系数为110;(2)其它面的淋雨量之和,其值为12,记y 为E 移动过程中的总淋雨量,当移动距离d =100,面积S =32时. (Ⅰ)写出y 的表达式;(Ⅱ)设0<v …10,0<c …5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.第19题图【测量目标】分段函数模型,利用函数单调性及最值. 【考查方式】利用将立体几何与函数综合考查. 【难易程度】中等【试题解析】(I )由题意知,E 移动时单位时间内的淋雨量为31||202v c -+, 故100315(||)(3||10)202y v c v c v v=-+=-+.(步骤1) (II )由(I)知,当0v c <…时,55(310)(3310)15c y c v v v+=-+=-; 当10c v <…时,55(103)(3310)15c y v c v v-=-+=+. 故5(310)15,05(103)15,10c v c vy c c v v +⎧-<⎪⎪=⎨-⎪+<⎪⎩…….(步骤2)(1)当1003c <…时,y 是关于v 的减函数.故当10v =时,min 3202cy =-.(步骤3) (2) 当1053c <…时,在(0,]c 上,y 是关于v 的减函数;在(,10]c 上,y 是关于v 的增函数;故当v c =时,min 50y c=.(步骤4) 21.(本小题满分13分) 如图,椭圆221221(0)x y C a b a b +=>>:,x轴被曲线22:C y x b =- 截得的线段长等于1C 的长半轴长.(Ⅰ)求1C ,2C 的方程;(Ⅱ)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA ,MB 分别与1C 相交于D ,E .(i )证明:MD ME ⊥;(ii)记△MAB ,△MDE 的面积分别是12,S S .问:是否存在直线l ,使得121732S S =? 请说明理由.第21题图【测量目标】椭圆的标准方程,直线与椭圆的位置关系. 【考查方式】利用直线与椭圆相交的位置关系和条件考查. 【难易程度】较难【试题解析】(I)由题意知c e a ==2a b =,又a =,解得2,1a b ==.故1C ,2C 的方程分别为2221,14x y y x +==-. (步骤1) (II )(i )由题意知,直线l 的斜率存在,设为k , 则直线l 的方程为y kx =.由21y kx y x =⎧⎨=-⎩得210x kx --=,(步骤2) 设1122(,),(,)A x y B x y ,则12,x x 是上述方程的两个实根,于是1212,1x x k x x +==-. 又点M 的坐标为(0,1)-,所以2221212121212121211(1)(1)()1111MA MBy y kx kx k x x k x x k k k k x x x x x x +++++++-++=====--故MA MB ⊥,即MD ME ⊥.(步骤3)(ii )设直线MA 的斜率为1k ,则直线MA 的方程为11y k x =-,由1211y kx y x =-⎧⎨=-⎩解得01x y =⎧⎨=-⎩或1211x k y k =⎧⎨=-⎩,则点A 的坐标为211(,1)k k -(步骤4) 又直线MB 的斜率为11k -,同理可得点B 的坐标为21111(,1)k k --.于是211111111||||||||.22||k S MA MB k k k +==-= (步骤5)由1221440y k x x y =-⎧⎨+-=⎩得2211(14)80k x k x +-=,解得01x y =⎧⎨=-⎩或12121218144114k x k k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩,则点D 的坐标为2112211841(,)1414k k k k -++;(步骤6) 又直线ME 的斜率为11k -,同理可得点E 的坐标211221184(,)44k k k k --++ 于是2112221132(1)||1||||2(14)(4)k k S MD ME k k +==++ 因此21122111(417)64S k S k =++(步骤7) 由题意知,21211117(417)6432k k ++=,解得214k = 或2114k =. 又由点,A B 的坐标可知,21211111111k k k k k k k -==-+,所以3.2k =± 故满足条件的直线l 存在,且有两条,其方程分别为32y x =和32y x =-.(步骤8) 22.(本小题满分13分)已知函数f (x ) =3x ,g (x )=x(Ⅰ)求函数h (x )=f (x )-g (x )的零点个数,并说明理由;(Ⅱ)设数列*{}()n a n ∈N 满足1(0)a a a =>,1()()n n f a g a +=,证明:存在常数M ,使得对于任意的*n ∈N ,都有n a …M . 【测量目标】利用导数求单调性,不等式恒成立问题.【考查方式】给出两个函数式,利用导数及不等式求解.【难易程度】较难【试题解析】(I)由3()h x x x =-知,[0,)x ∈+∞,而(0)0h =,且(1)10,(2)60h h =-<=,则0x =为()h x 的一个零点,且()h x 在12(,)内有零点,因此()h x 至少有两个零点(步骤1) 122()(1)h x x x x -=--,记122()1x x x ϕ-=--,则321()22x x x ϕ-'=+. 当(0,)x ∈+∞时,()0x ϕ'>,因此()x ϕ在(0,)+∞上单调递增,则()x ϕ在(0,)+∞内至多只有一个零点.因此()h x 在(0,)+∞内也至多只有一个零点,综上所述,()h x 有且只有两个零点.(步骤2) (II )记()h x 的正零点为0x,即300x x =(1)当0a x <时,由1a a =,即10a x <.而332100a a x x ==,因此20a x <,由此猜测:0n a x <.下面用数学归纳法证明: ①当1n =时,10a x <显然成立;(步骤3) ②假设当(1)n k k =…时,有0k a x <成立,则当1n k =+时,由13300k k a a x x +=+<知,10k a x +<,因此,当1n k =+时,10k a x +<成立. 故对任意的*n ∈N ,0n a x <成立.(步骤4)(2)当0a x …时,由(1)知,()h x 在0(,)x +∞上单调递增.则0()()0h a h x =…,即3a a +….从而2331a a a a ==,即2a a …,由此猜测:n a a ….下面用数学归纳法证明:①当1n =时,1a a …显然成立;(步骤5) ②假设当(1)n k k =…时,有k a a …成立,则当1n k =+时,由133k k a a a a +=+知,1k a a +…,因此,当1n k =+时,1k a a +…成立.故对任意的*n ∈N ,n a a …成立. 综上所述,存在常数0max{,}M x a =,使得对于任意的*n ∈N ,都有n a M ….(步骤6)。
2011年湖南省高考数学试卷(理科)
一、选择题(共8小题,每小题5分,满分40分)
1.(5分)(2011•湖南)若a,b∈R,i为虚数单位,且(a+i)i=b+i则()
A.a=1,b=1 B.a=﹣1,b=1 C.a=﹣1,b=﹣1 D.a=1,b=﹣1
2.(5分)(2011•湖南)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
3.(5分)(2011•湖南)设如图是某几何体的三视图,则该几何体的体积为()
A.9π+42 B.36π+18 C.D.
4.(5分)(2011•湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如
由算得,
.
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
5.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的
值为()
A.4 B.3 C.2 D.1
6.(5分)(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的
面积为()
A.B.1 C.D.
7.(5分)(2011•湖南)设m>1,在约束条件下,目标函数z=x+my的最大值小
于2,则m的取值范围为()
A.(1,)B.(,+∞)C.(1,3)D.(3,+∞)
8.(5分)(2011•湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()
A.1 B.C.D.
二、填空题(共8小题,每小题5分,满分35分)
9.(5分)(2011•湖南)在直角坐标系xOy中,曲线C1的参数方程为(α为
参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ﹣sinθ)+1=0,则C1与C2的交点个数
为.
10.(5分)(2011•湖南)设x,y∈R,且xy≠0,则的最小值为.
11.(2011•湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为.
12.(5分)(2011•湖南)设S n是等差数列{a n}(n∈N*)的前n项和,且a1=1,a4=7,则
S9=.
13.(5分)(2011•湖南)若执行如图所示的框图,输入x1=1,x2=2,x3=3,=2,则输出的数等于.
14.(5分)(2011•湖南)在边长为1的正三角形ABC中,设,,则
=.
15.(5分)(2011•湖南)如图,EFGH 是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)=;
(2)P(B|A)=.
16.(5分)(2011•湖南)对于n∈N+,将n 表示n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+a k﹣1×21+a k×20,当i=0时,a i=1,当1≤i≤k时,a1为0或1.记I(n)为上述表示中a i为0的个数(例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0,I(4)=2),则
(1)I(12)=;(2)=.
三、解答题(共6小题,满分75分)
17.(12分)(2011•湖南)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;
(2)求sinA﹣cos(B+)的最大值,并求取得最大值时角A、B的大小.
当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.
19.(12分)(2011•湖南)如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是
的中点,D为AC的中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求二面角B﹣PA﹣C的余弦值.
20.(13分)(2011•湖南)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v﹣
c|×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时.
(Ⅰ)写出y的表达式
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.
21.(13分)(2011•湖南)如图,椭圆C1:=1(a>b>0)的离心率为,x轴被
曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由.
22.(13分)(2011•湖南)已知函数f(x)=x3,g (x)=x+.
(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;
(Ⅱ)设数列{ a n}(n∈N*)满足a1=a(a>0),f(a n+1)=g(a n),证明:存在常数M,使得对于任意的n∈N*,都有a n≤M.。