(人教版)2014年中考数学第一轮复习资料(共37套)
- 格式:doc
- 大小:1.70 MB
- 文档页数:28
中考数学第一轮复习资料(全套37页) 第一章 实数课时1.实数的有关概念【课前热身】1。
(08重庆)2的倒数是 .2。
(08白银)若向南走2m 记作2m -,则向北走3m 记作 m . 3。
(08的相反数是 . 4。
(08南京)3-的绝对值是( )A .3-B .3C .13- D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A 。
7×10-6B 。
0。
7×10-6C 。
7×10-7D 。
70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 。
数轴上的点与 构成一一对应.⑵ 实数a 的相反数为________。
若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______。
若a ,b 互为倒数,则ab = 。
⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数。
⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________。
其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______。
⑵ 任何一个实数a 都有立方根,记为 。
⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数。
4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3。
14×105是3个有效数字;精确到千位。
3。
14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a |、错误!(a ≥0)之和为零作为条件,解决有关问题.【典例精析】例1 在“()05,3。
目录第一部分数与代数第一章数与式第1讲实数83第2讲代数式84第3讲整式与分式85第1课时整式85第2课时因式分解86第3课时分式87第4讲二次根式89第二章方程与不等式第1讲方程与方程组90第1课时一元一次方程与二元一次方程组90第2课时分式方程91第3课时一元二次方程93第2讲不等式与不等式组94第三章函数第1讲函数与平面直角坐标系97第2讲一次函数99第3讲反比例函数101第4讲二次函数103第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线106第2讲三角形108第1课时三角形108第2课时等腰三角形与直角三角形110第3讲四边形与多边形112第1课时多边形与平行四边形112第2课时特殊的平行四边形114第3课时梯形116第五章圆第1讲圆的基本性质118第2讲与圆有关的位置关系120第3讲与圆有关的计算122第六章图形与变换第1讲图形的轴对称、平移与旋转124第2讲视图与投影126第3讲尺规作图127第4讲图形的相似130第5讲解直角三角形132第三部分统计与概率第七章统计与概率第1讲统计135第2讲概率137第四部分中考专题突破专题一归纳与猜想140专题二方案与设计141专题三阅读理解型问题143专题四开放探究题145专题五数形结合思想147基础题强化提高测试中考数学基础题强化提高测试1149中考数学基础题强化提高测试2151中考数学基础题强化提高测试3153中考数学基础题强化提高测试4155中考数学基础题强化提高测试5157中考数学基础题强化提高测试61592014年中考数学模拟试题(一)1612014年中考数学模拟试题(二)165第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( )A .3B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( ) A .-(-2)-(-3) B .(-2)×(-3)C .(-2)2D .(-3)-3 7.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃. 8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1A .a <bB .|a |>|b |C .-a <-bD .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.(2012年浙江绍兴)计算:-22+-113⎛⎫ ⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭;第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭;第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;…请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________; (2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( ) A .(15+a )万人 B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B .2 n C .m +n D .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( ) A .-1 B .1 C .-5 D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( ) A .3 B .-3 C .1 D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________. 7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12C .1D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a . 其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题16.(2012年山东东营)若3x =4,9y=7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式 第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( ) A .x 5 B .-x 5 C .x 6 D .-x 62.(2012年四川广安)下列运算正确的是( ) A .3a -a =3 B .a 2·a 3=a 5 C .a 15÷a 3=a 5(a ≠0) D .(a 3)3=a 63.(2012年广东汕头)下列运算正确的是( ) A .a +a =a 2 B .(-a 3)2=a 5 C .3a ·a 2=a 3 D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( ) A .xy 2 B .x 3+y 3 C .x 3y D .3xy5.(2012年江苏杭州)下列计算正确的是( ) A .(-p 2q )3=-p 5q 3 B .(12a 2b 3c )÷(6ab 2)=2ab C .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( ) A .a 2+a 3=a 5 B .(a +b )2=a 2+b 2 C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( ) A .-10a 5 B .10a 6 C .-25a 5 D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( ) A .(x -2)2+3 B .(x +2)2-4 C .(x +2)2-5 D .(x +2)2+4 9.计算:(1)(3+1)(3-1)=____________; (2)(2012年山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).B级中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b210.若m2-n2=6且m-n=3,则m+n=________.B级中等题11.对于任意自然数n,(n+11)2-n2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题 19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x有意义,x 的取值范围满足( )A .x =0B .x ≠0C .x >0D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b2 (2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z=____________;x 2-9x 2-2x -3=____________.5.已知a -b a +b =15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________.B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x2的值.17.(2012年四川内江)已知三个数x ,y ,z 满足xy x +y =-2,yz z +y =34,zx z +x=-34,则xyzxy +yz +zx 的值为____________.第4讲 二次根式A 级 基础题1.下列二次根式是最简二次根式的是( )A.12B. 4C. 3D.82.下列计算正确的是( ) A.20=2 10 B.2·3= 6 C.4-2= 2 D.(-3)2=-33.若a <1,化简(a -1)2-1=( ) A .a -2 B .2-a C .a D .-a4.(2012年广西玉林)计算:3 2-2=( ) A .3 B. 2 C .2 2 D .4 25.如图X1-3-3,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )图X1-3-3A .-2- 3B .-1- 3C .-2+ 3D .1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x -2和5x +6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-410.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B 级 中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( )A .9B .±3C .3D .514.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 516.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( ) A .3 B .9 C .12 D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩C. 5,2x y =⎧⎨=-⎩D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩B.50,610320x y x y +=⎧⎨+=⎩C.50,6320x y x y +=⎧⎨+=⎩D.50,106320x y x y +=⎧⎨+=⎩4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组: 4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C级拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时 一元二次方程A 级 基础题1.(2011年江苏泰州)一元二次方程x 2=2x 的根是( ) A .x =2 B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=-2 2.方程x 2-4=0的根是( ) A .x =2 B .x =-2C .x 1=2,x 2=-2D .x =43.(2011年安徽)一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2C .1和2D .-1和24.(2012年贵州安顺)已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定 5.(2012年湖北武汉)若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是( ) A .-2 B .2 C .3 D .1 6.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( ) A .m ≤-1 B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-148.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c 的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x 1,x 2是方程x 2+x -1=0的两个实数根,则x 21+x 22=__________. 14.(2011年江苏苏州)已知a ,b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m 2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( ) A .x >2 B .x ≥2 C .x <2 D .x ≤22.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <-1 D .x >-1图X2-2-2图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________.6.若关于x 的不等式组2,x x m⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________.9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒(用含x 的代数式表示)? (2)该敬老院至少有多少名老人?最多有多少名老人?B 级 中等题11.(2012年湖北荆门)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%13.(2012年湖北黄石)若关于x 的不等式组233,35x x x a >-⎧⎨->⎩有实数解,则实数a 的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C级拔尖题15.试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48 000 m2和B种板材24 000 m2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2.请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房A种板材/m2B种板材/m2安置人数/人甲型1086112乙型1565110问这400间板房最多能安置多少灾民?选做题17.若关于x,y的二元一次方程组31,33x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则实数a的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台)2 420 1 980 (1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,△ABC在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()图X3-1-2A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将△ABO 扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()图X3-1-3A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-714.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续九次这样的变换得到△A ′B ′C ′,则点A 的对应点A ′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的图X3-1-8,坐标系中画出△ABC .设AB 与y轴的交点为D ,则S △ADOS △ABC=__________;(2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC 的形状为____________.图X3-1-8C 级 拔尖题16.(2011年贵州贵阳)【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭. 【运用】(1)如图X3-1-9,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.图X3-1-9。
第三章:方程和方程组一、一元方程 1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0) (2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0) (2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根 (5)一元二次方程根与系数的关系: 若21,x x 是一元二次方程02=++c bx ax的两个根,那么:ab x x-=+21,ac x x =⋅21 (6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)分式方程的解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(2)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组1、一次方程组:(1)二元一次方程组: 一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (212121,,,,,c c b b a a 不全为0) 解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
2014年中考一轮复习基础检测:《相交线、平行线》一、判断题(每小题2分,共10分)1.把一个角的一边反向延长,则可得到这个角的邻补角()提示:根据叙述,画出相应的图形即可判断.答案:√.2.对顶角相等,但不互补;邻补角互补,但不相等()提示:两直线互相垂直时,对顶角相等且互补,邻补角互补且相等.答案:×.3.如果直线a⊥b,且b⊥c,那么a⊥c()提示:画图,a⊥b,则∠1=90°,b⊥c,则∠2=90°.∴∠1=∠2.∴a∥c.答案:×.点评:由此题可知平面内垂直于同一直线的两直线互相平行,垂直关系没有传递性.4.平面内两条不平行的线段..必相交()提示:仔细读题,想想线段的特征,线段有两个端点,有一定的长度,它们可以延长后相交,但本身可以既不平行,也不相交.答案:×.点评:平面内两条不平行的线段可以相交,也可以不相交,但平面内两条不平行的线段的延长线一定相交.5.命题有真命题、假命题,定理也有真定理假定理()提示:前一句话是对的,后一句话是错的.假命题不能成为定理,定理都是真命题.答案:×.二、填空题(每小题3分,共27分)6.如图,直线AB、CD相交于点O,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.提示:注意补角和邻补角的区别,前者只要求满足数量关系,即两角和为180°,而后者既要求满足数量关系又要求满足位置关系,即互补相邻.答案:∠1;∠1和∠3;∠BOE或∠4.7.如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB =_______.提示:根据“对顶角相等”和“角平分线的定义”来求.答案:38°.8.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=______.提示:由OA⊥OB,OC⊥OD,可得∠AOB=∠COD=90°,一周角为360°.答案:36°.9.如图,∠1的内错角是,它们是直线、被直线所截得的.答案:∠AEC和∠B,DF、DC(DF、BC)、AB.10.如图,AB∥CD、AF分别交AB、CD于A、C.CE平分∠DCF,∠1=100°,则∠2=.提示:先证∠DCF=∠1=100°,再用“角平分线家义”来求∠2.答案:50°.11.如图,∠1=82°,∠2=98°,∠3=80°,则∠4=.提示:先判定AC∥BD.再利用平行线的性质求∠4的度数.答案:80°.12.如图,直线AB∥CD∥EF,则∠+∠-∠=.提示:∵AB∥CD,∴∠ADC=∠.∵∠ACD+∠CDF+∠=360°,∴∠+∠+∠CDF=360°.∴∠+∠=360°-∠CDF.∵CD∥EF,∴∠CDF+∠=180°.∴∠+∠-∠=360°-∠CDF-∠=360°-(∠CDF+∠).∴∠+∠-∠=180°.答案:180°.13.“如果n是整数,那么2n是偶数”其中题设是,结论是,这是命题(填真或假).提示:“如果”开始的部分是题设,“那么”开始的部分是结论.答案:n是整数,2n是偶数,真.14.把命题“直角都相等”改写为“如果…,那么…”的形式是______________________.答案:如果几个角是直角,那么这几个角都相等.三、选择题:(每题3分,共18分)15.下列命题中,是真命题的是()(A)相等的两个角是对顶角.(B)有公共顶点的两个角是对顶角.(C)一条直线只有一条垂线.(D)过直线外一点有且只有一条直线垂直于已知直线.答案:D.16.如图,OA⊥OB,OC⊥OD,垂足均为O.则∠BOC+∠AOD等于()(A)150°(B)160°(C)170°(D)180°提示:延长BO到E.∵OA⊥OB,∴OA⊥OE.又OC⊥O(D)∴∠AOC+∠COE=∠AOC+∠AOD=90°.由同角的余角相等知:∠COE=∠AOD.∴∠BOC+∠AOD=∠BOC+∠COE=180°.答案:D.17.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是()(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④提示:可将涉及的一对角从整个图形中分离出来,单独观察.这样可排除图中其它线的干扰,便于确定两角的相对位置.易知①、②、③正确.答案:A.18.如图,图中的同位角共有()(A)6对(B)8对(C)10对(D)12对提示:可采用17题的方法.两条直线被第三条直线所截,同位角有四对,图中有三组两条直线被第三条直线所截,均共有同位角4×3=12对.答案:D.19.如图,下列推理正确的是()(A)∵∠1=∠2,∴AD∥BC (B)∵∠3=∠4,∴AB∥CD(C)∵∠3=∠5,∴AB∥DC (D)∵∠3=∠5,∴AD∥BC答案:C.20.如图,AB∥CD.若∠2是∠1的两倍,则∠2等于()(A)60°(B)90°(C)120°(D)150°提示:由AB∥CD,可得∠3+∠2=180°.∵∠1=∠3,∴∠1+∠2=180°.∵∠2=2∠1,∴3∠1=180°.∴∠1=60°.∴∠2=2×60°=120°.答案:D.四、画图:(本题6分)21.如图,分别作出线段AB、BC、的垂直平分线,设交点为O,连结OA、OB、OC.量得OA=()mm,OB=()mm,OC=()mm.则OA、OB、OC的关系是.答案:18,18,18.OA=OB=OC.五、完成下列推理,并填写理由:(每小题8分,共16分)22.如图,∵∠ACE=∠D(已知),∴∥().∴∠ACE=∠FEC(已知),∴∥().∵∠AEC=∠BOC(已知),∴∥().∵∠BFD+∠FOC=180°(已知),∴∥().答案:CE,DF,同位角相等,两直线平行;EF,AD,内错角相等,两直线平行;AE、BF,同位角相等,两直线平行;EC,DF,同旁内角互补,两直线平行.23.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.证明:∵∠1=∠2(已知),∴∥(),∴∠DAB+∠=180°().∵∠B=∠D(已知),∴∠DAB+∠=180°(),∴AB∥CD().答案:AD,BC,内错角相等两直线平行;B,两直线平行,同旁内角互补;D,等量代换,同旁内角互补,两直线平行.六、计算或证明:(第24、25、26每小题6分,第27题5分,共23分)24.如图,a∥b,c∥d,∠1=113°,求∠2、∠3的度数.提示:由a∥b,∠1=113°,可求∠2.由c∥d和求出的∠2的度数可求∠4.然而求出∠3.答案:∠2=113°.∠3=67°.∵a∥b(已知).∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知).∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).25.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.提示:证明∠BAD=∠2.证明:∵AD∥EF(已知),∴∠1=∠BAD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠2(等量代换).∴AB∥DG(内错角相等,两直线平行).26.已知:如图,D是BC上的一点.DE∥AC,DF∥AB.求证:∠A+∠B+∠C=180°.提示:由DE∥AC,DF∥AB,先证:∠A=∠EDF,再证∠A+∠B+∠C=180°.证明:∵DE∥AC(已知),∴∠BED=∠A,∠BDE=∠C(两直线平行,同位角相等).∵DF∥AB(已知),∴∠BED=∠EDF(两直线平行,内错角相等),∠FDC=∠B(两直线平行,同位角相等).∴∠EDF=∠A(等量代换).∵∠BDE+∠EDF+∠FDC=180°(平角定义),∴∠C+∠A+∠B=180°(等量代换).即∠A+∠B+∠C=180°.27.如图,如果D是BC的中点,那么B、C两点到直线AD的距离相等.试写出已知,求证,并补全图形(不证明).提示:B、C两点的直线AD的距离,是点到直线的距离.即相应的“垂线段”的长度.可用三角尺画出图形.答案:图形如图所示,已知:BD=CD,且BE⊥AD,CF⊥AD,垂足分别为E、F.求证:BE=CF.。
第8讲一元二次方程考纲要求命题趋势1.理解一元二次方程的概念.2.掌握一元二次方程的解法.3.了解一元二次方程根的判别式,会判断一元二次方程根的情况;了解一元二次方程根与系数的关系并能简单应用.4.会列一元二次方程解决实际问题.结合近年中考试题分析,一元二次方程的内容考查主要有一元二次方程的有关概念,一元二次方程的解法及列一元二次方程解决实际问题,题型以选择题、填空题为主,与其他知识综合命题时常为解答题.知识梳理一、一元二次方程的概念1.只含有__________个未知数,并且未知数的最高次数是__________,这样的整式方程叫做一元二次方程.2.一元二次方程的一般形式是________________.二、一元二次方程的解法1.解一元二次方程的基本思想是__________,主要方法有:直接开平方法、__________、公式法、__________.2.配方法:通过配方把一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)变形为⎝⎛⎭⎪⎫x+b2a2=__________的形式,再利用直接开平方法求解.3.公式法:一元二次方程ax2+bx+c=0(a≠0)当b2-4ac≥0时,x=____________.4.用因式分解法解方程的原理是:若a·b=0,则a=0或__________.三、一元二次方程根的判别式1.一元二次方程根的判别式是__________.2.(1)b2-4ac>0⇔一元二次方程ax2+bx+c=0(a≠0)有两个__________实数根;(2)b2-4ac=0⇔一元二次方程ax2+bx+c=0(a≠0)有两个__________实数根;(3)b2-4ac<0⇔一元二次方程ax2+bx+c=0(a≠0)__________实数根.四、一元二次方程根与系数的关系1.在使用一元二次方程的根与系数的关系时,要先将一元二次方程化为一般形式.2.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根是x1,x2,则x1+x2=__________,x1x2=__________.五、实际问题与一元二次方程列一元二次方程解应用题的一般步骤:(1)审题;(2)设未知数;(3)找__________;(4)列方程;(5)__________;(6)检验;(7)写出答案.自主测试1.一元二次方程x2-2x-1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.如果2是一元二次方程x2=c的一个根,那么常数c是( )A.2 B.-2 C.4 D.-43.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( )A .200(1+a %)2=148B .200(1-a %)2=148C .200(1-2a %)=148D .200(1-a 2%)=1484.已知一元二次方程2x 2-3x -1=0的两根为x 1,x 2,则x 1+x 2=__________.5.解方程:x 2+3=3(x +1).考点一、一元二次方程的有关概念【例1】下列方程中是关于x 的一元二次方程的是( )A .x 2+1x2=0 B .ax 2+bx +c =0C .(x -1)(x +2)=1D .3x 2-2xy -5y 2=0解析:由一元二次方程的定义可知选项A 不是整式方程;选项B 中,二次项系数可能为0;选项D 中含有两个未知数.故选C.答案:C方法总结 方程是一元二次方程要同时满足下列条件:①是整式方程;②只含有一个未知数;③未知数的最高次数为2;④二次项系数不等于0.容易忽略的是条件①和④.触类旁通1 已知3是关于x 的方程x 2-5x +c =0的一个根,则这个方程的另一个根是( ) A .-2 B .2 C .5 D .6 考点二、一元二次方程的解法【例2】解方程x 2-4x +1=0.分析:本题可用配方法或公式法求解.配方法通常适用于二次项系数化为1后,一次项系数是偶数的一元二次方程.对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解.解:解法一:移项,得x 2-4x =-1.配方,得x 2-4x +4=-1+4,即(x -2)2=3,由此可得x -2=±3,x 1=2+3,x 2=2- 3.解法二:a =1,b =-4,c =1.b 2-4ac =(-4)2-4×1×1=12>0,x =4±122=2± 3.方法总结 此类题目主要考查一元二次方程的解法及优化选择,常常涉及到配方法、公式法、因式分解法.选择解法时要根据方程的结构特点,系数(或常数)之间的关系灵活进行,解题时要讲究技巧,尽量保证准确、迅速.触类旁通2 解方程:x 2+3x +1=0.考点三、一元二次方程根的判别式的应用【例3】关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( ) A .0 B .8 C .4± 2 D .0或8解析:b 2-4ac =(m -2)2-4(m +1)=0,解得m 1=0,m 2=8.故选D. 答案:D方法总结 由于一元二次方程有两个相等的实数根,可得根的判别式b 2-4ac =0,从而得到一个关于m 的方程,解方程求得m 的值即可.一元二次方程根的判别式的应用主要有以下三种情况:(1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数中字母的取值范围;(3)应用判别式证明方程根的情况.触类旁通3 已知关于x 的一元二次方程mx 2+nx +k =0(m ≠0)有两个实数根,则下列关于判别式n 2-4mk 的判断正确的是( )A .n 2-4mk <0B .n 2-4mk =0C .n 2-4mk >0D .n 2-4mk ≥0 考点四、一元二次方程根与系数的关系【例4】已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.解:(1)依题意,得b 2-4ac ≥0,即[-2(k -1)]2-4k 2≥0,解得k ≤12.(2)解法一:依题意,得x 1+x 2=2(k -1),x 1x 2=k 2. 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1x 2-1,即2(k -1)=k 2-1,解得k 1=k 2=1.∵k ≤12,∴k 1=k 2=1不合题意,舍去.②当x 1+x 2<0时,则有x 1+x 2=-(x 1x 2-1),即2(k -1)=-(k 2-1).解得k 1=1,k 2=-3.∵k ≤12,∴k =-3.综合①②可知k =-3.解法二:依题意,可知x 1+x 2=2(k -1).由(1)可知k ≤12,∴2(k -1)<0,即x 1+x 2<0.∴-2(k -1)=k 2-1,解得k 1=1,k 2=-3.∵k ≤12,∴k =-3.方法总结 解决本题的关键是把给定的代数式经过恒等变形化为含x 1+x 2,x 1x 2的形式,然后把x 1+x 2,x 1x 2的值整体代入.研究一元二次方程根与系数的关系的前提为:①a ≠0,②b 2-4ac ≥0.因此利用一元二次方程根与系数的关系求方程的系数中所含字母的值或范围时,必须要考虑这一前提条件.触类旁通4 若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是( ) A .4 B .3 C .-4 D .-3 考点五、用一元二次方程解实际问题【例5】汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?解:设该品牌汽车年产量的年平均增长率为x ,由题意,得6.4(1+x )2=10,解得x 1=0.25,x 2=-2.25.∵x 2=-2.25<0,故舍去,∴x =0.25=25%.10×(1+25%)=12.5.答:2011年的年产量为12.5万辆.方法总结 此题是一道典型的增长率问题,主要考查列一元二次方程解应用题的一般步骤.解应用题的关键是把握题意,找准等量关系,列出方程.最后还要注意求出的未知数的值是否符合实际意义,不符合的要舍去.触类旁通5 商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,请回答:(1)商场日销售量增加__________件,每件商品盈利__________元(用含x 的代数式表示); (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2 100元?1.(2012河北)用配方法解方程x 2+4x +1=0,配方后的方程是( )A .(x +2)2=3B .(x -2)2=3C .(x -2)2=5D .(x +2)2=52.(2012江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1C .14D .-143.(2012湖南株洲)已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c的值分别为( )A.b=-1,c=2 B.b=1,c=-2C.b=1,c=2 D.b=-1,c=-24.(2012四川成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是( )A.100(1+x)=121 B.100(1-x)=121C.100(1+x)2=121 D.100(1-x)2=1215.(2012贵州铜仁)一元二次方程x2-2x-3=0的解为__________.6.(2012浙江绍兴)把一张边长为40 cm的正方形硬纸板,进行适当地裁剪,折成一个长方体盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.①要使折成的长方体盒子的底面积为484 cm2,那么剪掉的正方形的边长为多少?②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).1.关于x的方程(m2-2)x2+(m+2)x=0是一元二次方程的条件是( )A.m≠2 B.m≠±2C.m≠ 2 D.m≠± 22.用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x+2)2=9C.(x-1)2=6 D.(x-2)2=93.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a<2 B.a>2C.a<2且a≠1 D.a<-24.关于x的方程x2+px+q=0的两根同为负数,则( )A.p>0且q>0 B.p>0且q<0C.p<0且q>0 D.p<0且q<05.若x=2是关于x的方程x2-x-a2+5=0的一个根,则a的值为__________.6.孔明同学在解一元二次方程x2-3x+c=0时,正确解得x1=1,x2=2,则c的值为__________.7.已知一元二次方程x2-6x-5=0的两根为a,b,则1a+1b的值是__________.8.解方程:x(x-2)+x-2=0.9.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择: 方案一:打九折销售;方案二:不打折,每吨优惠现金200元. 试问小华选择哪种方案更优惠,请说明理由.参考答案导学必备知识 自主测试1.B 因为根的判别式b 2-4ac =4+4=8>0,所以方程有两个不相等的实数根. 2.C 把x =2代入方程,得c =4.3.B 降价a %一次售价为200(1-a %)元,降价a %两次售价为200(1-a %)(1-a %)元,即200(1-a %)2元.4.32 因为a =2,b =-3,所以x 1+x 2=-b a =32. 5.解:原方程可化为x 2-3x =0,解得x 1=0,x 2=3. 探究考点方法触类旁通1.B 把3代入原方程得c =6,解原方程得另一个根是2. 触类旁通2.解:∵a =1,b =3,c =1,∴Δ=b 2-4ac =9-4×1×1=5>0.∴x =-3±52.∴x 1=-3+52,x 2=-3-52.触类旁通3.D 因为方程有两个实数根,即有两个相等的或两个不相等的实数根,所以判别式n 2-4mk ≥0.触类旁通4.B 因为a =1,c =3,所以x 1x 2=c a=3.触类旁通5.解:(1)2x 50-x(2)由题意,得(50-x )(30+2x )=2 100,化简,得x 2-35x +300=0,解得x 1=15,x 2=20.∵该商场为了尽快减少库存,则x =15不合题意,舍去. ∴x =20.答:每件商品降价20元,商场日盈利可达2 100元. 品鉴经典考题1.A 原方程变为x 2+4x +4-4+1=0,所以(x +2)2=3.2.B 因为方程有两个相等的实数根,则22-4(-a )=0, 所以a =-1.3.D b =x 1+x 2=1-2=-1,c =x 1x 2=-2.4.C 因为每次提价的百分率都是x ,则两次提价后价格是原价的(1+x )2,所以列方程为100(1+x )2=121.5.3或-1 解方程:x 2-2x +1=4,∴(x -1)2=4,x -1=±2, ∴x 1=3,x 2=-1.6.解:(1)①设剪掉的正方形的边长为x cm ,则(40-2x )2=484,即40-2x =±22,解得x 1=31(不合题意,舍去),x 2=9. ∴剪掉的正方形的边长为9 cm.②侧面积有最大值.设剪掉的正方形的边长为x cm ,盒子的侧面积为y cm 2, 则y 与x 的函数关系式为y =4(40-2x )x ,即y =-8x 2+160x =-8(x -10)2+800, ∴当x =10时,y 最大=800.即当剪掉的正方形的边长为10 cm 时,长方体盒子的侧面积最大为800 cm 2. (2)在如图的一种裁剪图中,设剪掉的正方形的边长为x cm ,从而有2(40-2x )(20-x )+2x (20-x )+2x (40-2x )=550,解得x 1=-35(不合题意,舍去),x 2=15.∴剪掉的正方形的边长为15 cm.此时长方体盒子的长为15 cm ,宽为10 cm ,高为5 cm. 研习预测试题1.D 由题意知,m 2-2≠0,得m ≠± 2.2.C 因为x 2-2x -5=x 2-2x +1-6=0,所以(x -1)2=6.3.C 因为原方程有两个不相等的实数根,所以判别式(-2)2-4(a -1)>0,且a -1≠0,解得a <2且a ≠1.4.A 因为方程两根为负,所以两根之和为负,即-p <0,所以p >0;两根之积为正,即q >0.5.±7 因为把x =2代入原方程得a 2=7, 所以a =±7.6.2 因为a =1,c a=x 1x 2=2,所以c =2.7.-65因为a +b =6,ab =-5,所以1a +1b =a +b ab =6-5=-65.8.解:提取公因式,得(x -2)(x +1)=0,解得x 1=2,x 2=-1. 9.解:(1)设平均每次下调的百分率为x .由题意,得5(1-x )2=3.2. 解方程,得x 1=0.2,x 2=1.8.因为降价的百分率不可能大于1,所以x 2=1.8不符合题意, 符合题目要求的是x 1=0.2=20%. 答:平均每次下调的百分率是20%. (2)小华选择方案一购买更优惠.理由:方案一所需费用为3.2×0.9×5 000=14 400(元), 方案二所需费用为3.2×5 000-200×5=15 000(元). ∵14 400<15 000,∴小华选择方案一购买更优惠.。
2014年九年级中考数学基础复习资料(1) 姓名1.( )2的相反数是A. 2B. -2C.12D. 12-2.( )我市污水处理公司在环境污染整治行动中,添置了污水处理设备,每年排放的污水减少了135800吨,用科学计数法表示为(保留三个有效数字) A. 135×103吨B. 1.36×105吨C. 1.35×105吨D. 136×103吨3. ( )下列运算中正确的是A. 2-2=-4 B. (a 2)3=a 5C. 2x 3+3x 3=5x 3D. x 8÷x 4=x 24.( )不等式组24010x x -<⎧⎨+≥⎩的解集在数轴上表示正确的是5. ( )长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是 A. 12cm 2B. 8cm 2C. 6cm 2D. 4cm 26.( )为了解“阳光体育运动”的实施情况,将某学校的40名学生一周的体育锻炼时间绘制成了如图所示的条形统计图,根据统计图提供的数据,该校40名同学一周参加体育锻炼时间的众数与中位分别是 A. 8,9B. 8,8C. 16,13D. 10,97. ( )下列说法正确的是A. 某市“明天降雨的概率是75%”表示明天有75%的时间会降雨。
B. 随机抛掷一枚均匀的硬币,落地后正面一定朝上。
C .在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖。
D. 从装有若干个除颜色外完全相同的红球和白球的口袋中,如果任意摸出一个红球的概率是13,那么任意摸出一个白球的概率是23。
8.( )如图所示,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,该圆的半径为r ,扇形的半径为R ,则圆的半径与扇形的半径之间的关系为A. R=2rB. R=94r C. R=3r D. R=4r9.( )我们知道,比较两个数的大小有很多方法,其中的图象法也非常巧妙。