数控钻铣床精度检验
- 格式:docx
- 大小:784.58 KB
- 文档页数:9
数控机床加工精度检测与校准方法在现代制造业中,数控机床是不可或缺的重要设备。
它的高效率、高精度和高稳定性使得加工过程更加精确和可靠。
然而,由于各种因素的影响,数控机床的加工精度可能会出现偏差。
因此,对数控机床的精度进行检测和校准是非常必要的。
一、加工精度检测方法1. 几何误差检测几何误差是数控机床加工精度的重要指标之一。
常见的几何误差包括直线度误差、平行度误差、垂直度误差和圆度误差等。
几何误差的检测可以使用光学测量仪器,如激光干涉仪、光学投影仪等。
通过将测量仪器与数控机床进行联动,可以实时监测数控机床的加工精度,并得出相应的误差数据。
2. 热误差检测热误差是数控机床加工精度的另一个重要指标。
由于加工过程中会产生热量,数控机床的温度会发生变化,从而导致加工精度的偏差。
为了检测热误差,可以使用温度传感器对数控机床进行监测。
通过实时记录数控机床的温度变化,并与加工精度进行对比,可以得出热误差的数据。
3. 振动误差检测振动误差是数控机床加工精度的另一个重要影响因素。
振动会导致数控机床的加工过程不稳定,从而影响加工精度。
为了检测振动误差,可以使用振动传感器对数控机床进行监测。
通过实时记录数控机床的振动情况,并与加工精度进行对比,可以得出振动误差的数据。
二、加工精度校准方法1. 机床调整机床调整是校准数控机床加工精度的常用方法之一。
通过调整数控机床的各项参数,如传动装置、导轨、滑块等,可以减小加工误差。
例如,可以通过调整导轨的平行度和垂直度来改善加工精度。
此外,还可以通过更换加工刀具、调整刀具固定方式等方式来提高加工精度。
2. 补偿技术补偿技术是校准数控机床加工精度的另一种常用方法。
通过对加工过程中的误差进行实时监测,并通过数学模型进行补偿,可以减小加工误差。
例如,可以通过在程序中添加补偿指令,根据误差数据进行补偿,从而提高加工精度。
3. 精度校准仪器精度校准仪器是校准数控机床加工精度的重要工具。
常见的精度校准仪器包括激光干涉仪、光学投影仪、三坐标测量机等。
机床的加工精度检测和控制方法随着科技的发展,机床加工精度已经成为制造业中一个十分重要的指标和评价标准。
机床加工精度的好坏不仅关系着产品的质量,还关系到企业的效益和竞争力。
因此,如何确保机床加工的精度已成为一个亟待解决的问题。
机床加工精度指的是加工件的尺寸精度、形位精度和表面光洁度等方面,在碳素钢等材料上的切削精度可达0.001毫米,而在高硬度金属或硬质合金上的切削精度也可达到0.003毫米。
想要保证机床加工的精度,就需要对加工过程进行不断的检测和控制。
一、加工精度的检测方法1. 单次加工检测法这种方法主要是针对短时间内完成刀具保持器固定的单个工件。
利用三坐标测量仪等检测仪器来检测工件的表面粗糙度,以及内部、外部结构等方面的精度误差。
2. 批量式检测法批量式检测法主要针对大批量的工件进行检测。
对工件的大小、长度、平面度、圆度、轴线偏差等方面的数据进行统计和衡量,以此来分析精度的稳定性。
批量式检测法一般采用计算机辅助检测系统。
3. 现场检测法现场检测法是指在机床的实际工作场地上开展的检测工作,这种方法能够检测出加工床的真实效果,能够更真切地反映出工作场地实际加工结果。
现场检测法一般采用可搭配于现场的微机、计算机等设备。
二、加工精度控制方法1. 加工工艺控制加工工艺控制是指在机床的加工过程中,对各项工艺参数进行控制,保证加工的精度。
这些参数包括加工速度、进给速度、切削深度等,一般采用参数控制技术。
2. 加工零部件控制机床的各个零部件也会影响加工的精度。
例如,磨削剂,润滑剂等。
所以,可以采用改良零部件的方法来提高加工的精度。
3. 管理控制管理控制就是指对机床的维护和管理进行控制,保证机床的使用寿命和稳定性。
只有把管理控制做好了,才能够保证机床加工的精度。
4. 软件控制软件控制是指通过计算机编制控制程序进行加工控制,保证加工的稳定性和精度。
这种方式一般采用数字化控制系统,在加工过程中实时检测和控制机床。
总之,机床加工精度的检测和控制是企业制造的重点之一。
数控机床的精度检测方法与标准数控机床是一种高精度的机床设备,广泛应用于制造业的各个领域。
为了确保数控机床的工作精度,需要进行精度检测。
本文将介绍数控机床的精度检测方法和标准,为读者提供参考。
一、数控机床精度检测方法1. 几何精度检测几何精度是指数控机床在工作过程中,工件表面形状、位置、尺寸等与理论位置之间的差异。
常用的几何精度检测方法包括:平行度检测、垂直度检测、直线度检测等。
这些检测方法可以通过使用测量仪器(例如投影仪、三坐标测量机等)进行测量和比较,以确定数控机床是否满足工作要求。
2. 运动精度检测运动精度是指数控机床在运动中达到的位置是否准确。
常用的运动精度检测方法包括:位置误差检测、重复定位精度检测、速度误差检测等。
这些检测方法可以通过使用激光干涉仪、激光漂测仪等测量设备进行测量,以确定数控机床的运动精度是否符合要求。
3. 刚度检测刚度是指数控机床在受力时的变形情况。
常用的刚度检测方法包括:静刚度检测、动刚度检测等。
静刚度可以通过在数控机床各个部位施加力并测量其变形情况来进行检测;动刚度可以通过在数控机床运动状态下进行控制并测量位移来进行检测。
二、数控机床精度检测标准为了统一数控机床的精度检测标准,国内外制定了相应的标准,其中最有代表性的是国家标准GB/T16857-1997《数控机床精度检验方法》。
该标准规定了数控机床的几何精度、运动精度和刚度等指标的检测方法和要求。
以几何精度为例,该标准包括对工件表面形状、位置、尺寸等几何误差的检测,在该标准中,提供了一系列的测量方法,包括投影法、三坐标法、机床内检测法等。
此外,该标准还规定了几何误差的允许值,即数控机床在工作过程中允许存在的误差范围。
除了国家标准,国际标准也对数控机床的精度检测进行了规范,例如ISO 230-1和ISO 230-2等,这些标准主要用于指导和规范制造商以及使用单位在数控机床精度检测方面的操作。
近年来,随着数控机床技术的不断发展,对精度的要求也越来越高。
数控铣床精度检验表
a (允差)b(允差)
在300测量长度上在300测量长度上普通级精密级
允差
a b
d~d
允差mm
六、小结
本堂课主要针对了数控铣床在新机装配时并且在无负荷或精加工条件下对机床进行精度检验的检验项目做了介绍并对有些项目进行实操;通过各个项目的检验得出的数据进行对比可以体现出机床的精度有没有达到精度要求,如果没达到精度要求的就要对机械进行调整,所以说检验出来的数据就是整台机床的机械装配的体现。
我们要重点要掌握的就是机床的检验的前所要准备工工具检验时仪器和量具的正确摆放方法,数据的读取;及误差的计算方法。
数控龙门铣精度验收标准数控龙门铣精度验收标准是客户用于评估和确认数控龙门铣机精度是否符合合同规定要求的标准。
数控龙门铣机是一种用于加工各种金属和非金属材料的机床,广泛应用于航天、船舶、汽车制造、模具加工等领域。
为了确保数控龙门铣机能够提供满足客户需求的高精度加工效果,需要进行各项精度验收。
一、直线度直线度是数控龙门铣机加工的首要考量。
直线度指工作台在移动过程中与基准直线之间的偏差。
验收时需要对不同加工范围进行测量,同时对不同轴向进行分别测量。
直线度的标准应根据具体合同要求来决定,一般按照国家标准进行。
在测量直线度时,需将工作台移动至检测位置,固定测试仪器,并进行相应的测量。
二、平行度平行度是指工作台与主轴旋转轴线平行度的精度。
验收时需测量不同加工范围的平行度,并比较与合同规定标准。
平行度的测量需要使用精密测量仪器,并根据具体加工要求进行测量。
三、垂直度垂直度是指工作台与主轴旋转轴线的垂直关系。
验收时需测量不同加工范围的垂直度,并比较与合同规定标准。
垂直度的测量需要使用精密测量仪器,并根据具体加工要求进行测量。
四、圆度圆度是指工作台旋转轴线与基准圆线之间的偏差。
验收时需进行工作台转动一周的测量,并根据具体需求进行比较与合同规定标准。
圆度测量需要使用精密测量仪器,并根据具体加工要求进行测量。
五、位置精度位置精度是指工作台在加工过程中的位置准确度。
验收时需根据不同加工位置进行测量,并比较与合同规定标准。
位置精度的测量可以使用数控系统提供的测量功能,并根据具体加工要求进行测量。
六、重复定位精度重复定位精度是指工作台在多次重复定位时的准确度。
验收时需进行多次重复定位测量,并比较与合同规定标准。
重复定位精度的测量可以使用数控系统提供的测量功能,并根据具体加工要求进行测量。
七、加工表面粗糙度加工表面粗糙度是指数控龙门铣机加工工件表面的光滑程度。
验收时需对不同加工范围进行测量,并比较与合同规定标准。
加工表面粗糙度的测量可以使用光学仪器或表面粗糙度测量仪,并根据具体加工要求进行测量。
数控机床精度检验数控机床精度检测数控机床的⾼精度最终是要靠机床本⾝的精度来保证,数控机床精度包括⼏何精度和切削精度。
另⼀⽅⾯,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使⽤。
因此,数控机床精度检验对初始使⽤的数控机床及维修调整后机床的技术指标恢复是很重要的。
1、检验所⽤的⼯具1.1、⽔平仪⽔平:0.04mm/1000mm扭曲:0.02mm/1000mm⽔平仪的使⽤和读数⽔平仪是⽤于检查各种机床及其它机械设备导轨的直线度、平⾯度和设备安装的⽔平性、垂直性。
使⽤⽅法:测量时使⽔平仪⼯作⾯紧贴在被测表⾯,待⽓泡完全静⽌后⽅可读数。
⽔平仪的分度值是以⼀⽶为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进⾏计算:实际倾斜值=分度值×L×偏差格数1.2、千分表1.3、莫⽒检验棒2、检验内容2.1、相关标准(例)加⼯中⼼检验条件第2部分:⽴式加⼯中⼼⼏何精度检验JB/T8771.2-1998加⼯中⼼检验条件第7部分:精加⼯试件精度检验JB/T8771.7-1998加⼯中⼼检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000加⼯中⼼技术条件JB/T8801-19982.2、检验内容精度检验内容主要包括数控机床的⼏何精度、定位精度和切削精度。
2.2.1、数控机床⼏何精度的检测机床的⼏何精度是指机床某些基础零件本⾝的⼏何形状精度、相互位置的⼏何精度及其相对运动的⼏何精度。
机床的⼏何精度是综合反映该设备的关键机械零部件和组装后⼏何形状误差。
数控机床的基本性能检验与普通机床的检验⽅法差不多,使⽤的检测⼯具和⽅法也相似,每⼀项要独⽴检验,但要求更⾼。
所使⽤的检测⼯具精度必须⽐所检测的精度⾼⼀级。
其检测项⽬主要有:直线度⼀条线在⼀个平⾯或空间内的直线度,如数控卧式车床床⾝导轨的直线度。
检验内容、公差测量方法、工具测量原理示意图直线度长度测量法平尺法:在垂直平面内测量平尺应尽可能放在使平尺具有最小重力挠度的两个量块上。
读数表安装在具有三个接触点的支座上并沿导向平尺作直线移动进行测量,三个接触点之一应位于垂直触及平尺的千分表杆的延伸线上。
对平尺的已知误差加以处理。
平尺法:在水平面内测量采用一根水平放置的平尺作为基准面。
读数表在与被检面接触情况下移动,并触及基准面。
放置平尺时,使其在线的两端读数相等,可直接读出该线相对于连接两端点的直线的偏差。
采取翻转法是能把作为基准面的平尺所具有的直线度偏差从测量结果中排除。
钢丝和显微镜法张紧一根直径0.1mm的钢丝,使其尽可能地平行于被检线。
对位于水平面内的MN而言,用一个垂直安装并装有水平测微移动装置的显微镜,即可读出被检线对代表测量基准的张紧钢丝在水平面XY内的偏差。
准直望远镜法当用准直望远镜检验时,所要测量的高度差a 等于望远镜轴线与标靶上显示的标记之间的距离,它可以在十字线上直接读出,或用光学测微计读出。
望远镜的光学轴线构成了测量基准。
准直激光法激光束用作为测量基准。
光束对准沿光束轴线移动的四象限光电二极管传感器。
传感器中心与光束的水平和垂直偏差被测定并传送到记录仪器。
激光干涉法测量基准由双镜反射器确定。
用激光干涉仪和专用光学组件来测定标靶对双镜反射器对称轴线的位置变化。
一条线在一个平面内的直线度在平面内的一条给定长度的线,当其上所以的点均包含在平行于该线的总方向且相对距离与允差相等的两条直线内时,则该线被认为是直线。
在空间内的一条线的直线度在空间内的一条给定长度的线,当其在给定的平行于该线的总方向的两个相互垂直平面上的投影满足平面内的直线度要求时,则认为该空间线为直线。
公差的确定在测量平面内公差 t 由通过两条相隔距离为 t 且平行于代表线 AB 的两条直线来限定。
图中的最大偏差为 MN。
L ≤ L 1, T (L) = T 1L 1 < L < L 2, T (L) = T 1 + (T 2-T 2) * (L-L 1) / (L 2 - L 1)L ≥ L 2, T (L) = T 2角度测量法精密水平仪法精密水平仪沿被检线依次放置,测量基准线为水平线。
数控钻铣床标准
数控钻铣床是一种结合了钻床和铣床功能的机床,它能够进行钻孔、铰孔和铣削等加工操作。
数控钻铣床的标准通常包括以下几个方面:
1. 机床精度:数控钻铣床的精度是衡量其加工质量的重要指标。
常见的精度指标包括定位精度、重复定位精度、轴向精度等。
标准应规定各项精度指标的允许偏差范围。
2. 主要零件尺寸和参数:数控钻铣床的主要零件包括横梁、工作台、主轴等,标准应规定这些零件的尺寸和参数要求,以确保机床的结构稳定性和工作性能。
3. 加工范围:标准应规定数控钻铣床能够加工的最大尺寸、最大重量等限制条件,以满足不同工件的加工需求。
4. 控制系统:数控钻铣床的控制系统通常采用数字控制技术,标准应规定控制系统的功能要求,包括编程方式、加工程序管理、刀具补偿等。
5. 安全性能:标准应规定数控钻铣床的安全操作要求,包括防护装置、操作规程等,以确保操作人员的人身安全。
6. 质量检验:标准应规定数控钻铣床的质量检验方法和标准,包括检测设备、检测方法等。
以上是一般情况下数控钻铣床的标准要求,具体的标准可能会根据不同国家或地区的具体需求有所不同。