(易错题精选)初中数学方程与不等式之无理方程难题汇编
- 格式:doc
- 大小:226.50 KB
- 文档页数:8
(易错题精选)初中数学方程与不等式之无理方程易错题汇编附答案一、选择题1.解方程286x x -=时,设y =换元后,整理得关于y 的整式方程是___________________.【答案】y²+y-6=0【解析】【分析】设y =则原方程可化为关于y 的一元二次方程即可.【详解】解:设y =则原方程可化为y²+y-6=0,故答案为:y²+y-6=0.【点睛】本题考查了无理方程,解无理方程最常用的方法是换元法,一般是通过观察确定用来换元的式子是解题的关键.2.的解是__________ ;【答案】x=0【解析】两边平方,得2x x =,分解因式,得()10x x -=,解得120,1x x ==,经检验,21x =不符合题意,舍去,所以原方程的解为x =0.故答案为x =0.3.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.4.2的根是 .【答案】x=53.【解析】2=,∴3x﹣1=4,∴x=53,经检验x=53是原方程组的解,故答案为x=53.考点:无理方程.5.1=的解是x=_____.【答案】4【解析】分析:这是一道无理方程,解此方程量先将无理方程两边平方,转化为一元一次方程来解.详解:两边平方得:x-3=1,移项得:x=4.经检验x=4是原方程的根.故本题答案为:x=4.点睛:本题由于两边平方,可能产生增根,所以解答以后要验根.6.=x的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x2,整理得 x2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x1=-4(舍去),x2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.7.0x=的解是____.【答案】3x=-【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】 ∵320x x -+=,∴32=x x --,∴3-2x=x 2,∴x 2+2x-3=0,∴(x+3)(x-1)=0,解得,x 1=-3,x 2=1,经检验,当x=1时,原方程无意义,当x=3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.8.方程110x x x -+-=实数根的个数有___________个。
(易错题精选)初中数学方程与不等式之无理方程难题汇编含答案解析一、选择题1.无理方程(5)20x x --=的根是____.【答案】x=2.【解析】【分析】根据0乘任何数都得零,可得方程的解,根据被开方数是非负数,可得答案.【详解】 解:由(5)20x x --=,∴x-5=0或2-x=0,解得:x=5,x=2,∵20x -≥,∴2x ≤,当x=5时,被开方数无意义;故方程的解为:x=2,故答案为:x=2.【点睛】本题考查了无理方程,利用0乘任何数都得零是解题关键,注意被开方数是非负数.2.方程322x -=的解是_______________.【答案】2x =【解析】试题分析:方程两边平方,得324x -=,解得2x =.代入验根可得方程的根为2x =. 考点:解无理方程.3.方程2=x ﹣6的根是______.【答案】x=12.【解析】两边平方,求得一元二次方程的解,进一步利用x ﹣3≥0验证得出答案即可.解:2=x ﹣64(x ﹣3)=x 2﹣12x+36整理得x 2﹣16x+48=0解得:x 1=4,x 2=12代入x ﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12.故答案为:x=12.4.的解是_________【答案】14x =-或【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x 2-3x=4,即x 2-3x-4=0,解得x 1=-1,x 2=4故答案为:14x =-或【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.5.14+⋅⋅⋅=的解是______. 【答案】9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设 ()()()()()1111112894y y y y y y ++=+++++L , ∴1111111112894y y y y y y -+-++-=+++++L , 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.6.=x 的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x 2,整理得 x 2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x 1=-4(舍去),x 2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.7.=0的解是___.【答案】x =5.【解析】【分析】把两边都平方,化为整式方程求解,注意结果要检验.【详解】方程两边平方得:(x ﹣3)(x ﹣5)=0,解得:x 1=3,x 2=5,经检验,x 2=5是方程的解,所以方程的解为:x =5.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.8.3x -的解是___________。
(易错题精选)初中数学方程与不等式之无理方程全集汇编附答案解析(1)一、选择题1.4=y = 换元后,整理得关于y 的整式方程是____________________.【答案】y²-4y+4=0【解析】【分析】y =,则原方程可化为关于y 的一元二次方程即可. 【详解】解:y =, 则原方程可化为,44y y+=即y²-4y+4=0,故答案为:y²-4y+4=0. 【点睛】本题考查了无理方程,解无理方程最常用的方法是换元法,.2.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.3.1=的解为【答案】x=1【解析】试题分析:方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.试题解析:方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.考点:无理方程.4.2=的解是_______________.【答案】2x =【解析】试题分析:方程两边平方,得324x -=,解得2x =.代入验根可得方程的根为2x =. 考点:解无理方程.5.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.6.如果关于x 1k 0+=没有实数根,那么k 的取值范围是___________________.【答案】1k >【解析】【分析】根据关于x 没有实数根,可知1-k <0,从而可以求得k 的取值范围.【详解】∵关于x =1-k 没有实数根,∴1-k <0,解得,k >1,故答案为:k >1.【点睛】本题考查无理方程,解题的关键是明确无理方程的解答方法,无实数根应满足什么条件.7.方程43x -=x 的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x 2,整理得 x 2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x 1=-4(舍去),x 2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.8.方程320x x -⋅-=的解是_______________【答案】x=2【解析】【分析】由题意可知3-x=0或2-x=0,再结合二次根式有意义的条件即可求得答案.【详解】∵3x 2x 0-⋅-=,∴3x -=0或2x 0-=,∴x=3或x=2,检验:当x=3时,2-x<0,2x -无意义,故x=3舍去,∴x=2,故答案为x=2.【点睛】本题考查了解无理方程,熟练掌握解方程的一般步骤以及注意事项是解题的关键.9.如果关于x 的方程的一个根为3,那么a= .【答案】3【解析】根据方程的解的意义,把x=3代入原方程,然后解关于a 的方程,解答后,一定要验根.【详解】∵关于x x =的一个根为3,∴x=3一定满足关于x x =,3=,方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,左边3=,右边=3,∴左边=右边,∴a=3符合题意,故填:3.10.3x -的解是___________。
(易错题精选)初中数学方程与不等式之无理方程全集汇编及答案解析(1) 一、选择题 1.方程11x -=的根是x =______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】∵11x -=∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!2.方程312x -=的根是 .【答案】x=53. 【解析】试题分析:∵312x -=,∴3x ﹣1=4,∴x=53,经检验x=53是原方程组的解,故答案为x=53. 考点:无理方程.3.方程6x x +=-的根是______.【答案】x=﹣2【解析】先把方程两边平方去根号后求解,再根据x <0,即可得出答案.解:由题意得:x <0,两边平方得:x+6=x 2,解得x=3(不合题意舍去)或x=﹣2;故答案为:x=﹣2.4.方程2=x ﹣6的根是______.【答案】x=12.【解析】两边平方,求得一元二次方程的解,进一步利用x﹣3≥0验证得出答案即可.解:2=x﹣64(x﹣3)=x2﹣12x+36整理得x2﹣16x+48=0解得:x1=4,x2=12代入x﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12.故答案为:x=12.5.31x-=的解是x=_____.【答案】4【解析】分析:这是一道无理方程,解此方程量先将无理方程两边平方,转化为一元一次方程来解.详解:两边平方得:x-3=1,移项得:x=4.经检验x=4是原方程的根.故本题答案为:x=4.点睛:本题由于两边平方,可能产生增根,所以解答以后要验根.6.2x x-+=的解为_____.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x的值,经检验即可得到无理方程的解.详解:两边平方得:-x+2=x2,即(x-1)(x+2)=0,解得:x=1或x=-2,经检验x=-2是增根,无理方程的解为x=1,故答案为x=1点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.7.方程25x+_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=28.如果关于x x=有实数根2,那么k=________.-【答案】1【解析】【分析】把x=2代入方程中进行求解即可得.【详解】,2-2k=4,解得:k=-1,经检验k=-1符合题意,所以k=-1,故答案为-1.【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.9.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x的值,然后把x的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.10.0=的根是________________.【答案】x=2【解析】【分析】=的左边进行计算,然后两边同时平方可得x2-4=0;接下来,移项后利用直接开方法解这个一元二次方程得到方程的根,然后代入原方程中检验即可确定方程的根0=,0=,0,240x -=x 2=4,x=±2当x=-2时0=的根是x=2【点睛】此题考查无理方程,掌握无理方程的求解方法是关键;11.3=的解是______.【答案】4x =【解析】【分析】把两边平方,化为整式方程求解,然后检验即可.【详解】3=,∴2x+1=9,∴2x=8,∴x=4,经检验x=4是原方程的解.故答案为:x=4.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.12.3x -的解是___________。
(专题精选)初中数学方程与不等式之无理方程易错题汇编及答案解析一、选择题1.若等式3253103x-+=成立,则x的值为__________.【答案】16【解析】【分析】将方程变形后两边同时平方即可求出x的值.【详解】x-+=∵3253103x-=-∴3251033x-=∴32593x-=∴2533两边同时平方得,2x-5=27,解得,x=16.经检验,x=16是原方程的根.故答案为:16.【点睛】此题主要考查了解无理方程,注意:解无理方程一定要验根.2.方程6xx+=-的根是______.【答案】x=﹣2【解析】先把方程两边平方去根号后求解,再根据x<0,即可得出答案.解:由题意得:x<0,两边平方得:x+6=x2,解得x=3(不合题意舍去)或x=﹣2;故答案为:x=﹣2.3.方程2=x﹣6的根是______.【答案】x=12.【解析】两边平方,求得一元二次方程的解,进一步利用x﹣3≥0验证得出答案即可.解:2=x﹣64(x﹣3)=x2﹣12x+36整理得x2﹣16x+48=0解得:x1=4,x2=12代入x﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12.故答案为:x=12.4.1=的解是x=_____.【答案】4【解析】分析:这是一道无理方程,解此方程量先将无理方程两边平方,转化为一元一次方程来解. 详解:两边平方得:x-3=1,移项得:x=4.经检验x=4是原方程的根.故本题答案为:x=4.点睛:本题由于两边平方,可能产生增根,所以解答以后要验根.5.方程(x 30-=的解是______.【答案】x=2【解析】【分析】求出x 0=,求出即可.【详解】解:(x 30-=Q ,2x 0∴-≥,x 2∴≤,x 30∴-≠,0=Q ,x 2=,故答案为:x 2=.【点睛】0=是解此题的关键.6.对正实数a ,b 定义运算法则2a b a b *=+,若310x *=,则x 的值是______.. 【解析】【分析】根据新定义,将方程3*x=10转化,再解无理方程.【详解】根据新定义,方程3*x=10+6+x=10,移项,整理得两边平方,得(x-4)2=3x ,即x 2-11x+16=0,解得经检验x=112±符合题意.故答案为112±. 【点睛】本题是一道新定义的题目,考查了无理方程,以及一元二次方程的解法,难度不大.7.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.8.1=的解是 .【答案】x =1【解析】【分析】根据算术平方根的意义,方程两边分别平方,化为整式方程,然后求解即可.【详解】两边平方得2x ﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.9.2的根是 .【答案】x=53. 【解析】2=,∴3x ﹣1=4,∴x=53,经检验x=53是原方程组的解,故答案为x=53. 考点:无理方程.10.=3的解是_____.【答案】1【解析】【分析】移项到右边,再两边同时平方=1,再两边进行平方,得x =1,从而得解.【详解】3,两边平方得,x +3=9+x ﹣,移项合并得,=6,1,两边平方得,x =1,经检验:x =1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.11.3x m =+有一个根是x=3,那么m=__________________. 【答案】2【解析】【分析】3x m =+有一个根是x=3,代入后即可求解关于m 的无理方程. 【详解】3x m =+有一个根是x=3,1m =+, 两边平方得:15-3m=1+2m+m²,解得:m=-7或2,当m=-7时,1+m=-6<0,不合题意,舍去,故答案为:2.【点睛】本题考查了无理方程,解题的关键是熟练掌握用平方法解无理方程.12.方程0x =的解是___________。
(易错题精选)初中数学方程与不等式之无理方程全集汇编及答案(1)一、选择题1.1x =+的根是__________【答案】x =2【解析】【分析】先把方程两边平方,使原方程化为整式方程x 2=4,求出x 的值,把不合题意的解舍去,即可得出原方程的解.【详解】解:方程两边平方得,2x +5=x 2+2x +1,移项合并同类项得:x 2=4,解得:x 1=2,x 2=−2,经检验x 2=−2不是原方程的解,则原方程的根为x =2;故答案为x =2.【点睛】本题考查了解无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.2.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.3.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________.【答案】0a =或316a ≥-【解析】【分析】,∴y ≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解, ∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解) 当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为:0a =或316a ≥-【点睛】 考查无理方程,难度一般,关键是掌握用换元法求解无理方程.4.5=的根为_____.【答案】﹣2或﹣7【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:,,∴(x+11)(2-x )=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解.故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.5.1=的解是 .【答案】x =1【解析】【分析】根据算术平方根的意义,方程两边分别平方,化为整式方程,然后求解即可.【详解】两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.6.方程______.x=【答案】1【解析】【分析】两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解x=.故答案为1【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.7.0=的根是________________.【答案】x=2【解析】【分析】=的左边进行计算,然后两边同时平方可得x2-4=0;接下来,移项后利用直接开方法解这个一元二次方程得到方程的根,然后代入原方程中检验即可确定方程的根【详解】=,=,0,240x-=x2=4,x=±2当x=-2时=的根是x=2【点睛】此题考查无理方程,掌握无理方程的求解方法是关键;8.的根是____.【答案】x=.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】=Q1211∴-=x22∴=x∴=经检验x=是原方程的根,x∴x=.故答案为x=.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.9.的根是.【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.10.20x=化为有理方程_______【答案】3x²+1=0【解析】【分析】先移项,然后方程两边平方即可去根号,转化为有理方程.【详解】=2x两边平方得:x²-1=4x²,即3x²+1=0.故答案是:3x²+1=0.【点睛】本题考查了无理方程的解法,利用平方法是转化为整式方程的基本方法.11.0=的解是_____________.【答案】x=2【解析】【分析】根据题意可得x=2或x=1,然后根据二次根式的性质舍去x=1.【详解】=,∴x﹣2=0或x﹣1=0,解得x=2或x=1,当x=1时,x﹣2=1﹣2=﹣1<0,舍去,则原方程的解为x=2.故答案为:x=2.【点睛】本题主要考查解方程,二次根式的性质,解此题的关键在于求出的方程的解要使二次根式有意义.12.2=的根是__________.【答案】4.【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:2x﹣4=4,解得:x=4,经检验:x=4是原方程的解.故答案为:4.【点睛】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.13.3的解是:x=_____.【答案】±2【解析】【分析】对方程左右两边同时平方,可得x2+5=9,进而可解x的值,答案注意根式有意义的条件【详解】 根据题意,有253x +=,左右两边同时平方可得x 2+5=9;解之,可得:x =±2. 故答案为:±2.【点睛】本题的关键是将方程化为二次方程,答案注意根式有意义的条件14.如果点A(3,4),B(5,a)两点之间的距离是4,那么a=_____________.【答案】423±.【解析】【分析】根据两点之间的距离公式,列出无理方程,求解即可.【详解】解:因为点A(3,4),B(5,a)两点之间的距离是4,所以22(35)(4)4a -+-=,即24(4)16a +-=, 2(4)12a -=,423a -=±,423a =±.故答案为:423±.【点睛】本题考查两点之间的距离公式,解无理方程,解一元二次方程.能利用两点之间的距离公式列出无理方程是解决此题的关键.15.如图,ABC ∆中,AB AC =, 点D 在线段BC 的延长线上, 连接AD ,CD=1,BC=12,∠DAB=30°, 则 AC =__________.【答案】39【解析】【分析】过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .根据AE+DE=AD ,分别利用勾股定理求出AE ,DE ,AD ,构建方程即可解决问题.【详解】解:过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .在Rt △ABE 中,∵∠BAE=30°,AB=x ,∴BE=12AB=12x ,33, ∵AB=AC ,AH ⊥BC ,∴CH=BH=6,在Rt △AHB 中,AH 2=x 2-62,在Rt △DBE 中,22221134BD BE x -=-, 在Rt △ADH 中,2222267AH DH x +-+ ∵AE+DE=AD , ∴2222231136724x x x +-=-+ 整理得:x 4-13×51x-(12×13)2=0,解得x 2=13×48或13×3(舍去),∵x >0,∴39,经检验:39是无理方程的解,∴39故答案为39.【点睛】本题考查勾股定理,解直角三角形,无理方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.16.能使(x -50成立的x 是____________.【答案】7【解析】【分析】由无理方程中两个因式的积为0,则至少一个为0,并检验求得的未知数的值,从而得到答案,【详解】解:因为:(0x -=所以:50x -==解得;5,7x x ==经检验:5x =不合题意舍去,所以方程的解是:7x =.故答案为:7.【点睛】本题考查无理方程的解法,熟知解法是解题关键,注意检验.17.如果方程1k -=有实数解,那么k 的取值范围是________________________. 【答案】:k≤1【解析】【分析】根据二次根式有意义的条件列出关于k 的不等式求解即可.【详解】∵1k -=,1k =-,0≥,∴10k -≥,∴k ≤1.故答案为:k≤1.【点睛】本题考查了无理方程,根据二次根式有意义的条件列出关于k 的不等式是解答本题的关键.18.下列方程中:a 、421x x +=;b 、32x x -+=;c 、31x =;d 、412x =属于高次方程的是_____.【答案】a ,d【解析】【分析】根据高次方程的定义判断即可.【详解】解:421x x +=是高次方程;32x x -+=是分式方程;31x =是无理方程;412x =是高次方程,故答案为:a ,d .【点睛】本题考查了高次方程的定义:整式方程未知数次数高于2次的方程叫高次方程.19.2x =的解是__________.【答案】1x =【解析】【分析】先左右两边同时平方,然后解整式方程即可,注意检验求出的整式方程的根是否为原方程的增根.【详解】2x =,∴22(2)x =,即2234x x += ,解得1x =或1x =-.当1x =-2,22,22x ==-≠- ,∴1x =-是原方程的增根,∴原方程的解为1x =.故答案为:1x =.【点睛】本题主要考查无理方程的解法,掌握无理方程的解法是解题的关键.20.1=的根是x =______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】1=∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!。
(易错题精选)初中数学方程与不等式之无理方程易错题汇编及答案解析一、选择题1.0=实数根的个数有___________个。
【答案】2【解析】【分析】利用移项两边平方转化为一元二次方程求解即可.【详解】0==-两边平方,得:21(1)x x x -=- ()2(1)10x x --=(1)(1)(1)0x x x -+-=11x ∴=,21x =- 经检验:把11x =,21x =-代入方程,都是原方程的解。
实数根的个数有2个.故答案为:2【点睛】本题考查了无理方程的求解,选择合适的办法把无理方程转化为一元二次方程是解题的关键.2.的根是 .【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x 的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.3.1=的解为【答案】x=1【解析】试题分析:方程两边平方即可去掉绝对值符号,解方程求得x的值,然后把x的值代入进行检验即可.试题解析:方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.考点:无理方程.4.方程_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=25.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x(x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.6.的根是____.【答案】x=.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】=Q1211∴-=x22∴=x∴=经检验x=是原方程的根,x∴x=.故答案为x=.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.7.0x=的解是____.x=-【答案】3【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x=,-,x∴3-2x=x2,∴x2+2x-3=0,∴(x+3)(x-1)=0,解得,x1=-3,x2=1,经检验,当x=1时,原方程无意义,当x=3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.8.若等式=成立,则x的值为__________.【答案】16【解析】【分析】将方程变形后两边同时平方即可求出x的值.【详解】∵3253103x -+= ∴3251033x -=- ∴32593x -= ∴2533x -=两边同时平方得,2x-5=27,解得,x=16.经检验,x=16是原方程的根.故答案为:16.【点睛】此题主要考查了解无理方程,注意:解无理方程一定要验根.9.如果关于x 的方程的一个根为3,那么a= .【答案】3【解析】【分析】根据方程的解的意义,把x=3代入原方程,然后解关于a 的方程,解答后,一定要验根.【详解】∵关于x 2x a x +=的一个根为3,∴x=3一定满足关于x 2x a x +=,63a +=,方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,左边2333?=,右边=3,∴左边=右边,∴a=3符合题意,故填:3.10.方程2111x x x +-=-___________。
(易错题精选)初中数学方程与不等式之无理方程难题汇编附答案解析一、选择题1.如果方程V2T~5 2 k无实数根,那么k的取值范围是 .【答案】kv 2【解析】【分析】根据无理方程有实数根,则J X=b, b>Q得关于k的不等式,解得即可.【详解】解:..2T3 2 k,••- ,.2x 5 k-2,k-2 v 0,解得:k v 2.故答案是:k v 2.【点睛】本题考查了无理方程根的情况,解题的关键是了解二次根式成立的条件.2 .方程V x2 x的解为.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x的值,经检验即可得到无理方程的解. 详解:两边平方得:-x+2=x2,即(x-1)(x+2) =0, 解得:x=1或x=-2, 经检验x=-2是增根,无理方程的解为x=1, 故答案为x=1 点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.3.方程x 3 J2 x 0的解是.【答案】x=2【解析】【分析】求出x的范围,得出方程J2—x 0,求出即可.【详解】解:Q x 3 J2 x 0 ,2x0,x 2,x 3 0,Q 2 x 0,x 2,故答案为:x 2 .【点睛】本题考查了解无理方程和二次根式有意义的条件,能得出方程T^x 0是解此题的关键.4.方程x+1 = j2x 5的解是.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=25.方程J x 3 2的解是.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,代入原方程得T^3=2,原方程成立,故方程j x―3 = 2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.6.方程JxgMx- 1 = 0的根是.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x (x-1) =0,x=0 或x-1=0,x=0 或x=1,•■-x=0 时,被开方数x-1=-1v 0,••-x=0不符合题意,舍去,•.•方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.7.如果关于x的无理方程寸^―2 1 k 0没有实数根,那么k的取值范围是【答案】k 1【解析】【分析】根据关于x的无理方程J x 2=1+k没有实数根,可知1-kv 0,从而可以求得k的取值范围. 【详解】•••关于x的无理方程J x 2 =1-k没有实数根,1-kv 0,解得,k 1,故答案为:k 1.【点睛】本题考查无理方程,解题的关键是明确无理方程的解答方法,无实数根应满足什么条件.8.方程J2x 1 = 3的解是.【答案】x 5【解析】分析:把方程两边平方,去根号后求解.详解:两边同时平方,得:2x 1 9,解得:x 5,经检验,x 5是原方程的解.故答案为x 5.点睛:考查无理方程的解法,解无理方程通常用的方法是两边平方法或者换元法9.如果关于x的方程的一个根为3,那么a=.【答案】3【解析】【分析】根据方程的解的意义,把x=3代入原方程,然后解关于a的方程,解答后,一定要验根【详解】,•,关于x的方程J2x + a = x的一个根为3,•■- x=3 一定满足关于x的方程J2x +a = x ,. . .. 6+a = 3 ,方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,左边=J2? 3 3 = 3,右边=3,左边=右边,•■-a=3符合题意,故填:3.10.方程J x26x 9 3 x的解是。
(易错题精选)初中数学方程与不等式之无理方程易错题汇编及答案一、选择题1.方程11x-=的解为_____.【答案】x=2【解析】【分析】x-=两边同时乘方,即可解答.将无理方程11【详解】方程两边平方得:x﹣1=1,解得:x=2,经检验x=2是原方程的解,故答案为:x=2【点睛】本题考点为无理方程求解,熟练掌握相关知识点是解题关键.2.方程-x=1的根是______【答案】x=3【解析】【分析】先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.【详解】解:整理得:=x+1,方程两边平方,得:2x+10=x2+2x+1,移项合并同类项,得:x2=9,解得:x1=3,x2=-3,经检验,x2=-3不是原方程的解,则原方程的根为:x=3.故答案为:x=3.【点睛】本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.3.如果关于x x21k0++=没有实数根,那么k的取值范围是___________________.k>【答案】1【解析】【分析】x+没有实数根,可知1-k<0,从而可以求得k的取值范根据关于x2围.【详解】∵关于x =1-k 没有实数根,∴1-k <0,解得,k >1,故答案为:k >1.【点睛】本题考查无理方程,解题的关键是明确无理方程的解答方法,无实数根应满足什么条件.4.0=实数根的个数有___________个。
【答案】2【解析】【分析】利用移项两边平方转化为一元二次方程求解即可.【详解】0==-两边平方,得:21(1)x x x -=- ()2(1)10x x --=(1)(1)(1)0x x x -+-=11x ∴=,21x =- 经检验:把11x =,21x =-代入方程,都是原方程的解。
实数根的个数有2个.故答案为:2【点睛】本题考查了无理方程的求解,选择合适的办法把无理方程转化为一元二次方程是解题的关键.5.3x =的解是___________。
(易错题精选)初中数学方程与不等式之不等式与不等式组难题汇编及答案一、选择题1 .若关于x 的不等式组[上2, f 10无解,且关于y 的分式方程=2 -二匕有非正 口 6匕.u y +3 y + 3整数解,则符合条件的所有整数k 的值之和为()A. - 7B. - 12C. - 20D. - 34【答案】B 【解析】 【分析】先根据不等式组无解解出 k 的取值范围,再解分式方程得 y 」^_,根据方程有解和非正fc + 2整数解进行综合考虑 k 的取值,最后把这几个数相加即可. 【详解】• .10+2k>2+k,解得 k> — 8.解分式方程 丝二=2 一 两边同时乘y+3 y+3ky- 6=2 (y+3) - 4y,〃“口12 解得y= ------ .k + 2因为分式方程有斛,. • -------- a 3 ,即k+2w- 4,斛得kw- 6 .fc + 2又•.•分式方程的解是非正整数解,,k+2=- 1, -2, -3, -6, -12.解得 k= — 3, — 4, — 5, —8, — 14. 又「 k> — 8, 「♦k= - 3, —4, —5. 贝[f- 3-4-5= - 12. 故选:B. 【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意 义,以及分式方程有解的情况.【答案】D 【解析】•••不等式组x-k<2x - 2k >10 无解,y+3),得2,若旧工在实数范围内有意义,则 x 的取值范围在数轴上表示正确的是(【分析】x+2>0,再解不等式即可.根据二次根式有意义的条件:被开方数为非负数可得【详解】••・二次根式、,x 2在实数范围内有意义,・•・被开方数x+2为非负数,..・x+2 四,解得:x>2.故答案选D. 【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.3.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为()A. 210x 90(18 x) 2100B. 90x 210(18 x) 2100C. 210x 90(18 x) 2.1 D, 210x 90(18 x) 2.1【答案】A【解析】设至少要跑x分钟,根据“1吩钟走的路程》210怵”可得不等式:210x+90(18二) 》2100 故选A.3x 6 04.不等式组的所有整数解的和为()4 2x 0A. 1B. 1C. 2D. 2【答案】D【解析】【分析】求出不等式组的解集,再把所有整数解相加即可. 【详解】3x 6 04 2x 03x 6 0解得x 24 2x 0解得2 x・•.不等式组的解集为2x2・•.不等式组的所有整数解为2, 1,0,1・•.不等式组的所有整数解之和为2 10 1 2故答案为: D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.5. 若 m n ,则下列不等式中成立的是 ( )A . m+a<n+bB . ma>nbC . ma 2>na 2D . a-m<a-n【答案】 D【解析】 【分析】根据不等式的性质判断. 【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当 a=0 时,错误;D.不等式两边都乘-1,不等号的方向改变,者防口a,不等号的方向不变,正确;故选 D.点睛:不等式的性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘 (或除以)同一个负数,不等号的方向改变.xm06 .关于x 的不等式组恰有五个整数解,那么 m 的取值范围为()2x 3 3 x 2A . 2 m 1B . 2 m 1C . m 1D . m 2【答案】 A【解析】 【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出 m 的取值范围.【详解】解不等式 ① ,得: x m ,解不等式 ② ,得:x 3,・ •.不等式组的解集为:m x 3, ・ . •不等式组恰有五个整数解, ・••整数解分别为:3、2、1、0、1;m 的取值范围为 2 m 1 ;故选: A .解:xm02x 3 3 x 2本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求 出不等式组的解集,从而求出m 的取值范围.x 1人7,不等式组的解集在数轴上可以表不为()x 3A.--- B -^B. I , 1AC.」Hl?-10;0 1【解析】【分析】 分别解不等式组中的每一个不等式,再求解集的公共部分. 【详解】 由-xW I 得x 川, 则不等式组的解集为-KX 3. 故选:B. 【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方 法,注意数轴的空心、实心的区别.8.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为米,列出不等式组,求出 x 的取值范围即可.解:设与墙垂直的一边的长为 x 米,根据题意得:40 3x 25,40 3x 30 …10 解得:一wx^53故选:D.D.30米,要使靠墙的边不小于25米,那么与墙垂直的一边的长度 x 的取值范围为( t*A. 0 米 x 5米B.C. 0米 x —米3D.竺米x3设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于 25U此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列 出不等式组,注意本题要用数形结合思想.2a 5y 1即可.【详解】解:「不等式(a-2). a 2 0, 2a 5 , ---- 4 , a 2.一 3 解得a 一 ,2.•-2a=3,・•.不等式2a-5y >1整理为3 5y 1 , 一 12 斛得:y 一 .5故选:B. 【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以) 同一个负数,不等号的方向改变.10.某种商品的进价为 800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A. 6折B. 7折C. 8折D. 9折【答案】B 【解析】 【详解】9.如果不等式(a2)x 2a 5的解集是 x 4 ,则不等式2a5y 1的解集是()A. yB.C.2D. y 一5根据不等式的性质得出c 2a 0,——4, 解得a2a=3,再解不等式x> 2a-5的解集是xv 4,设可打x 折,则有1200X--800 >800 X 5%10解得x>7.即最多打7 折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.11.已知x=2是不等式x 5 ax 3a 2 0的解,且x=l不是这个不等式的解,则实数a 的取值范围是( )A. a>1B. a<2C. 1<a<2D. 1< a<2【答案】 C【解析】. x=2 是不等式(x-5)(ax-3a+2) ? 0 的解,,(2- 5)(2a- 3a+2)? 0,解得:a? 2,,. x=1不是这个不等式的解,,(1-5)(a-3a+2)>0,解得:a>1,••.1<a?2,故选C.12 .关于x 的不等式4x 12 的正整数解有( )A.0 个B.1 个C.3 个D.4 个【答案】 C【解析】【分析】先解不等式求出解集,根据解集即可确定答案.【详解】解不等式4x 12 得x 3,,该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.x5313 .不等式组的整数解的个数是( )x 6 4x 3A.2 B.3 C.4 D.5【答案】 C【解析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.x 5 3① x 6 4x 3②‘由①得:x>-2, 由②得:x<3,所以不等式组的解集为:-2<x<3, 整数解为-1, 0, 1, 2,共4个, 故选C. 【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的 确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大 小小无解了.2的解集在数轴上表示为2先解不等式组,然后根据不等式组的解集判断即可. 【详解】2x 2① x 2②由①,得x> 1, 由②,得x*Z・,.不等式组的解集为 1vxwz 故选C. 【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.x a, 0 ,15.若关于x 的不等式组的整数解只有3个,则a 的取值范围是()5 2x 1A. 6Qv7B. 5<a<6C. 4<a<5D. 5<a<6【答案】B 【解析】2x 14.不等式组x()根据解不等式可得,2vxQ,然后根据题意只有3个整数解,可得a的范围.【详解】解不等式x- aWQ得:x<a,解不等式5-2xv1,得:x>2,则不等式组的解集为2vxQ.•••不等式组的整数解只有3个,・•.5Qv6.故选:B.【点睛】本题主要考查不等式的解法,根据题意得出 a 的取值范围是解题的关键.16.如果a b , c 0 ,那么下列不等式成立的是()A. a c b B.a c b cC.ac 1 bc 1 D.a c 1 b c 1【答案】 D【解析】【分析】根据不等式的性质即可求出答案.【详解】解:c 0 ,c 1 1 ,. a b,..a c 1 b c 1 ,故选:D.【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.17,已知实数a(a 0), b, c满足a b c 0, 2a b 0,则下列判断正确的是().2A. c a,b24ac B.c a ,b24acC.c a,b24ac D.c a,b24ac【答案】 A【解析】【分析】由2ab 0,可得b 2a,代入a b c 0可得答案,再由b 2a得至Ub2 4a2,禾U 用已证明的基本不等式 c a ,利用不等式的基本性质可得答案.解:Q 2a b 0,b 2a, b 2 4a 2,Q a b c< 0,a 2a c< 0,c< a,Q a> 0, 4a>0,2一4a >4ac,「2、b >4ac.故选A.【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题关键.6x + 218 .不等式x- 2> ------- 的解集是( )4A. xv - 5B. x>-5C. x> 5D. xv 5 【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得. 【详解】去分母得:4x- 8>6x+2,移项、合并同类项,得:-2x> 10,系数化为1 ,得:x< - 5.故选A.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其 需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 3x 1, 519 .如图,不等式组 2x 1 5根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上 表示出两个解集找公共部分即可 .的解集在数轴上表示为(A.C.【详解】3x 1 5 ①由题意可知:不等式组,…,不等式①的解集为x 2,不等式②的解集为2x 1 5 ②2x3,在数轴上表示应为x 3 ,不等式组的解集为故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.x a 220.如果关于x的不等式组无解,则a的取值范围是()x 3a 2A. a<2B. a>2C. a>2D. a<2【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a的范围即可.【详解】一…… x> a 2……,•,不等式组无解,,a+2>a- 2,解得:a<2x< 3a 2故选D.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.。
(易错题精选)初中数学方程与不等式之无理方程难题汇编一、选择题 1.方程253x +=的解是:x =_____.【答案】±2【解析】【分析】对方程左右两边同时平方,可得x 2+5=9,进而可解x 的值,答案注意根式有意义的条件【详解】根据题意,有253x +=,左右两边同时平方可得x 2+5=9;解之,可得:x =±2. 故答案为:±2.【点睛】本题的关键是将方程化为二次方程,答案注意根式有意义的条件2.方程x =-x 的解是__________ ;【答案】x=0【解析】两边平方,得2x x =,分解因式,得()10x x -=,解得120,1x x ==,经检验,21x =不符合题意,舍去,所以原方程的解为x =0.故答案为x =0.3.方程的解为 .【答案】3.【解析】首先把方程两边分别平方,然后解一元二次方程即可求出x 的值.解:两边平方得:2x+3=x 2∴x 2﹣2x ﹣3=0,解方程得:x 1=3,x 2=﹣1,检验:当x 1=3时,方程的左边=右边,所以x 1=3为原方程的解,当x 2=﹣1时,原方程的左边≠右边,所以x 2=﹣1不是原方程的解.故答案为3.4.6x x +=-的根是______.【答案】x=﹣2【解析】先把方程两边平方去根号后求解,再根据x <0,即可得出答案.解:由题意得:x<0,两边平方得:x+6=x2,解得x=3(不合题意舍去)或x=﹣2;故答案为:x=﹣2.5.1=的解是x=_____.【答案】4【解析】分析:这是一道无理方程,解此方程量先将无理方程两边平方,转化为一元一次方程来解.详解:两边平方得:x-3=1,移项得:x=4.经检验x=4是原方程的根.故本题答案为:x=4.点睛:本题由于两边平方,可能产生增根,所以解答以后要验根.6.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,=2,原方程成立,=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.7.的解是_________x=-或【答案】14【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x2-3x=4,即x2-3x-4=0,解得x1=-1,x2=4x=-或故答案为:14【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.8.方程320x x -⋅-=的解是_______________【答案】x=2【解析】【分析】由题意可知3-x=0或2-x=0,再结合二次根式有意义的条件即可求得答案.【详解】∵3x 2x 0-⋅-=,∴3x -=0或2x 0-=,∴x=3或x=2,检验:当x=3时,2-x<0,2x -无意义,故x=3舍去,∴x=2,故答案为x=2.【点睛】本题考查了解无理方程,熟练掌握解方程的一般步骤以及注意事项是解题的关键.9.方程6x x +=的根为 .【答案】x=3【解析】两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.+2x x =的根是__________.【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x 2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x 2即x 2−x−2=0∴(x −2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为:2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.11.0=的解是_____________.【答案】x=2【解析】【分析】根据题意可得x=2或x=1,然后根据二次根式的性质舍去x=1.【详解】=,∴x﹣2=0或x﹣1=0,解得x=2或x=1,当x=1时,x﹣2=1﹣2=﹣1<0,舍去,则原方程的解为x=2.故答案为:x=2.【点睛】本题主要考查解方程,二次根式的性质,解此题的关键在于求出的方程的解要使二次根式有意义.12.x=的解为_____.【答案】3【解析】【分析】根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.【详解】解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.【点睛】此题考查无理方程的解,解题关键在于掌握运算法则13.4的解是_____.x=【答案】15【解析】【分析】两边同时平方,即可求出方程的解.【详解】=,4x+=两边同时平方可得:116,x=解得:15.x=符合题意.经检验,15x=故答案为15【点睛】考查无理方程的解法,两边同时平方是解题的关键.14.x=-的根是.x=-【答案】1【解析】【分析】将方程左右两边平方,将方程化为关于x的一元二次方程,求出方程的解得到x的值,将x的值代入原方程检验,即可得到原方程的解.【详解】左右两边平方得:2x+3=x2,即x2-2x-3=0,因式分解得:(x-3)(x+1)=0,解得:x=3或x=-1,将x=3代入方程检验,不合题意,则原方程的解为x=-1.故答案为x=-115.根号内含有______________的方程叫做无理方程;_______________和_______________统称为有理方程.【答案】未知数的代数式整式方程分式方程【解析】【分析】根据有理方程和无理方程的概念解答.【详解】解:根号内含有未知数的代数式的方程叫做无理方程,整式方程和分式方程统称为有理方程.故答案为:未知数的代数式;整式方程;分式方程.【点睛】本题考查了方程的分类,掌握有理方程和无理方程的概念是解题的关键.16.x =-的解是__________.【答案】3x =-【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x =-,∴3-2x=x 2,∴x 2+2x-3=0,∴(x+3)(x-1)=0,解得,x 1=-3,x 2=1,经检验,当x=1时,原方程无意义,当x=-3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.17.能使(x -50成立的x 是____________.【答案】7【解析】【分析】由无理方程中两个因式的积为0,则至少一个为0,并检验求得的未知数的值,从而得到答案,【详解】解:因为:(0x -=所以:50x -==解得;5,7x x ==经检验:5x =不合题意舍去,所以方程的解是:7x =.故答案为:7.【点睛】本题考查无理方程的解法,熟知解法是解题关键,注意检验.18.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.19.2x =的解是__________.【答案】1x =【解析】【分析】先左右两边同时平方,然后解整式方程即可,注意检验求出的整式方程的根是否为原方程的增根.【详解】2x =,∴22(2)x =,即2234x x += ,解得1x =或1x =-.当1x =-2,22,22x ==-≠- ,∴1x =-是原方程的增根,∴原方程的解为1x =.故答案为:1x =.【点睛】本题主要考查无理方程的解法,掌握无理方程的解法是解题的关键.20.k =有实数根,则k 的取值范围为___________【答案】【解析】【分析】方程两边同时平方,再移项,根据x 2≥0求解即可.【详解】k =,∴222x k +=,即222x k =-,k-≥,∴220∴k或k≤=有实数根,k∴k>0,∴k.故答案为:.【点睛】本题主要考查无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.。