专题四能量和动量
- 格式:doc
- 大小:625.00 KB
- 文档页数:14
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
物理学中的动量与能量动量和能量是物理学中两个重要的概念,它们在描述物质运动和相互作用中扮演着关键的角色。
在本文中,我将对动量和能量进行详细论述,并探讨它们之间的关系。
一、动量动量是描述物体运动状态的物理量,用符号p表示。
动量的定义为物体的质量m与其速度v的乘积,即p=mv。
动量是一个矢量,它的方向与物体运动的方向相同。
所以,一个物体的动量不仅取决于它的质量,还取决于它的速度。
动量定理是描述物体受力作用下动量变化的定律。
根据动量定理,物体受到的净外力(即合力)的作用会改变物体的动量。
动量定理可以用公式表示为F=△p/△t,其中F为合力,△p为物体的动量变化,△t为时间间隔。
根据动量定理,当一个物体受到一个持续的力时,动量的改变量等于力对物体的作用时间。
因此,物体的动量可以通过改变它的质量、速度或受力时间来改变。
二、能量能量是物体或系统进行工作的能力或容纳的能力。
根据能量的形式和特性,可以将能量分为多种类型,包括机械能、热能、电能、化学能等。
在本文中,我们将重点讨论机械能。
机械能是指物体由于位置或运动而具有的能量。
它由势能和动能的总和构成。
势能是物体由于位置而具有的能量,可以分为重力势能、弹性势能等。
动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
根据能量守恒定律,孤立系统中的机械能保持不变。
这意味着在没有外力做功或热量交互的情况下,机械能总是保持恒定。
三、动量与能量的关系动量和能量之间存在着密切的联系。
在物体发生碰撞或相互作用时,动量和能量都会发生变化。
根据动能定理,物体的动能可以表示为K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。
根据动量定理,物体的动量可以表示为p=mv。
当物体发生碰撞时,动能可以转化为势能或其他形式的能量。
例如,当一个运动的球撞击到静止的球时,动能可以通过碰撞转化为弹性势能,导致静止球开始运动。
在一维弹性碰撞中,动量守恒定律成立,即碰撞前后物体总动量保持不变。
动量和能量观念在力学中的应用1.如图甲所示,质量m=6 kg的空木箱静止在水平面上,某同学用水平恒力F推着木箱向前运动,1 s 后撤掉推力,木箱运动的v .t图像如图乙所示,不计空气阻力,g取10 m/s2。
下列说法正确的是()A.木箱与水平面间的动摩擦因数μ=0。
25B.推力F的大小为20 NC.在0~3 s内,木箱克服摩擦力做功为900 JD.在0.5 s时,推力F的瞬时功率为450 W解析撤去推力后,木箱做匀减速直线运动,由速度—时间图线知,匀减速直线运动的加速度大小a2=错误! m/s2=5 m/s2,由牛顿第二定律得,a2=错误!=μg,解得木箱与水平面间的动摩擦因数μ=0.5,故A错误;匀加速直线运动的加速度大小a1=错误! m/s2=10 m/s2,由牛顿第二定律得,F-μmg=ma1,解得F=μmg+ma1=0。
5×60 N+6×10 N=90 N,故B错误;0~3 s内,木箱的位移x=错误!×3×10 m=15 m,则木箱克服摩擦力做功W f=μmgx=0。
5×60×15 J=450 J,故C错误;0。
5 s时木箱的速度v=a1t1=10×0。
5 m/s=5 m/s,则推力F的瞬时功率P=Fv=90×5 W=450 W,故D正确.答案D2.(2019·湖南株洲二模)如图,长为l的轻杆两端固定两个质量相等的小球甲和乙(小球可视为质点),初始时它们直立在光滑的水平地面上。
后由于受到微小扰动,系统从图示位置开始倾倒。
当小球甲刚要落地时,其速度大小为()A.错误!B.错误!C.错误!D.0解析甲、乙组成的系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得mv-mv′=0,由于甲球落地时,水平方向速度v=0,故v′=0,由机械能守恒定律得错误!mv错误!=mgl,解得v甲=2gl,故A正确.答案A3。
压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于动量和能量的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。
考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。
3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。
4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。
研究过程既可以是全过程,也可以是全过程中的某一阶段。
(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。
(3)规定正方向。
(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。
以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。
专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新、联系实际密切、综合性强,是高考的压轴题.应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决运动的多过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子的运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性地选择相应的规律和方法.第1课时几个重要功能关系的应用1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.(3)静电力做功一般利用W=qU来求,在匀强电场中也可以利用W=Eqs cos α求解.(4)洛伦兹力在任何情况下对运动的电荷都不做功;安培力可以做正功、负功,还可以不做功.(5)电流做功的实质是电场对移动电荷做功,即W=UIt=qU.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F·s相对.(6)电场力做功等于电势能的变化,即W AB=-ΔE p.(7)电流做功等于电能的变化,即ΔE=UIt.(8)安培力做功等于电能的变化,即W安=-ΔE电.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程始、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.3.动能定理和能量守恒定律在处理电学中能量问题时仍然是首选的方法.题型1力学中的几个重要功能关系的应用例1(双选)如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是()图1A.B物体的机械能先增大后减小B.B物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量解析把A、B和弹簧看做一个系统,该系统机械能守恒,在B下落直至B获得最大速度的过程中,A的动能增大,弹簧弹性势能增大,所以B物体的机械能一直减小,选项A错误;由动能定理知,B物体的动能的增加量等于它所受重力与拉力做的功之和,选项B正确;B物体机械能的减少量等于弹簧的弹性势能的增加量与A物体动能的增加量之和,选项C错误;对A物体和弹簧组成的系统,由功能关系得,细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量,选项D正确.答案BD以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.(双选)(2013·山东·16)如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图2A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功答案CD解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,M和m组成的系统机械能减小,减小的机械能等于M克服摩擦力所做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.题型2几个重要的功能关系在电学中的应用例2(双选)如图3所示,在竖直平面内有一匀强电场,其方向与水平方向成α=30°斜向上,在电场中有一质量为m、电量为q的带电小球,用长为L的不可伸长的绝缘细线挂于O点,当小球静止于M点时,细线恰好水平.现用外力将小球拉到最低点P,然后无初速度释放,则以下判断正确的是()图3A.小球再次到达M点时,速度刚好为零B.小球从P到M过程中,合外力对它做了3mgL的功C.小球从P到M过程中,小球的机械能增加了3mgLD.如果小球运动到M点时,细线突然断裂,小球以后将做匀变速曲线运动审题突破小球静止在M时,受几个力的作用?重力和电场力的大小关系是什么?小球由P到M的过程中,各力做功是多少?解析小球从P到M的过程中,线的拉力不做功,只有电场力和小球重力做功,它们的合力也是恒力,大小为3mg,方向水平向右,所以小球再次到达M点时,速度最大,而不是零,选项A错.小球从P到M过程中,电场力与重力的合力大小为3mg,这个方向上位移为L,所以做功为3mgL,选项B正确.小球从P到M过程中,机械能的增加量等于电场力做的功,由于电场力为2mg,由P到M沿电场线方向的距离为d=L sin 30°+L cos 30°=L2(1+3),故电场力做功为2mg·d=mgL(1+3),故选项C错误.如果小球运动到M点时,细线突然断裂,小球的速度方向竖直向上,所受合外力水平向右,小球将做匀变速曲线运动,选项D正确.答案BD以题说法在解决电学中功能关系问题时应注意以下几点:(1)洛伦兹力在任何情况下都不做功;(2)电场力做功与路径无关,电场力做的功等于电势能的变化;(3)力学中的几个功能关系在电学中仍然成立.(单选)如图4所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,一质量为m的带正电小球在外力F的作用下静止于图示位置,小球与弹簧不连接,弹簧处于压缩状态.现撤去F,小球从静止开始运动到离开弹簧的过程中,重力、电场力、弹簧弹力对小球做的功分别为W1、W2和W3,不计空气阻力,则上述过程中()图4A .小球与弹簧组成的系统机械能守恒B .小球重力势能的变化为W 1C .小球动能的变化为W 1+W 2+W 3D .小球机械能的变化为W 1+W 2+W 3 答案 C解析 由于电场力做功,小球与弹簧组成的系统机械能不守恒,选项A 错误.重力对小球做的功为W 1,小球重力势能的变化为-W 1,选项B 错误.由动能定理可知,小球动能的变化为W 1+W 2+W 3,选项C 正确.由功能关系可知,小球机械能的变化为W 2,选项D 错误.题型3 动力学方法和动能定理的综合应用图5例3 (15分)如图5所示,上表面光滑、长度为3 m 、质量M =10 kg 的木板,在F =50 N 的水平拉力作用下,以v 0=5 m/s 的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg 的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L =1 m 时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m 就在其最右端无初速度地放上一个同样的小铁块.(g 取10 m/s 2)求: (1)木板与地面间的动摩擦因数; (2)刚放第三个小铁块时木板的速度;(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.审题突破 木板在F =50 N 的水平拉力作用下,沿水平地面匀速运动,隐含什么条件?放上小铁块后木板的受力如何变化?解析 (1)木板做匀速直线运动时,受到地面的摩擦力设为f 由平衡条件得: F =f①(1分) 又f =μMg ②(2分) 联立①②并代入数据得:μ=0.5③(1分)(2)每放一个小铁块,木板所受的摩擦力增加μmg设刚放第三个小铁块时木板的速度为v 1,对木板从放第一个小铁块到刚放第三个小铁块的过程,由动能定理得:-μmgL -2μmgL =12M v 21-12M v 2④(5分)联立③④并代入数据得: v 1=4 m/s⑤(1分)(3)从放第三个小铁块开始到木板停止之前,木板所受的合外力大小均为3μmg .从放第三个小铁块开始到木板停止的过程,设木板运动的距离为s ,对木板由动能定理得:-3μmgs =0-12M v 21⑥(4分) 联立③⑤⑥并代入数据得s =169m ≈1.78 m⑦(1分)答案 (1)0.5 (2)4 m/s (3)1.78 m以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg .2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.如图6所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.图6(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 点的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间t .答案 (1)0.375 (2)2 3 m/s (3)0.2 s解析 (1)滑块从A 点到D 点的过程中,根据动能定理有mg ·(2R -R )-μmg cos 37°·2Rsin 37°=0-0解得:μ=12tan 37°=0.375(2)若使滑块能到达C 点,根据牛顿第二定律有mg +F N =m v 2CR由F N ≥0得v C ≥Rg =2 m/s滑块从A 点到C 点的过程中,根据动能定理有-μmg cos 37°·2R sin 37°=12m v 2C -12m v 20 则v 0=v 2C +4μgR cot 37°≥2 3 m/s 故v 0的最小值为2 3 m/s(3)滑块离开C 点后做平抛运动,有x =v C ′t ,y =12gt 2由几何知识得tan 37°=2R -yx整理得:5t 2+3t -0.8=0 解得t =0.2 s(t =-0.8 s 舍去)题型4 应用动能定理分析带电体在电场中的运动例4 如图7所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:图7(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.审题突破 带电粒子在水平匀强电场中做什么运动?速度与电场方向成30°角,隐含条件是什么?解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C =1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V . 答案 (1)104 m/s (2)1.732×103 N/C (3)400 V以题说法 1.电场力做功与重力做功的特点类似,都与路径无关.2.对于电场力做功或电势差的计算,选用动能定理往往最简便快捷,但运用动能定理时要特别注意运动过程的选取.如图8所示,在光滑绝缘水平面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B .A 球的带电量为+2q ,B 球的带电量为-3q ,两球组成一带电系统.虚线MN 与PQ 平行且相距3L ,开始时A 和B 分别静止于虚线MN 的两侧,虚线MN 恰为AB 两球连线的垂直平分线.若视小球为质点,不计轻杆的质量,在虚线MN 、PQ 间加上水平向右的电场强度为E 的匀强电场后,系统开始运动.试求:图8(1)B 球刚进入电场时,带电系统的速度大小;(2)带电系统向右运动的最大距离和此过程中B 球电势能的变化量; (3)A 球从开始运动至刚离开电场所用的时间.答案 (1) 2qEL m (2)73L 4qEL (3)(32-2)mLqE解析 (1)设B 球刚进入电场时带电系统的速度为v 1,由动能定理得2qEL =12×2m v 21 解得:v 1= 2qELm(2)带电系统向右运动分为三段:B 球进入电场前、带电系统在电场中、A 球出电场后. 设A 球出电场后移动的最大位移为s ,对于全过程,由动能定理得 2qEL -qEL -3qEs =0解得s =L3,则B 球移动的总位移为s B =73LB 球从刚进入电场到带电系统从开始运动到速度第一次为零时的位移为43L其电势能的变化量为ΔE p =-W =3qE ·43L =4qEL(3)取向右为正方向,B 球进入电场前,带电系统做匀加速运动:a 1=2qE 2m =qE m ,t 1=v 1a 1= 2mLqE带电系统在电场中时,做匀减速运动:a 2=-qE 2m设A 球刚出电场时速度为v 2,由动能定理得:-qEL =12×2m (v 22-v 21) 解得:v 2= qELmt 2=v 2-v 1a 2=2(2-1) mL qE解得总时间t =t 1+t 2=(32-2) mLqE6.综合应用动力学和能量观点分析多过程问题审题示例(12分)如图9所示,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量为m 的小球从A 点左上方距A 点高为h 的斜面上方P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度为g ,取R =509h ,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图9(1)小球被抛出时的速度v 0;(2)小球到达半圆轨道最低点B 时,对轨道的压力大小; (3)小球从C 到D 过程中摩擦力做的功W f . 审题模板答题模板(1)小球到达A 点时,速度与水平方向的夹角为θ,如图所示. 则有v 21=2gh① 由几何关系得v 0=v 1cot θ② 联立①②式得v 0=432gh③ (2)A 、B 间竖直高度H =R (1+cos θ)④设小球到达B 点时的速度为v ,则从抛出点到B 过程中由机械能守恒定律得 12m v 20+mg (H +h )=12m v 2⑤ 在B 点,根据牛顿第二定律有F N -mg =m v 2R ⑥联立③④⑤⑥式 解得F N =5.6mg ⑦由牛顿第三定律知,小球在B 点对轨道的压力大小是5.6mg ⑧(3)全过程应用动能定理:W f =0-12m v 20即W f =-12m v 20=-169mgh ⑨(评分标准:本题共12分,其中,⑤式2分,⑨式3分,其余每式1分)答案 (1)432gh (2)5.6mg (3)-169mgh点睛之笔 多个运动的组合实际上是多种物理规律和方法的综合应用,分析这种问题时注意要各个运动过程独立分析,而不同过程往往通过连接点的速度建立联系;有时对整个过程应用能量的观点解决问题会更简单.如图10,竖直平面坐标系xOy 的第一象限,有垂直xOy 面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B 和E ;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E ;第三象限内有一绝缘光滑竖直放置的半径为R 的半圆轨道,轨道最高点与坐标原点O 相切,最低点与绝缘光滑水平面相切于N .一质量为m 的带电小球从y 轴上(y >0)的P 点沿x 轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O ,且水平切入半圆轨道并沿轨道内侧运动,过N 点水平进入第四象限,并在电场中运动(已知重力加速度为g ).图10(1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2R /g 小球距坐标原点O 的距离s 为多远?答案 (1)正电 mg E (2)2E B Rg(3)27R解析 (1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,设小球所带电荷量为q ,则有 qE =mg① 解得:q =mgE②又电场方向竖直向上,故小球带正电.(2)设小球做匀速圆周运动的速度为v 、轨道半径为r ,由洛伦兹力提供向心力得: qB v =m v 2/r③ 小球恰能通过半圆轨道的最高点并沿轨道运动,则应满足: mg =m v 2/R④ 由②③④得:r =EBR g⑤ 即PO 的最小距离为:y =2r =2EBR g⑥(3)小球由O 运动到N 的过程中设到达N 点的速度为v N ,由机械能守恒定律得:mg ·2R =12m v 2N -12m v 2⑦ 由④⑦解得:v N =5gR ⑧ 小球从N 点进入电场区域后,在绝缘光滑水平面上做类平抛运动,设加速度为a ,则有:沿x 轴方向有:x =v N t⑨ 沿电场方向有:z =12at 2⑩由牛顿第二定律得:a =qE /m ⑪t 时刻小球距O 点为:s =x 2+z 2+(2R )2=27R(限时:45分钟)一、单项选择题1.(2013·安徽·17)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝⎛⎭⎫1R 2-1R 1 B .GMm ⎝⎛⎭⎫1R 1-1R 2C.GMm 2⎝⎛⎭⎫1R 2-1R 1D.GMm 2⎝⎛⎭⎫1R 1-1R 2 答案 C解析 由万有引力提供向心力知G Mm r 2=m v 2r ,所以卫星的动能为12m v 2=GMm2r,则卫星在半经为r 的轨道上运行时机械能为E =12m v 2+E p =GMm 2r -GMm r =-GMm2r.故卫星在轨道R 1上运行时:E 1=-GMm 2R 1,在轨道R 2上运行时:E 2=-GMm2R 2,由能的转化和守恒定律得产生的热量为Q =E 1-E 2=GMm 2⎝⎛⎭⎫1R 2-1R 1,故正确选项为C. 2.(2013·新课标Ⅰ·16)一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方d2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开始下落的相同粒子将 ( )A .打到下极板上B .在下极板处返回C .在距上极板d2处返回D .在距上极板25d 处返回答案 D解析 粒子两次落到小孔的速度相同,设为v ,下极板向上平移后由E =Ud 知场强变大,故粒子第二次在电场中减速运动的加速度变大,由v 2=2ax 得第二次减速到零的位移变小,即粒子在下极板之上某位置返回,设粒子在距上极板h 处返回,对粒子两次运动过程应用动能定理得mg (d 2+d )-qU =0,mg (d 2+h )-q U 23d ·h =0.两方程联立得h =25d ,选项D 正确.3.质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图1所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为f ,以下说法正确的是( )图1 A .0~t 1时间内,汽车牵引力的数值为m v 1t 1B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+f )v 2C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22D .汽车运动的最大速率v 2=(m v 1ft 1+1)v 1答案 D解析 0~t 1时间内汽车的加速度大小为v 1t 1,m v 1t 1为汽车所受的合外力大小,而不是牵引力大小,选项A 错误;t 1时刻汽车牵引力的功率为F v 1=(m v 1t 1+f )v 1,之后汽车功率保持不变,选项B 错误;t 1~t 2时间内,汽车的平均速率大于v 1+v 22,选项C 错误;牵引力等于阻力时速度最大,即t 2时刻汽车速率达到最大值,则有(m v 1t 1+f )v 1=f v 2,解得v 2=(m v 1ft 1+1)v 1,选项D 正确.4.如图2所示,质量为m 的物块(可视为质点),带正电Q ,开始时让它静止在倾角α=60°的固定光滑绝缘斜面顶端,整个装置放在水平方向向左、大小为E =3mg /Q 的匀强电场中(设斜面顶端处电势为零),斜面高为H .释放后,物块落地时的电势能为ε,物块落地时的速度大小为v ,则( )图2A .ε=33mgH B .ε=-33mgH C .v =2gHD .v =2gH答案 C解析 由电场力做功等于电势能的变化可得物块落地时的电势能为ε=-QEH /tan 60°=-3mgH /3=-mgH ,选项A 、B 错误;由动能定理,mgH +QEH /tan 60°=12m v 2,解得v =2gH ,选项C 正确,D 错误. 二、双项选择题5.如图3所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中( )图3A .物体的重力势能增加了34mghB .物体的重力势能增加了mghC .物体的机械能损失了12mghD .物体的动能减少了mgh 答案 BC解析 该过程物体克服重力做功为mgh ,则物体的重力势能增加了mgh ,选项A 错误,选项B 正确;由牛顿第二定律有f +mg sin 30°=ma ,解得f =14mg ,克服摩擦力做的功等于机械能的减少量,W f =-f ·h sin 30°=-12mgh ,选项C 正确;根据动能定理知,合外力做的功等于动能的变化量,故动能减少量为32mgh ,选项D 错误.6.如图4所示,间距为L 、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m 、电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是( )图4A .金属棒在导轨上做匀减速运动B .整个过程中金属棒克服安培力做功为12m v 2C .整个过程中金属棒在导轨上发生的位移为2qRBLD .整个过程中电阻R 上产生的焦耳热为12m v 2解析由题意可知金属棒在安培力作用下做减速运动直至静止,由于速度一直减小,故安培力的大小一直减小,金属棒的加速度减小,故金属棒做加速度减小的减速运动,选项A错误.在整个过程中,只有安培力做负功,由动能定理可知金属棒克服安培力做功为12m v2,选项B正确.由q=ΔΦR总可知q=BLs2R,解得s=2qRBL,选项C正确.由B项可知整个回路中产生的焦耳热为12m v2,电阻R上产生的焦耳热为14m v2,选项D错误.7.将带正电的甲球放在乙球的左侧,两球在空间形成了如图5所示的稳定的静电场,实线为电场线,虚线为等势线.A、B两点与两球球心的连线位于同一直线上,C、D两点关于直线AB对称,则()图5A.乙球一定带负电B.C点和D点的电场强度相同C.正电荷在A点具有的电势能比其在B点具有的电势能大D.把负电荷从C点移至D点,电场力做的总功为零答案CD解析电场线从正电荷出发指向负电荷,根据电场线知乙球左侧带负电,右侧带正电,整体带电情况不确定,A错误;电场强度是矢量,C、D两点电场强度的方向不同,B 错误;电场线的方向是电势降落最快的方向,A点的电势比B点的电势高,由电势能的定义式E p=qφ知,正电荷在A点的电势能比在B点的电势能大,C正确;C、D两点在同一等势面上,故将电荷从C点移至D点电势能不变,电场力做功是电势能变化的量度,故电场力不做功,D正确.8.如图6所示,绝缘轻弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q(可视为质点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab上.现把与Q大小相同、电性相同的小球P,从N点由静止释放,在小球P与弹簧接触到压缩至最短的过程中(弹簧始终在弹性限度内),以下说法正确的是()图6A.小球P和弹簧组成的系统机械能守恒B.小球P和弹簧刚接触时其速度最大C.小球P的动能与弹簧弹性势能的总和增大D.小球P的加速度先减小后增大。
专题四动量守恒与能量守恒1、在光滑的水平面上,质量为m i的小球A以速率v°向右运动。
在小球A的前方0点处有一质量为m2的小球B处于静止状态,如图所示。
小球A与小球B 发生正碰后小球A与小球B均向右运动;小球B被Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5P0。
假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,求(1)A、B两小球的质量之比。
(AB弹性碰撞)(2)若0Q=L,且m1远大于m2则AB第二次相碰的位置距0点的距离2、光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V°=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图所示。
B与C碰撞后二者粘在一起运动,在以后的运动中,求弹簧的弹性势能最大值。
(B、C完全非弹性碰撞)A WWWW<B c3、如图所示,光滑水平面上有带有1/4光滑圆弧轨道的滑块,其质量为2m, —质量为m的小球以速度V。
沿水平面滑上轨道,并恰能到达轨道最高点,(V。
、重力加速度g均为已知量)求:(某一方向上的动量守恒)①小球在轨道最高点时滑块的速度。
②圆弧轨道半径R4、如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与AB成9角时,圆环移动的距离是多少?(某一方向上的动量守恒、人船模型)5、抛出的手雷在距水平地面20m时达到最高点,此时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它们落地距离.(忽略空气阻力、重力加速度g取10m/s F)(内力远大于外力近似守恒)6、(2014全国9分)如图,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8m, A球在B球的正上方。
专题四:能量和动量一、动量与能量知识框架:二、动量和能量知识点1.动量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v 的方向相同.两个动量相同必须是大小相等,方向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定。
2.能量能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度。
(1)W 合=△E k :包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。
(动能定理)(2)W F =△E:除重力以外有其它外力对物体做功等于物体机械能的变化。
(功能原理) 注:①W F =0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。
②W G =-△E P 重力做正功,重力势能减小;重力做负功,重力势能增加。
重力势能变化只与重力做功有关,与其他做功情况无关。
③W 电=-△E P :电场力做正功,电势能减小;电场力做负功,电势能增加。
在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。
注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。
3.动量与能量的关系 (1)动量与动能动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv ;动能的大小与速度的平方成正比E k =mv 2/2两者的关系:p 2=2mE k动能定理21222121mv mv W A -=动量 p =mv力的积累和效应力对时间的积累效应力对位移的积累效应功:W=FS cos α 瞬时功率:P =Fv cos α平均功率:αcos v F tW P ==动能221mv E k =势能重力势能:E p =mgh 弹性势能机械能机械能守恒定律E k1+E P1=E k2+E P2ΔE =ΔE系统所受合力为零或不受外力牛顿第二定律F=ma冲量 I =Ft动量定理Ft =mv 2-mv 1动量守恒定律m 1v 1+m 2v 2=m 1v 1’+m 2v 2’动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.(2)动量定理与动能定理动量定理:物体动量的变化量等于物体所受合外力的冲量.△P=I,冲量I=Ft是力对时间的积累效应动能定理:物体动能的变化量等于外力对物体所做的功.△E k=W,功W=Fs是力对空间的积累效应. (3)动量守恒定律与机械能守恒定律动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变。
运用动量守恒定律值得注意的两点是:①严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的。
②即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的。
动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容。
三、经典高考题赏析1.如图所示,质量为m A=4.0kg的木板A放在水平面C上,木板与水平面间的动摩擦因数为μ=0.24,木板最右端放着质量为m B=1.0kg的小物块(视为质点),它们均处于静止状态,木板突然受到水平向右的12N•s 的瞬时冲量I作用开始运动,当小物块离开木板时,木板的动能为8.0J,小物块的动能为0.5J(g=10m/s2)求:(1)瞬时冲量作用结束时木板的速度为多少?(2)木板的长度时多少?解析:(1)以A由静止到获得初速度为研究过程,由动量定理可知I= mv0带入数据得到:v0=3m/s ①(2)对A获得速度到B从A的左端掉下来为研究过程,其运动过程如图所示,设A运动的时间为t,运动的位移为S a,B运动的位移为S b,B对A,C对A,A对B的摩擦力分别为f BA,f CA,f AB,由动量定理可得:对A:-(f BA+f CA)t=m A v A-m A v0 ②对B: f AB t=m B v B ③由动能定理可知对A:-(f BA+f CA)S a=m A v A 2/2-m A v02/2④对B: f AB S b=m B v B2/2⑤由牛顿第三定律可知,A对B的摩擦力和B对A的摩擦力大小相等f AB= f BA ⑥f CA=μ(m A+m B)g ⑦L=S a-S b⑧由①②③④⑤⑥⑦⑧联立可解得:L=0.5m答案:(1)v0=3m/s;(2) L=0.5m2.如图所示,金属杆a从离地h高处由静止开始沿光滑平行的弧形轨道下滑,轨道的水平部分有竖直向上的匀强磁场B,水平轨道上原来放有一金属杆b,已知a杆的质量为m a,且与杆b的质量之比为m a∶m b=3∶4,水平轨道足够长,不计摩擦,求:(1)a和b的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a ∶R b =3∶4,其余部分的电阻不计,整个过程中杆a 、b 上产生的热量分别是多少?解析:(1)a 下滑过程中机械能守恒m a gh=m a v 02/2a 进入磁场后,回路中产生感应电流,a 、b 都受安培力作用,a 做减速运动,b 做加速运动,经过一段时间,a 、b 速度达到相同,之后回路的磁通量不发生变化,感应电流为0,安培力为0,二者匀速运动.匀速运动的速度即为a.b 的最终速度,设为v.由于所组成的系统所受合外力为0,故系统的动量守恒m a v 0=(m a +m b )v由以上两式解得最终速度v a =v b =v=gh 273(2)由能量守恒得知,回路中产生的电能应等于a 、b 系统机械能的损失,所以E=m a gh-(m a +m b )v 2/2=4m a gh/7 (3)由能的守恒与转化定律,回路中产生的热量应等于回路中释放的电能等于系统损失的机械能,即Q a +Q b =E.在回路中产生电能的过程中,电流不恒定,但由于R a 与R b 串联,通过的电流总是相等的,所以应有4322==t R I t R I Q Q b a b a 所以 gh m Q a a 4912= gh m Q a b 4916= 答案:(1)v a =v b =v=gh 273 (2)E=4m a gh/7 (3)gh m Q a a 4912= gh m Q a b 4916= 点评:此题考查的时机械能守恒、动量守恒定律和能量的转化,在导体棒a 进入磁场之前,导体棒a 的机械能守恒,进入后导体棒a 切割磁感线产生电动势,电路中产生电流,使导体棒b 受到安培力作用而运动,直到最后两棒有相同的速度,以a 、b 这一整体为系统,则系统在水平方向受到的安培力相互抵销,系统的动量守恒。
在这一运动过程中,导体棒a 、b 发热消耗能量,系统损失的能量转化为内能,再根据系统的能量守恒,即可求出两棒上的热量。
变式训练:如图所示,电阻不计的两光滑金属导轨相距L 放在水平绝缘桌面上,半径为R 的14圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B 、方向竖直向下的匀强磁场中,末端与桌面边缘平齐。
两金属棒ab 、cd 垂直两导轨且与导轨接触良好,ab 棒质量为2m 、电阻为r ,cd 棒质量为m 、电阻为r 。
开始时cd 棒静止在水平直导轨上,ab 棒从圆弧导轨的顶端无初速释放,进入水平直导轨后与cd 棒始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。
两棒落地点到桌面边缘的水平距离之比为3∶1,求:(1)cd 棒在水平直导轨上的最大加速度。
(rmgR L B a 2222=)(2)两棒在导轨上运动的过程中产生的焦耳热。
(mgR Q 4922=)3.如图半径为R 的光滑圆形轨道固定在竖直面内,小球A 、B 质量分别为m 、βm (β为待定系数)。
A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞中无机械能损失。
重力加速度为g 。
试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。
解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得44mgR mgRmgR β=+,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球组成的系统,有22121122mgR mv mv β=+ 122m gR mv mv β=+ 解得112v gR =-,方向水平向左;212v gR =,方向水平向右。
设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则22v N mg m Rββ-=,B 球对轨道的压力4.5N N mg '=-=-,方向竖直向下。
(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取水平向右为正,则1212mv mv mV mV ββ--=+ 22121122mgR mV mV β=+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去)由此可得:当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同。
答案:(1)3;(2)112v gR =-,方向水平向左;212v gR =,方向水平向右;4.5mg ,方向竖直向下;(3)见解析。
点评:小球A 与B 碰撞之前机械能守恒,在碰撞过程中动量守恒,碰撞完毕,两球又机械能守恒,所以此题关键在于对碰撞过程的分析,不同的碰撞次数,结果不一样,通过分析,找出规律,得出结论。
四、经典模型归纳(一)滑块(子弹打木块)模型此模型的核心内容是动量守恒与能量守恒两大守恒定律还有动能定理的结合。