DROPS-Calculator-Metric-A4
- 格式:pdf
- 大小:754.24 KB
- 文档页数:2
质谱都有几种工作模式:SIM,SRM,MRMSIM :单离子检测扫描(single ion monitoring)SRM :选择反应检测扫描(selective reaction monitoring)MRM :多反应检测扫描(multi reaction monitoring)质谱都有几种工作模式:(1)Full Scan:全扫描,指质谱采集时,扫描一段范围,选择这个工作模式后,你自己来设定一个范围,比如:150~500 amu。
对于未知物,一定会做这种模式,因为只有Full Scan了,才能知道这个化合物的分子量。
对于二级质谱MS/MS或多级质谱MSn时,要想获得所有的碎片离子,也得做全扫描。
(2)SIM:Single Ion Monitor,指单离子监测,针对一级质谱而言,即只扫一个离子。
对于已知的化合物,为了提高某个离子的灵敏度,并排除其它离子的干扰,就可以只扫描一个离子。
这时候,还可以调整一下分辨率来略微调节采样窗口的宽度。
比如,要对500 amu的离子做SIM,较高高分辨状态下,可以设定取样宽度为1.0,这时质谱只扫499.5~500.5 amu。
还有些高分辨率的仪器,可以设定取样宽度更小,比如0.2 amu,这时质谱只扫499.9~500.1 amu。
但对于较纯的、杂质干扰较少的体系,不妨设定较低的分辨率,比如取样宽度设为2 amu,这时质谱扫描499~501 amu,如果没有干扰的情况下,取样宽度宽一些,待测化合物的灵敏度就高一些,因为噪音很低;但是有很强干扰情况下,设定较高分辨,反而提高灵敏度信噪比,因为噪音降下去了。
(3)SRM:Selective Reaction Monitor,指选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也只选一个离子。
因为两次都只选单离子,所以噪音和干扰被排除得更多,灵敏度信噪比会更高,尤其对于复杂的、基质背景高的样品。
试卷查看一、单选题共50道题,总分50分。
1、DELC卡最多可配置()块,每块实现4路E1信号的防雷,共实现12路E1信号防雷。
4321考生答案:B参考答案:B2、双密度基站,以下哪个操作肯定会影响整个基站业务:__C02版本更换备用DTMU板DDPU下电更换DTRU下电更换加载激活NFCB软件考生答案:B参考答案:B3、LMT可以通过()维护DBS系统BBURRUGTMUCPRI考生答案:A参考答案:A4、以下那项不属于DBS3900基站的配置___。
UPEAUEIUGRFUBSBC考生答案:C参考答案:C5、BTS3012机柜配置成S3/3/3时,最少需要多少个DTRU模块和多少个DDPU模块,答案是6、66、46、36、2考生答案:A参考答案:C6、双极化定向天线通常被用于替换全向天线使用全向或定向天线使用单极化定向天线使用以上都不对考生答案:C参考答案:C7、以下功能中哪些不是华为TMU板完成的功能?__信道编码加密自适应均衡GMSK调制考生答案:A参考答案:D8、()模块为BBU电源模块,支持-48V直流输入,供电给BBU各单板、模块和风扇,同时支持多路环境监控信号接入UPEAUBFAC、GTMUGTMUUEIU考生答案:D参考答案:A9、BTS3002C基站静态功率级别分为()级1011618考生答案:A参考答案:A10、DCCU的面板接口中,用于E1信号输入的是()接口TRANTo_FANTO_TOP1POWER考生答案:A参考答案:A11、机房环境对湿度度的要求长期条件40%~65%长期条件30%~55%长期条件<65%长期条件>25%考生答案:A参考答案:A12、某BTS3012基站出现驻波比告警,不可能导致这种现象的是:DDPU或DCOM故障基站的DTMU单板损坏BIASTEE或塔放故障馈线及其接头故障考生答案:B参考答案:B13、BTS3002C动态功率控制级别分为()级12131415考生答案:D参考答案:D14、当机房上没有铁塔,天线是固定在支撑杆时,要求馈线在由楼面拐弯下机房前约()米接地。
trimAl: a tool for automated alignment trimming in large-scale phylogenetics analyses Salvador Capella-Gutiérrez, Jose M. Silla-Martínez and Toni GabaldónTutorialVersion 1.2trimAl tutorialtrimAl is a tool for the automated trimming of Multiple Sequence Alignments. A format inter-conversion tool, called readAl, is included in the package. You can use the program either in the command line or webserver versions. The command line version is faster and has more possibilities,so it is recommended if you are going to use trimAl extensively.The trimAl webserver included in Phylemon 2.0 provides a friendly user interface and the opportunity to perform many different downstream phylogenetic analyses on your trimmed alignment. This document is a short tutorial that will guide you through the different possibilities of the program.Additional information can be obtained from where a more comprehensive documentation is available.If you use trimAl or readAl please cite our paper:trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Salvador Capella-Gutierrez;Jose M.Silla-Martinez;Toni Gabaldon.Bioinformatics 2009 25: 1972-1973.If you use the online webserver phylemon or phylemon2, please cite also this reference:Phylemon:a suite of web tools for molecular evolution,phylogenetics and phylogenomics.Tárraga J, Medina I, Arbiza L, Huerta-Cepas J, Gabaldón T, Dopazo J, Dopazo H. Nucleic Acids Res. 2007 Jul;35 (Web Server issue):W38-42.1. Program Installation.If you have chosen the trimAl command line version you can download the source code from the Download Section in trimAl's wikipage.For Windows OS users, we have prepared a pre-compiled trimAl version to use in this OS. Once the user has uncompressed the package, the user can find a directory,called trimAl/bin, where trimAl and readAl pre-compiled version can be found.Meanwhile for the OS based on Unix platform, e.g. GNU/Linux or MAC OS X, the user should compile the source code before to use these programs. To compile the source code, you have to change your current directory to trimAl/source and just execute "make".Once you have the trimAl and readAl binaries program, you should check if trimAl is running in appropriate way executing trimal program before starting this tutorial.2. trimAl. Multiple Sequence Alignment dataset.In order to follow this tutorial, we have prepared some examples. These examples have been taken from and you can use the codes from these files to get more information about it in this database.You can find three different directories called Api0000038, Api0000040 and Api0000080 with different files. The directory contains these files:A file .seqs with all the unaligned sequences.A file .tce with the Multiple Sequence Alignment produced by T-Coffee1.A file .msl with the Multiple Sequence Alignment produced by Muscle2.A file .mft with the Multiple Sequence Alignment produced by Mafft3.A file .clw with the Multiple Sequence Alignment produced by Clustalw4.A file .cmp with the different names of the MSAs in the directory. This file would be used by trimAl to get the most consistent MSA among the different alignments.You can use any directory to follow the present tutorial.3. Useful trimAl's features.Among the different trimAl parameters, there are some features that can be useful to interpret your alignment results:-htmlout filename. Use this parameter to have the trimAl output in an html file. In this way you can see the columns/sequences that trimAl maintains in the new alignment in grey color while the columns/sequences that have been deleted from the original alignment are in white color.-colnumbering. This parameter will provide you the relationship between the column numbers in the trimmed and the original alignment.-complementary. This parameter lets the user get the complementary alignment, in other words,when the user uses this parameter trimAl will render the columns/sequences that would be deleted from the original alignment.-w number. The user can change the windows size, by default 1, to take into account the surrounding columns in the trimAl's manual methods. When this parameter is fixed, trimAl take into account number columns to the right and to the left from the current position to compute any value, e.g. gap score, similarity score, etc. If the user wants to change a specific windows size value should use the correspond parameter-gw to change window size applied only a gap score assessments, -sc to change window size applied only to similiraty score calculations or -cw to change window size applied only to consistency part.4. Useful trimAl's/readAl's features.Both programs, trimAl and readAl, share common features related to the MSA conversion. It is possible to change the output format for a given alignment, by default the output format is the same than the input one, you can produce an output in different format with these options: -clustal. Output in CLUSTAL format.-fasta. Output in FASTA format.-nbrf. Output in PIR/NBRF format.-nexus. Output in NEXUS format.-mega. Output in MEGA format.-phylip3.2. Output in Phylip NonInterleaved format.-phylip. Output in Phylip Interleaved format.5. Getting Information from Multiple Sequence Alignment.trimAl computes different scores, such as gap score or similarity score distribution, from a given MSA. In order to obtain this information, we can use different parameters through the command line version.To do this part,we are going to use the MSA called Api0000038.msl.This file is in the Api0000038 directory.$ cd Api0000038$ trimal -in Api0000038.msl -sgt$ trimal -in Api0000038.msl -sgc$ trimal -in Api0000038.msl -sct$ trimal -in Api0000038.msl -scc$ trimal -in Api0000038.msl -sidentYou can redirect the trimAl output to a file. This file can be used in subsequent steps as input of other programs, e.g.gnuplot,,microsoft excel,etc,to do plots of this information.$ trimal -in Api0000038.msl -scc > SimilarityColumnsFor instance, in the lines below you can see how to plot the information generated by trimAl using the GNUPLOT program.$ gnuplotplot 'SimilarityColumns' u 1:2 w lp notitleset yrange [-0.05:1.05]set xrange [-1:1210]set xlabel 'Columns'set ylabel 'Residue Similarity Score'plot 'SimilarityColumns' u 1:2 w lp notitleexitIn this other example you can see the gaps distribution from the alignment. This plot also was generated using GNUPLOT$ trimal -in Api0000038.msl -sgt > gapsDistribution$ gnuplotset xlabel '% Alignment'set ylabel 'Gaps Score'plot 'gapsDistribution' u 7:4 w lp notitleexit6. Using user-defined thresholds.If you do not want to use any of the automated procedures included in trimAl (see sections 7 and 8) you can set your own thresholds to trim your alignment. We will use the parameter -htmlout filename for each example so differences can be visualized. In this example, we will use the Api0000038.msl file from the Api0000038 directory.Firstly, we are going to trim the alignment only using the -gt value which is defined in the [0 - 1] range. In this specific example, those columns that do not achieve a gap score, at least, equal to 0.190, meaning that the fraction of gaps on these columns are smaller than this value, will be deleted from the input alignment.$ trimal -in Api0000038.msl -gt 0.190 -htmlout ex01.htmlYou can see different parts of the alignment in the image below.This figure has been generated from the trimAl's HTML file for the previous example.In this other example, we can see the effect to be more strict with our threshold. An usual consequence of higher stringency is that the trimmed MSA has fewer columns. Be careful so you do not remove too much signal$ trimal -in Api0000038.msl -gt 0.8 -htmlout ex02.htmlTo be on the safe side, you can set a minimal fraction of your alignment to be conserved. In this example,we have reproduced the previous example with the difference that here we required to the program that, at least, conserve the 80% of the columns from the original alignment. This will remove the most gappy 20% of the columns or stop at the gap threshold set.$ trimal -in Api0000038.msl -gt 0.8 -cons 80 -htmlout ex03.htmlSecondly,we are going to introduce other manual threshold-st value.In this case,this threshold,also defined in the[0-1]range,is related to the similarity score.This score measures the similarity value for each column from the alignment using the Mean Distance method, by default we use Blosum62 similarity matrix but you can introduce any other matrix (see the manual). In the example below, we have used a smaller threshold to know its effect over the example.$ trimal -in Api0000038.msl -st 0.003 -htmlout ex04.htmlIn this example, similar to the previous example, we have required to conserve a minimum percentage of the original alignment in a independent way to fixed by the similarity threshold.A given threshold maintains a larger number of columns than the cons threshold, trimAl selects this first one.$ trimal -in Api0000038.msl -st 0.003 -cons 30 -htmlout ex05.htmlThirdly, we are going to see the effect of combining two different thresholds. In this case, trimAl only maintains those columns that achieve or pass both thresholds.$ trimal -in Api0000038.msl -st 0.003 -gt 0.19 -htmlout ex06.htmlFinally, we are going to see the effect of combining two different thresholds with the cons parameter. In this case, if the number of columns that achieve or pass both thresholds is equal or greater than the percentage fixed by cons parameter, trimAl chose these columns. However, if the number of columns that achieve or pass both thresholds is less than the number of columns fixed by cons parameter, trimAl relaxes both to thresholds in order to retrieve those columns that lets to achieve this minimum percentage.$ trimal -in Api0000038.msl -st 0.003 -gt 0.19 -cons 60 -htmlout ex07.html7. Selection of the most consistent alignment.trimAl can select the most consistent alignment when more than one alignment is provided for the same sequences (and in the same order) using the -compareset filename parameter. To do this part, we are going to move to Api0000040 directory, we can find there a file calledApi0000040.cmp listing the alignment paths. Using this file, we execute the instruction below to select the most consistent alignment among the alignment provided$ trimal -compareset Api0000040.cmpAs in previous section, once trimAl has selected the most consistent alignment, we can get information about the alignment selected using the appropriate parameters. For example, we can use the follow instructions to know the consistency value for each column in the alignment or its consistency values distribution$ trimal -compareset Api0000040.cmp -sct$ trimal -compareset Api0000040.cmp -sccAlso, we can trim the selected alignment using a specific threshold related to the consistency value. To do that, we should use the -ct value where the value is a number defined in the [0 - 1] range. This number refers to the average conservation of residue pars in that column with respect to the other alignments.$ trimal -compareset Api0000040.cmp -ct 0.6 -htmlout ex08.htmlOn the same way than the previous section, we can define a minimum percentage of columns that should be conserve in the new alignment. For this purpose, we have to use the cons parameter as we explained before.$ trimal -compareset Api0000040.cmp -ct 0.6 -cons 50 -htmlout ex09.htmlFinally, we can combine different thresholds, in fact, we can use all of them as well as we can define a minimum percentage of columns that should be conserve in the output alignment. In the line below, you can see an example of this situation.$ trimal -compareset Api0000040.cmp -ct 0.6 -cons 50 -gt 0.8 -st 0.01-htmlout ex10.html8. Applying automated methods.One of the most powerful aspects of trimAl is that it provides you with several automated options.This option will automatically select the most appropriate thresholds for your alignment after examining the distribution of various parameters along your alignment. Among the alignment features that trimAl takes into account to compute these optimal cut-off are the gap distribution, the similarity distribution, the identity score, etc.You can find a complete explanation about all of these methods in the trimAl's Publications Section.Here,we provide some examples on how to use these methods.The automated methods, gappyout, strict and strictpus, can be used independently if you are working with one or more than one alignment, in the last case, for the same sequences.In the lines below, you can see how to use the gappyout method in both ways. This method will eliminate the most gappy fraction of the columns from your alignment. For this, we are going to continue using the same directory than the previous section.$ trimal -compareset Api0000040.cmp -gappyout -htmlout ex11.html$ trimal -in Api0000040.mft -gappyout -htmlout ex12.htmlIn this case, we are going to use the same files than in the example before but we have changed the method to trim the alignmnet. Now, we are using strict and strictplus methods. These two methods combine the information on the fraction of gaps in a column and their similarity scores, being strictplus for more stringent than strict method.$ trimal -compareset Api0000040.cmp -strict -htmlout ex13.html$ trimal -in Api0000040.clw -strictplus -htmlout ex14.htmling an heuristic method to decide which is the best automated method for a given MSA.Finally, we implemented an heuristic method to decide which is the best automated method to trim a given alignment. The heuristic method takes into account alignment features such as the number of sequences in the alignment as well as some measures about the identity score among the sequences in the alignment or among the best pairwise sequences in that MSA. According to these characteristics trimAl will decide upon one of the two automated methods (gappyout or strictplus).To illustrate how to use this method, we provide a couple of example using the same directory than the section before. First, we used trimAl to selecte the most consistent alignment and then we trimmed that alignmnet using our heuristic method.$ trimal -compareset Api0000040.cmp -automated1 -htmlout ex15.htmlThen, we trim a single MSA using the previously mentioned method.$ trimal -in Api0000040.msl -automated1 -htmlout ex16.html10. Getting more information.We hope that this short introduction to trimAl's features has been useful to you.We advise you to visit periodically the trimAl's wikipage()where you could get the latest news about the program as well as more information, examples, etc, about trimAl's package. You can also subscribe to the mailing list if you want to be updated in new trimAl developing.11. References.1.T-Coffee: A novel method for fast and accurate multiple sequence alignment.Notredame C, Higgins DG, Heringa J. J Mol Biol. 2000 Sep 8;302(1):205-17.2.MUSCLE:multiple sequence alignment with high accuracy and highthroughput. Edgar RC.Nucleic Acids Res. 2004 Mar 19;32(5):1792-7.3.MAFFT: a novel method for rapid multiple sequence alignment based on fastFourier transform. Katoh K, Misawa K, Kuma K, Miyata T. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66.4.CLUSTAL W:improving the sensitivity of progressive multiple sequencealignment through sequence weighting,position-specific gap penalties and weight matrix choice. Thompson JD, Higgins DG, Gibson TJ. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80.。
Features Array•Fast Read Access Time – 70 ns•Automatic Page Write Operation–Internal Address and Data Latches for 64 Bytes•Fast Write Cycle Times–Page Write Cycle Time: 10 ms Maximum (Standard)2 ms Maximum (Option – Ref. AT28HC64BF Datasheet)–1 to 64-byte Page Write Operation•Low Power Dissipation–40 mA Active Current–100µA CMOS Standby Current•Hardware and Software Data Protection•DATA Polling and Toggle Bit for End of Write Detection•High Reliability CMOS Technology–Endurance: 100,000 Cycles–Data Retention: 10 Years•Single 5 V ±10% Supply•CMOS and TTL Compatible Inputs and Outputs•JEDEC Approved Byte-wide Pinout•Industrial Temperature Ranges•Green (Pb/Halide-free) Packaging Option Only1.DescriptionThe AT28HC64B is a high-performance electrically-erasable and programmable read-only memory (EEPROM). Its 64K of memory is organized as 8,192 words by 8 bits. Manufactured with Atmel’s advanced nonvolatile CMOS technology, the device offers access times to 55 ns with power dissipation of just 220 mW. When the device is deselected, the CMOS standby current is less than 100µA.The AT28HC64B is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow writing of up to 64 bytes simultaneously. During a write cycle, the addresses and 1 to 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA polling of I/O7. Once the end of a write cycle has been detected, a new access for a read or write can begin.Atmel’s AT28HC64B has additional features to ensure high quality and manufactura-bility. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mecha-nism is available to guard against inadvertent writes. The device also includes anextra 64 bytes of EEPROM for device identification or tracking.20274L–PEEPR–2/3/09AT28HC64B2.Pin Configurations2.128-lead SOIC Top ViewPin Name Function A0 - A12Addresses CE Chip Enable OE Output Enable WE Write Enable I/O0 - I/O7Data Inputs/Outputs NC No Connect DCDon’t Connect2.232-lead PLCC Top ViewNote:PLCC package pins 1 and 17 are Don’t Connect.2.328-lead TSOP Top View30274L–PEEPR–2/3/09AT28HC64B3.Block Diagram4.Device Operation4.1ReadThe AT28HC64B is accessed like a Static RAM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the out-puts. The outputs are put in the high-impedance state when either CE or OE is high. This dual line control gives designers flexibility in preventing bus contention in their systems.4.2Byte WriteA low pulse on the WE or CE input with CE or WE low (respectively) and OE high initiates a write cycle. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE. Once a byte write has been started, it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of t WC , a read operation will effectively be a polling operation.4.3Page WriteThe page write operation of the AT28HC64B allows 1 to 64 bytes of data to be written into the device during a single internal programming period. A page write operation is initiated in the same manner as a byte write; after the first byte is written, it can then be followed by 1 to 63 additional bytes. Each successive byte must be loaded within 150 µs (t BLC ) of the previous byte. If the t BLC limit is exceeded, the AT28HC64B will cease accepting data and commence the internal programming operation. All bytes during a page write operation must reside on the same page as defined by the state of the A6 to A12 inputs. For each WE high-to-low transition during the page write operation, A6 to A12 must be the same.The A0 to A5 inputs specify which bytes within the page are to be written. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.4.4DATA PollingThe AT28HC64B features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle, an attempted read of the last byte written will result in the complement of the written data to be presented on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next write cycle may begin. DATA Polling may begin at any time during the write cycle.40274L–PEEPR–2/3/09AT28HC64B4.5Toggle BitIn addition to DATA Polling, the AT28HC64B provides another method for determining the end of a write cycle. During the write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling, and valid data will be read. Toggle bit reading may begin at any time during the write cycle.4.6Data ProtectionIf precautions are not taken, inadvertent writes may occur during transitions of the host system power supply. Atmel ® has incorporated both hardware and software features that will protect the memory against inadvertent writes.4.6.1Hardware ProtectionHardware features protect against inadvertent writes to the AT28HC64B in the following ways: (a) V CC sense – if V CC is below 3.8 V (typical), the write function is inhibited; (b) V CC power-on delay – once V CC has reached 3.8 V, the device will automatically time out 5 ms (typical) before allowing a write; (c) write inhibit – holding any one of OE low, CE high or WE high inhib-its write cycles; and (d) noise filter – pulses of less than 15 ns (typical) on the WE or CE inputs will not initiate a write cycle.4.6.2Software Data ProtectionA software-controlled data protection feature has been implemented on the AT28HC64B. When enabled, the software data protection (SDP), will prevent inadvertent writes. The SDP feature may be enabled or disabled by the user; the AT28HC64B is shipped from Atmel with SDP disabled.SDP is enabled by the user issuing a series of three write commands in which three specific bytes of data are written to three specific addresses (refer to the “Software Data Protection Algorithm” diagram on page 10). After writing the 3-byte command sequence and waiting t WC , the entire AT28HC64B will be protected against inadvertent writes. It should be noted that even after SDP is enabled, the user may still perform a byte or page write to the AT28HC64B. This is done by preceding the data to be written by the same 3-byte command sequence used to enable SDP.Once set, SDP remains active unless the disable command sequence is issued. Power transi-tions do not disable SDP, and SDP protects the AT28HC64B during power-up and power-down conditions. All command sequences must conform to the page write timing specifica-tions. The data in the enable and disable command sequences is not actually written into the device; their addresses may still be written with user data in either a byte or page write operation.After setting SDP, any attempt to write to the device without the 3-byte command sequence will start the internal write timers. No data will be written to the device, however. For the dura-tion of t WC , read operations will effectively be polling operations.4.7Device IdentificationAn extra 64 bytes of EEPROM memory are available to the user for device identification. By raising A9 to 12 V ±0.5 V and using address locations 1FC0H to 1FFFH, the additional bytes may be written to or read from in the same manner as the regular memory array.50274L–PEEPR–2/3/09AT28HC64BNotes:1.X can be VIL or VIH.2.See “AC Write Waveforms” on page 8.3.VH = 12.0 V ±0.5 V.Note:1.I SB1 and I SB2 for the 55 ns part is 40 mA maximum.5.DC and AC Operating RangeAT28HC64B-70AT28HC64B-90AT28HC64B-120Operating Temperature (Case)-40°C - 85°C -40°C - 85°C -40°C - 85°C V CC Power Supply5 V ±10%5 V ±10%5 V ±10%6.Operating ModesMode CE OE WE I/O Read V IL V IL V IH D OUT Write (2)V IL V IH V IL D IN Standby/Write Inhibit V IH X (1)X High ZWrite Inhibit X X V IH Write Inhibit X V IL X Output Disable X V IH XHigh ZChip Erase V ILV H (3)V IL High Z7.Absolute Maximum Ratings*Temperature Under Bias................................-55°C to +125°C *NOTICE:Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent dam-age to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabilityStorage Temperature.....................................-65°C to +150°C All Input Voltages(including NC Pins)with Respect to Ground.................................-0.6 V to +6.25 V All Output Voltageswith Respect to Ground...........................-0.6 V to V CC + 0.6 V Voltage on OE and A9with Respect to Ground..................................-0.6 V to +13.5V8.DC CharacteristicsSymbol Parameter ConditionMinMax Units I LI Input Load Current V IN = 0 V to V CC + 1 V 10µA I LO Output Leakage Current V I/O = 0 V to V CC10µA I SB1V CC Standby Current CMOS CE = V CC - 0.3 V to V CC + 1 V 100(1)µA I SB2V CC Standby Current TTL CE = 2.0 V to V CC + 1 V 2(1)mA I CC V CC Active Current f = 5 MHz; I OUT = 0 mA40mA V IL Input Low Voltage 0.8V V IH Input High Voltage 2.0V V OL Output Low Voltage I OL = 2.1 mA 0.40V V OH Output High VoltageI OH = -400 µA2.4V60274L–PEEPR–2/3/09AT28HC64B10.AC Read Waveforms (1)(2)(3)(4)Notes:1.CE may be delayed up to t ACC - t CE after the address transition without impact on t ACC .2.OE may be delayed up to t CE - t OE after the falling edge of CE without impact on t CE or by t ACC - t OE after an address changewithout impact on t ACC .3.t DF is specified from OE or CE whichever occurs first (C L = 5 pF).4.This parameter is characterized and is not 100% tested.9.AC Read CharacteristicsSymbol ParameterAT28HC64B-70AT28HC64B-90AT28HC64B-120Units MinMax MinMax MinMax t ACC Address to Output Delay 7090120ns t CE (1)CE to Output Delay 7090120ns t OE (2)OE to Output Delay 035040050ns t DF (3)(4)OE to Output Float 035040050ns t OHOutput Hold00ns70274L–PEEPR–2/3/09AT28HC64B11.Input Test Waveforms and Measurement Level12.Output Test LoadNote:1.This parameter is characterized and is not 100% tested.R F 13.Pin Capacitancef = 1 MHz, T = 25°C (1)Symbol Typ Max Units Conditions C IN 46pF V IN = 0 V C OUT 812pFV OUT = 0 V815.AC Write Waveforms15.1WE Controlled15.2CE Controlled14.AC Write CharacteristicsSymbol ParameterMin MaxUnits t AS , t OES Address, OE Setup Time 0ns t AH Address Hold Time 50ns t CS Chip Select Setup Time 0ns t CH Chip Select Hold Time 0ns t WP Write Pulse Width (WE or CE)100ns t DS Data Setup Time 50ns t DH , t OEHData, OE Hold Timens90274L–PEEPR–2/3/09AT28HC64B17.Page Mode Write Waveforms (1)(2)Notes: 1.A6 through A12 must specify the same page address during each high to low transition of WE (or CE).2.OE must be high only when WE and CE are both low.18.Chip Erase Waveformst S = t H = 5 µs (min.)t W = 10 ms (min.)V H = 12.0 V ±0.5 V16.Page Mode CharacteristicsSymbol Parameter MinMax Units t WC Write Cycle Time10ms t WC Write Cycle Time (Use AT28HC64BF))2ms t AS Address Setup Time 0ns t AH Address Hold Time 50ns t DS Data Setup Time 50ns t DH Data Hold Time 0ns t WP Write Pulse Width 100ns t BLC Byte Load Cycle Time 150µs t WPHWrite Pulse Width High50ns100274L–PEEPR–2/3/09AT28HC64B19.Software Data Protection EnableAlgorithm (1)Notes:1.Data Format: I/O7 - I/O0 (Hex);Address Format: A12 - A0 (Hex).2.Write Protect state will be activated at end of writeeven if no other data is loaded.3.Write Protect state will be deactivated at end of writeperiod even if no other data is loaded.4.1 to 64 bytes of data are loaded.20.Software Data Protection DisableAlgorithm (1)Notes:1.Data Format: I/O7 - I/O0 (Hex);Address Format: A12 - A0 (Hex).2.Write Protect state will be activated at end of writeeven if no other data is loaded.3.Write Protect state will be deactivated at end of writeperiod even if no other data is loaded.4. 1 to 64 bytes of data are loaded.21.Software Protected Write Cycle Waveforms (1)(2)Notes:1.A6 through A12 must specify the same page address during each high to low transition of WE (or CE) after the softwarecode has been entered.2.OE must be high only when WE and CE are both low.11AT28HC64BNote:1.These parameters are characterized and not 100% tested. See “AC Read Characteristics” on page 6.23.Data Polling WaveformsNotes:1.These parameters are characterized and not 100% tested.2.See “AC Read Characteristics” on page 6.25.Toggle Bit Waveforms (1)(2)(3)Notes: 1.Toggling either OE or CE or both OE and CE will operate toggle bit.2.Beginning and ending state of I/O6 will vary.3.Any address location may be used, but the address should not vary.22.Data Polling Characteristics (1)Symbol Parameter Min TypMaxUnits t DH Data Hold Time 0ns t OEH OE Hold Time 0ns t OE OE to Output Delay (1)ns t WR Write Recovery Timens24.Toggle Bit Characteristics (1)Symbol Parameter Min TypMaxUnits t DH Data Hold Time 10ns t OEH OE Hold Time 10ns t OE OE to Output Delay (2)ns t OEHP OE High Pulse 150ns t WR Write Recovery Timens12AT28HC64B26.Normalized I CCGraphs13AT28HC64B27.Ordering Information27.1Green Package Option (Pb/Halide-free)t ACC (ns)I CC (mA)Ordering Code Package Operation RangeActive Standby 70400.1AT28HC64B-70TU 28T Industrial (-40°C to 85°C)AT28HC64B-70JU 32J AT28HC64B-70SU 28S 90400.1AT28HC64B-90JU 32J AT28HC64B-90SU 28S AT28HC64B-90TU 28T 120400.1AT28HC64B-12JU 32J AT28HC64B-12SU28SPackage Type32J 32-lead, Plastic J-leaded Chip Carrier (PLCC)28S 28-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)28T28-lead, Plastic Thin Small Outline Package (TSOP)27.2Die ProductsContact Atmel Sales for die sales options.28.Packaging Information 28.132J – PLCC14AT28HC64BAT28HC64B 28.228S – SOIC1528.328T – TSOP16AT28HC64BHeadquarters InternationalAtmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USATel: 1(408) 441-0311 Fax: 1(408) 487-2600Atmel AsiaUnit 1-5 & 16, 19/FBEA Tower, Millennium City 5418 Kwun Tong RoadKwun Tong, KowloonHong KongTel: (852) 2245-6100Fax: (852) 2722-1369Atmel EuropeLe Krebs8, Rue Jean-Pierre TimbaudBP 30978054 Saint-Quentin-en-Yvelines CedexFranceTel: (33) 1-30-60-70-00Fax: (33) 1-30-60-71-11Atmel Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JapanTel: (81) 3-3523-3551Fax: (81) 3-3523-7581Product ContactWeb SiteTechnical Support******************Sales Contact/contactsLiterature Requests/literatureDisclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.© 2009 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.。
实验数据导出方法实验数据导出有2种方式:
1.setting-Data Management-Export Data:
点击页面右上角的Setting选项,出现如下界面:
点击Data Management选项:
点击Export Data选项:
注:
Analysis Sequences: 导出.aas文件,可以导入columbus使用
Measurement index and images:导出图片结果,可以在个人电脑上用Image J软件打开。
也可以上传Columbus软件进行分析。
选择存储路径,最后点击Start。
2.setting-Data Management-Write Archive:
点击页面右上角的Setting选项,出现如下界面:
点击Data Management选项:
点击Write Archive:
点击选择框:
点击OK,则数据被选中,系统计算数据大小;选择存储路径;最后点击Start。
archive文件的生存需要一定时间,请耐心等候。
生成的archive文件,可以拷走,包含全部的原始数据,如果日后有需要,可以再用Read Archive选项读取回来。
注:可以保存所有的原始数据并带走,archive文件可以重新用harmony软件读取再次分析,但是不能直接传上Columbus 进行分析。
推荐数据存储方式:
A 若不需要保留原始数据,实验完毕请及时导出并清理自己的实验数据。
B 导出的实验数据可以上传到Columbus服务器进行分析处理。
C 若需要保留原始数据,请及时生成archive文件拷走并清理自己的实验数据。
J题目:极谱与伏安分析法1111 直流极谱法中将滴汞电极和饱和甘汞电极浸入试液中组成电解电池,两个电极的性质应为( 3 )(1)两个电极都是极化电极(2) 两个电极都是去极化电极(3) 滴汞电极是极化电极,饱和甘汞电极是去极化电极(4) 滴汞电极是去极化电极,饱和甘汞电极是极化电极1112 在极谱分析中,在底液中加入配合剂后,金属离子则以配合物形式存在,随着配合剂浓度增加,半波电位变化的方式为( 2 )(1) 向更正的方向移动(2) 向更负的方向移动(3) 不改变(4) 决定于配合剂的性质,可能向正,可能向负移动1118 极谱催化波的形成过程如下:O + n e-→R (电极反应)↑_________↓R + Z =O (化学反应)其产生机理是( 1 )(1) O 催化Z 的还原(2) O 催化R 的氧化(3) Z 催化O 的还原(4) Z 催化R 的氧化1119 影响经典极谱分析灵敏度的主要因素为( 2 )(1) 迁移电流的存在(2) 充电电流的存在(3) 氧波的出现(4) 极大现象的出现1120 溶出伏安法可采用的工作电极为( 2 )(1) 滴汞电极(2) 悬汞电极(3) 银-氯化银电极(4) 玻璃电极1121 极谱波形成的根本原因为( 4 )(1) 滴汞表面的不断更新(2) 溶液中的被测物质向电极表面扩散(3) 电化学极化的存在(4) 电极表面附近产生浓差极化1128 二只50mL 容量瓶,分别为(1)、(2),在(1) 号容量瓶中加入Cd2+未知液 5.0mL,测得扩散电流为10μA,在(2) 号容量瓶中加入Cd2+未知液5.0mL,再加0.005mol/LCd2+标准溶液5.0mL,测得扩散电流为15μA,未知溶液中Cd2+的浓度是多少(mol/L) ?( 3 )(1) 0.0025 (2) 0.005 (3) 0.010 (4) 0.0201132 某未知液10.0mL 中锌的波高为4.0cm,将0.50mL 1×10-3mol/L 的锌标准溶液加到该未知液中去,混合液中锌的波高增至9.0cm,未知液中锌的浓度是多少(mol/L)? ( 3 )(1) 1.34×10-4(2) 2×10-4(3) 3.67×10-4(4) 4×10-41142 极谱分析使用去极化电极作为参比电极,其目的是( 4 )(1) 产生完全浓差极化(2) 降低溶液iR降(3) 使其电极电位随外加电压而变(4)使其电极电位不随外加电压而变1145 金属配离子的半波电位一般要比简单金属离子半波电位负,半波电位的负移程度主要决定于( 2 )(1) 配离子的浓度(2) 配离子的稳定常数(3) 配位数大小(4) 配离子的活度系数1150 在极谱分析中与极限扩散电流呈正比关系的是( 2 )(1) 汞柱高度平方(2) 汞柱高度平方根(3) 汞柱高度的一半(4) 汞柱高度1151 在0.1mol/L HCl 介质中,已知Bi3+ + 3e-→Bi,Eθ1/2 = -0.08V,Pb2++ 2e-→Pb,Eθ1/2 = -0.45V (vs SCE),用单扫描示波极谱法测定铋和铅,试回答:当极化电压由+0.10V 扫向-0.70V(vs SCE) 时有两个极谱波出现,这些极谱波是:( 2 )(1) 氧化波(2) 还原波(3) 氧化-还原综合波(4) 平行催化波1152 平行反应极谱催化电流i和汞柱高度h之间的关系是:( 3 )(1) i∝h1/2(2) i∝h(3) i∝h0(4) i∝h21153 交流极谱的灵敏度为10-5 mol/L 左右,和经典极谱法相当,其灵敏度不高的主要原因是( 2 )(1) 在电解过程中没有加直流电压(2) 采用了快速加电压方式,有较大的充电电流(3) 迁移电流太大(4) 电极反应跟不上电压变化速度1154 脉冲极谱法也能用于那些电极反应较慢(不可逆反应)物质的微量分析,这是因为( 3 )(1) 采用脉冲方式加电压(2) 采用了较短的脉冲持续时间(3) 采用了较长的脉冲持续时间(4) 采用了在滴汞生长后期施加电压方式1160 用经典极谱法测定浓度为1×10-3 mol/L Cd2+时,为了消除迁移电流,可采用( 4 )(1) 加入明胶(2) 加入0.001 mol/L KCl (3) 加入0.01 mol/L KCl (4) 加入0.1 mol/L KCl 1161 用经典极谱法在0.1 mol/L 的氨-氯化铵介质中测定镉时,除氧的方法为( 4 )(1) 通入二氧化碳(2) 加还原铁粉(3) 加硝酸钾(4) 加亚硫酸钠1162 影响经典极谱分析灵敏度的主要因素为( 2 )(1) 迁移电流(2) 充电电流(3) 极大现象(4) 氧波1163 与可逆极谱波的半波电位有关的因素是( 2 )(1) 被测离子的浓度(2) 支持电解质的组成和浓度(3) 汞滴下落时间(4) 通氮气时间1164 不可逆极谱波在达到极限扩散电流区域时,控制电流的因素是( 2 )(1) 电极反应速度(2) 扩散速度(3) 电极反应与扩散速度(4) 支持电解质的迁移速度1168 下列说法哪一种正确? ( 4 )(1) 阳极电位越正、析出电位越正者越易在阳极上氧化(2) 阳极电位越正、析出电位越负者越易在阳极上氧化(3) 阳极电位越负、析出电位越正者越易在阳极上氧化(4) 阳极电位越负、析出电位越负者越易在阳极上氧化1169 平行反应极谱催化波的反应机理如下:O + n e-→R (电极反应)↑________↓R + Z →O (氧化还原反应)判断下列说法哪一种正确?( 1 )(1) 物质O 催化了物质Z 的还原(2) 物质R 催化了物质Z 的还原(3) 物质Z 催化了物质O 的还原(4) 物质O 催化了物质R 的氧化1170 单扫描示波极谱可逆还原波的峰电位( 3 )(1) 与氧化波的峰电位相同(2) 较氧化波的峰电位正59/n mV(3) 较氧化波的峰电位负59/n mV (4) 较氧化波的峰电位负n/59 mV1201 当极谱电流完全受扩散速度控制时,其极限扩散电流i d的大小( 1 )(1) 与汞滴大小有关(2) 与汞柱无关(3) 与温度无关(4) 与施加电压有关1202 为了提高溶出伏安法的灵敏度,在微电极上电积富集的时间( 4 )(1) 越长越好(2) 越短越好(3) 一定时间(4) 根据实验来确定1203 方波极谱由于较彻底地清除了充电电流,所以对溶液中支持电解质要求不高,通常在被测液中( 1 )(1) 可以不加支持电解质(2) 加入极少量支持电解质(3) 应加少量支持电解质(4) 加入过量支持电解质1204 在单扫描示波极谱分析中,被测液中的溶解氧对测定结果( 3 )(1) 有很大影响(2) 有影响(3) 没有影响(4) 应通N2除O21208 在单扫描极谱法中,可逆电极反应的峰电位与直流极谱波半波电位的关系是( 3 )(1) E p =E1/2(2) E p = E 1/2 - 0.059/n(3) E p = E 1/2 - 1.1RT/(nF) (4) E p = E 1/2 + 1.1 RT/(nF)1209 下列何种电位为定值时,可判断一个极谱还原波是可逆波( 4 )(1) E 1/2为定值(2) E 3/4为定值(3) E 1/4为定值(4) E 3/4 - E 1/4 = -0.564/n1210 在恒电位极谱分析中,滴汞电极的面积与汞的流速和滴下的时间t的关系是( 1 )(1) m2/3t1/6(2) m2/3t2/3(3) mt(4) t1/6/m1/31492 直流极谱中由于迁移电流的存在, 使测量到的电流比正常情况要( 4 )(1)大(2)小(3)没有影响(4)可大, 也可小1493 极谱定量分析中, 与被测物浓度呈正比的电流是( 4 )(1)极限电流(2)扩散电流(3)扩散电流减去残余电流(4)极限扩散电流1494 极谱分析中, 在底液中加入表面活性剂, 其目的是为了消除( 3 )(1)迁移电流(2)光电电流(3)极谱极大(4)残余电流1495 极谱扣除底电流后得到的电流包含( 2 )(1)残余电流(2)扩散电流(3)电容电流(4)迁移电流1496 极谱分析中, 为了消除叠波的干扰, 最宜采用( 1 )(1)加入适当的配合剂(2)分离后测定(3)加入表面活性剂(4)加入大量支持电解质1497 极谱分析是特殊的电解, 是由于( 3 )(1)测量时, 被测物不必100%的被电解(2)溶液不用搅拌(3)微电极产生浓差极化(4)通过的电流极小1498 极谱分析中, 底液中加入配合剂后, 这时半波电位相比不加时要有改变, 变化值的大小决定于( 4 )(1)配离子不稳定常数的大小(2)配位数的多少(3)配合剂的浓度(4)以上三者都有关系1499 极谱法使用的指示电极是( 3 )(1)玻璃碳电极(2)铂微电极(3)滴汞电极(4)饱和甘汞电极1500 不可逆极谱波在未达到极限扩散电流区域时, 控制电流的因素是( 3 )(1)电极反应速度(2)扩散速度(3)电极反应与扩散速度(4)支持电解质的迁移速度1501 在电化学分析中溶液不能进行搅拌的方法是( 3 )(1)电解分析法(2)库仑分析法(3)极谱分析法(4)离子选择电极电位分析法1502 某金属离子可逆还原, 生成二个极谱波, 其直流极谱波的波高近似为1:2, 请问在单扫极谱中它们的峰高比近似为( 2 )(1)1:2 (2)<1:2 (3)>1:2 (4)相等1503 在经典极谱分析中, 经常采取的消除残余电流的方法是( 2 )(1)加入大量支持电解质(2)测量扩散电流时, 作图扣除底电流(3)加入表面活性物质(4)做空白试验扣除1504 极谱分析的电解池由三部分组成,即滴汞电极,饱和甘汞电极与铂丝辅助电极,这是为了( 1 )(1)有效地减少iR电位降(2)消除充电电流的干扰(3)提高方法的灵敏度(4)增加极化电压的稳定性1505 极谱分析是一种电解方法, 它在下列哪一种条件下使用才正确( 3 )(1)可以使用通常的电解装置(2)被测物的浓度较高时也能使用(3)使用面积较小的滴汞电极(4)浓度低时, 可用搅拌的方法, 提高电解电流1506 极谱分析中, 加入支持电解质, 电活性物质形成的电流减少了是由于( 2 )(1)溶液的电阻降低了(2)电场力对电活性物质的作用减少了(3)电极反应需要更高的电压(4)支持电解质与电活性物质发生作用, 形成配合物1507 下面哪一种说法是正确的?( 3 )(1)极谱半波电位相同的, 是同一物质(2)同一物质, 具有相同的半波电位(3)当溶液组成一定时, 某一离子有固定的半波电位(4)极谱的半波电位随被测离子浓度的变化而变化1508 极谱法是一种特殊的电解方法, 其特点主要是( 3 )(1)使用滴汞电极, 电极表面不断更新(2)电流很小, 电解引起电活性物质浓度变化不大(3)滴汞电极, 面积很小, 能产生浓差极化(4)滴汞电极能使某些金属还原形成汞齐1509 经典的直流极谱中的充电电流是( 4 )(1)其大小与滴汞电位无关(2)其大小与被测离子的浓度有关(3)其大小主要与支持电解质的浓度有关(4)其大小与滴汞的电位, 滴汞的大小有关1510 极谱波出现平台是由于( 2 )(1)电化学极化使电流上不去(2)浓差极化使电流受扩散控制(3)离子还原后, 电极周围的电场发生了变化(4)汞滴落下, 将电荷带走了1511 极谱测定时, 溶液能多次测量, 数值基本不变, 是由于( 1 )(1)电极很小, 电解电流很小(2)加入浓度较大的惰性支持电解质(3)外加电压不很高, 被测离子电解很少(4)被测离子还原形成汞齐, 又回到溶液中去了1512 极谱分析法较合适的说法是( 2 )(1)测量金属离子被还原产生的电流(2)电活性物质在滴汞电极上电解, 产生浓差极化的方法(3)给电极一定电位, 测量产生电流的伏安法(4)电活性物质在微电极上电解, 产生浓差极化的方法1513 某同学将装入电解池准备做极谱分析的溶液洒掉了一部分, 若用标准比较法进行测定, 他应( 2 )(1)重新配制溶液(2)继续做(3)取一定量的溶液, 记下体积, 再测定(4)取一定量的溶液, 加入标准溶液, 作测定校正1514 交流极谱与经典极谱相比( 1 )(1)交流极谱的充电电流大, 但分辨率高(2)交流极谱的充电电流大, 分辨率也差(3)交流极谱的充电电流小, 分辨率也差(4)交流极谱的充电电流小, 分辨率高1515 在交流极谱中, 氧波的干扰( 1 )(1)小, 因氧的电极反应不可逆, 其峰电流很小(2)极小, 因氧不参加电极反应(3)大, 因为氧在一段电位范围内产生两个还原波(4)大, 因为氧在交流极谱中产生一个大的峰1516 在方波极谱中, 要求电解池的内阻小于100Ω是由于( 2 )(1)为了降低iR降(2)改善RC常数, 使电容电流迅速减小(3)电阻小, 测量电流就增大(4)充电电流减小1517 极谱波的半波电位是( 1 )(1)扩散电流为极限扩散电流一半时的电极电位(2)(3)极限电流一半时的电位(4)从极谱波起始电位到终止电位一半处的电极电位1518 极谱分析中用于定性分析的是( 3 )(1)析出电位(2)分解电位(3)半波电位(4)超电位1519 在极谱分析中与被分析物质浓度呈正比例的电流是( 1 )(1)极限扩散电流(2)迁移电流(3)残余电流(4)极限电流1520 若欲测定10-9mol/L的Pb2+,宜采用的分析方法是( 3 )(1)直流极谱法(2)方波极谱法(3)阳极溶出法(4)脉冲极谱法1521 在酸性底液中不能用于清除溶解氧的方法是( 4 )(1)通入氮气(2)通入氢气(3)加入Na2CO3(4)加入Na2SO31522 金属离子还原的半波电位与其标准电位的关系为( 4 )(1)E1/2与Eθ相等(2)E 1/2较Eθ为正(3)E 1/2较Eθ为负(4)三种情况皆可,1523 某有机化合物在滴汞上还原产生极谱波R+nH++ne-RHn请问其E 1/2( 2 )(1)与R的浓度有关(2)与H+的浓度有关(3)与RHn的浓度有关(4)与谁都无关1524 正确的Ilkovic极限扩散电流方程是( 1 )(1)i d=KnD1/2m2/3t1/6c(2)i d=KnD1/2m2/3t2/3c(3)i d=Kn3/2D1/2m2/3tc(4)i d=Kn3/2D1/2m2/3t1/6c 1525 极谱分析中扩散电流常数是( 1 )(1)607nD1/2(2)607m2/3t1/6(3)607nD1/2m2/3t1/6(4)607nD1/2mt1526 极谱图上的残余电流存在于( 4 )(1)ab段(2)bc段(3)cd段(4)所有各段1527 在溶出伏安法富集阶段, 需搅拌试液或旋转电极, 其目的是( 3 )(1)加快电极反应(2)使电流效率达到100%(3)提高富集效率(4)加速电极与溶液的平衡状态的到达1528 方波极谱是在直流极化电压上叠加一个小振幅的方波电压, 并在其后期进行电流测量,其灵敏度更高是由于( 3 )(1)增加了电解电流的值(2)减少了电容电流的值(3)提高了测量电流中电解电流对电容电流的比值(4)仪器对测量电流进行了高倍率放大1529 交流极谱法, 常常用来研究电化学中的吸附现象, 这是由于( 3 )(1)交流极谱分辨率较高(2)交流极谱对可逆体系较敏感(3)交流极谱可测到双电层电容引起的非法拉第电流(4)交流极谱中氧的影响较小1530 物质的极谱波的半波电位与其标准电位密切相关, 但有时E 1/2较Eθ更负,主要为3(1)不可逆波的氧化波( 阳极波) (2)可逆波(3)金属不可逆的还原波, 还原产生的金属又不生成汞齐(4)金属不可逆的还原波, 还原产生的金属生成汞齐1531 物质的极谱波的半波电位与其标准电位密切相关, 但有时E 1/2较Eθ更正,主要为( 3 )(1)不可逆波的还原波(2)可逆波(3)金属可逆的还原波, 还原产生的金属生成汞齐, 亲和力特别大时(4)金属的不可逆波, 金属还原不生成汞齐1532 单扫描极谱法的灵敏度通常可达10-5~10-6mol/L, 为减少试剂引入杂质的影响,相比经典极谱( 2 )(1)维持支持电解质原来用量, 采用更纯的试剂(2)适当降低支持电解质的用量(3)将底液预电解除去杂质(4)不加支持电解质1533 示差脉冲极谱与方波极谱的根本区别是( 1 )(1)示差脉冲极谱是在直流极化电压上, 在每滴汞的后期加上一个方波电压(2)示差脉冲极谱是在直流极化电压上, 每滴汞生长期内, 加上数个方波电压(3)示差脉冲极谱加的方波电压频率较低(4)示差脉冲极谱加的方波电压是不等幅的1534 脉冲极谱法灵敏度提高是由于( 4 )(1)提高了测量电流中电路电流对电容电流的比值(2)相比方波可使用较少支持电解质,杂质引入的影响小了(3)减小了毛细管噪声电流(4)大大提高了电解电流在测量电流中的比值1535 常规脉冲和微分脉冲极谱法的区别是( 1 )(1)示差脉冲是加一个等振幅的脉冲电压, 它扣除了直流电压引起背景电流的影响(2)示差脉冲类似交流极谱,电容电流的影响较大(3)常规脉冲极谱,电容电流的影响较小(4)示差脉冲仅对常规脉冲的结果进行了数学上的微分处理1536 在溶出伏安法中, 下面哪一种说法是不对的? ( 1 )(1)要求溶液中被测物质100% 富集于电极上(2)富集时需搅拌或旋转电极(3)溶出过程中, 不应搅拌溶液(4)富集的时间应严格的控制1537 平行极谱催化波电流比其扩散电流要大, 是由于( 2 )(1)电活性物质形成配合物, 强烈吸附于电极表面(2)电活性物质经化学反应而再生, 形成了催化循环(3)改变了电极反应的速率(4)电极表面状态改变, 降低了超电压1538 平行催化波的灵敏度取决于( 4 )(1)电活性物质的扩散速度(2)电活性物质速度(3)电活性物质的浓度(4)电极周围反应层中与电极反应相偶合的化学反应速度1539 催化电流和扩散电流的区别可以通过电流随汞柱高度和温度的变化来判断, 催化电流的特征是( 1 )(1)电流不随汞柱高度变化, 而随温度变化较大(2)电流不随汞柱高度变化, 而随温度变化较小(3)电流不随汞柱高度变化也不随温度而变化(4)电流随汞柱高度变化, 随温度变化也较大1540 一般氢催化波的判断可用( 2 )(1)极谱法为畸形峰状(2)用高倍放大镜, 可观察到汞滴周围产生的氢气泡(3)电流随pH增大而增大(4)电流随催化剂的量加大而增大1541 极谱定量测定时, 试样溶液和标准溶液的组分保持基本一致, 是由于( 2 )(1)被测离子的活度系数在离子强度相同时才一致(2)使被测离子的扩散系数相一致(3)使迁移电流的大小保持一致(4)使残余电流的量一致1542 极谱定量测定的溶液浓度大于10-2mol/L时, 一定要定量稀释后进行测定, 是由于( 2 )(1)滴汞电极面积较小(2)溶液浓度低时, 才能使电极表面浓度易趋于零(3)浓溶液残余电流大(4)浓溶液杂质干扰大1543 为消除迁移电流, 极谱分析中通常在底液里加入支持电解质, 选择支持电解质的条件是( 1 )(1)能导电, 在测定条件下不发生电极反应的惰性电解质(2)正负离子导电能力要接近(3)与被测离子生成确定的配合物(4)其中有与被测离子相比, 电导较大的离子1544 JP-1型单扫极谱仪, 采用汞滴周期为7s, 在后2s扫描, 是由于( 2 )(1)前5s可使被测物充分地吸附到电极上(2)滴汞后期, 面积变化小.(3)前5s可使测定的各种条件达到稳定(4)后期面积大, 电流大1545 在盐酸介质中,铜的半波电位为0V左右,铅的半波电位为-0.46V, 镉的半波电位为-0.70V,锌的半波电位为-0.9V, 请问下列回答正确的是( 2 )(1)大量铜存在时, 极谱测定Pb、Cd (2)纯锌中微量Pb、Cd的测定(3)将量大的金属先分离, 再测定(4)只能测定含量大的金属1546 请指出方波极谱加电压的方式( 3 )(1)线性扫描电压, 速度为200mV/min (2)线性扫描电压, 速度为200mV/s(3)线性扫描同时加上50~250Hz的方波电压(4)线性扫描同时在每滴汞的后期加上一个4~80ms的方波电压1547 溶出伏安法采用的加电压的方式是( 3 )(1)线性扫描电压, 速度为200mV/min (2)三角波线性扫描电压(3)在较负电位下电解数分钟, 停止搅拌半分钟, 由负向正作电位扫描.(4)线性扫描同时加上50~250Hz的方波1573 在1mol/LKCl支持电解质中, Tl+和Pb2+的半波电位分别为-0.482V和-0.431 V, 若要同时测定两种离子应选下列哪种极谱法? ( 1 )(1) 方波极谱法(2) 经典极谱法(3) 单扫描极谱法(4) 催化极谱法1574 极谱分析中在溶液中加入支持电解质是为了消除( 2 )(1) 极谱极大电流(2) 迁移电流(3) 残余电流(4) 充电电流1575 极谱分析时在溶液中加入表面活性物质是为了消除下列哪种干扰电流? ( 1 )(1) 极谱极大电流(2) 迁移电流(3) 残余电流(4) 残留氧的还原电流1576 极谱分析中是依据下列哪一种电位定性? ( 3 )(1) 析出电位(2) 超电位(3) 半波电位(4) 分解电位1577 用极谱法测定一个成分很复杂的试样中的某成分时, 首选的定量分析法是( 1 )(1) 标准加入法(2) 直接比较法(3) 标准曲线法(4) 内标法1578 方波极谱法的检出限受到下列哪种干扰电流限制?( 3 )(1) 充电电流(2) 残余电流(3) 毛细管噪声电流(4) 氧的还原电流1579 在极谱分析方法中较好消除了充电电流的方法是( 2 )(1) 经典极谱法(2) 方波极谱法(3) 交流极谱法(4) 单扫描极谱法1580 迁移电流来源于( 4 )(1) 电极表面双电层的充电过程(2) 底液中的杂质的电极反应(3) 电极表面离子的扩散(4) 电解池中两电极间产生的库仑力1581 方波极谱法中采用225Hz的频率是为了满足方波半周期时间t与时间常数RC有以下关系( 4 )(1)t=RC(2)t=3RC(3)t=4RC(4)t=5RC1582 在极谱分析中, 通氮气除氧后, 需静置溶液半分钟, 其目的是( 1 )(1) 防止在溶液中产生对流传质(2) 有利于在电极表面建立扩散层(3) 使溶解的气体逸出溶液(4) 使汞滴周期恒定1583 极谱催化电流大小决定于电极表面附近( 4 )(1) 去极剂的扩散速度(2) 去极剂的迁移速度(3) 去极剂的电极反应速度(4) 与电极反应偶联的化学反应速度1584 极谱分析中残余电流的主要组成部分是( 3 )(1) 未排除的微量溶解氧的还原电流(2) 溶剂及试剂中的微量金属离子的还原电流(3) 充电电流(4) 迁移电流1585 有机物的电极反应多为不可逆反应, 采用哪种极谱法较好?( 4 )(1) 经典极谱法(2) 单扫描极谱法(3) 方波极谱法(4) 微分脉冲极谱法1586 在极谱分析中分辨率最好的方法是( 2 )(1) 经典极谱(2) 交流极谱(3) 单扫描极谱(4) 催化极谱1587 在极谱分析中, 采用标准加入法时, 下列哪一种操作是错误的?( 1 )(1) 电解池用试液荡涤过即可用(2) 电解池必须干燥(3) 电极上残留水必须擦净(4) 试液及标准液体积必须准确1588 溶出伏安法的灵敏度很高, 其主要原因是( 1 )(1) 对被测定物质进行了预电解富集(2) 在悬汞电极上充电电流很小(3) 电压扫描速率较快(4) 与高灵敏度的伏安法相配合1589 (题目不完整) (4) 汞滴周期电位1590 在极谱分析中与浓度呈正比的是( 4 )(1) 残余电流(2) 迁移电流(3) 充电电流(4) 扩散电流1591 极谱分析中, 与扩散电流无关的因素是( 3 )(1) 电极反应电子数(2) 离子在溶液中的扩散系数(3) 离子在溶液中的迁移数(4) 电极面积1592 在极谱分析中常用汞电极为指示电极, 但氢离子不干扰分析测定, 是利用了( 1 )(1) 在汞上氢有很大的超电位(2) 在汞上氢没有超电位(3) 氢离子难以得到电子(4) 氢的还原电位较其它金属大1593 可逆波的电流受下列哪个因素控制?( 4 )(1) 电极反应速率(2) 与电极反应伴随的化学反应速率(3) 吸附作用(4) 扩散过程1594 在任何溶液中都能除氧的物质是( 1 )(1) N2(2) CO2(3) Na2SO3(4) 还原铁粉1595 催化极谱法是在哪个情况下, 使电解电流增加的( 4 )(1) 在被测溶液中加入了催化剂(2) 加入了半波电位与被测物的半波电位相近的强氧化剂(3) 加入了半波电位与被测物的半波电位相近的强还原剂(4) 加入了一种能与电极反应产物起化学反应, 并且回复到电极反应物的物质1596 催化极谱法中, 催化电流的大小主要决定于( 3 )(1) 被测物质的浓度(2) 电极反应速度(3) 与电极反应伴随的化学反应速度(4) 被测物质的扩散速度1597 在极谱分析中, 在同一实验条件下用直接比较法进行测定, 以下哪一个条件是不必要的?(1)(1) 倒入电解池中试液的体积相等(2) 底液成分相同(3) 汞柱高度相同(4) 测试时温度相同1598 毛细管电荷曲线由下列哪种关系构成( 1 )纵坐标横坐标(1) 在试液中汞的表面张力电位(2) 汞滴周期电流(3) m t电流(4) 电位汞滴周期1599 若电解池时间常数RC=0.0004, 叠加的方波频率应为多少? ( 3 )(1) 150H z(2) 200 H z(3) 250 H z(4) 300 H z1600 在极谱分析中滴汞电极有时是阴极, 有时是阳极, 下列哪一概念是正确的( 4 )(1) 决定于滴汞电极与外电路的连接方式(2) 与电源负极相接一定是阴极(3) 与电源正极相接一定是阳极(4) 决定于滴汞电极发生的电极反应, 还原反应是阴极, 氧化反应是阳极1601 在单扫描极谱图上, 某二价离子的还原波的峰电位为-0.89V, 它的半波电位应是( 2 )(1) -0.86V (2) -0.88V (3) -0.90V (4) -0.92V1602 在极谱分析中各种电极过程可以用电流与汞柱高度的关系来判断, 当电极过程中伴随有表面吸附电流时与汞柱高度的关系是( 3 )(1) h1/2(2) h0(3) h(4) h21603 用循环伏安图可以判断电极反应的可逆性, 如果电极反应可逆, 阴极峰和阳极峰的峰电位差为 ( 2 )(1) 100/n (mV) (2) 59.0/n (mV) (3) 30.0/n (mV) (4) 60.0 (mV)1604 对ed x R e O ⇔+-n 可逆电极反应, 下列哪种说法是正确的? ( 3 )(1) E 1/2=(O x /R ed ) (2) E 1/2与条件电位完全相等(3) O x 的阴极波的半波电位与R ed 的阳极波的半波电位相等(4) 阴极波和阳极波的半波电位不等1605单扫描极谱法的峰电流i p 与电压扫描速率v 有关, 当电极反应可逆时 ( 1 )(1) i p ∝ v 1/2 (2) i p ∝ v (3) i p ∝ v 1/3 (4) i p `∝ v 21606 可逆电极反应, 极谱还原波方程式中ϕd .e 与电流的关系是 ( 3 )(1) E d .e ∝ ln[(i /(i d -i ))] (2) E d .e ∝ ln(i d -i )(3) E d .e ∝ ln[(i d -i )/i ] (4) E d .e ∝ ln[i /(i d -i )]1707 仪器分析实验采用标准加入法进行定量分析, 它比较适合于 ( 4 )(1) 大批量试样的测定 (2) 多离子组分的同时测定(3) 简单组分单一离子的测定 (4) 组成较复杂的少量试样的测定1920 若要测定1.0×10-7 mol/LZn 2+,宜采用的极谱方法是 ( 4 )(1)直流极谱法 (2)单扫描极谱法 (3)循环伏安法 (4)脉冲极谱法1921 极谱分析中加入大量的支持电解质的目的是为了消除 ( 1 )(1)电迁移电流 (2)残余电流 (3)对流电流 (4)扩散电流1922 极谱测定时,溶液保持静止,是为了消除 (2 )(1)电迁移电流 (2)对流电流 (3)残余电流 (4)扩散电流1923 极谱测定时,通常需加入动物胶,是为了 ( 2 )(1)消除对流电流 (2)消除极大电流 (3)防止汞挥发 (4)除O 21924 示差脉冲极谱法测定的电解电流是 (1 )(1)脉冲加入前和终止前数十毫秒的电流差 (2)脉冲加入后产生的电流差(3)直流电压产生的电流差 (4)脉冲加入前和终止后数十毫秒的电流差1925 阳极溶出伏安法的预电解过程是 ( 1 )(1)恒电位电解 (2)恒电流电解 (3)控制时间电解 (4)控制电流和时间1926 溶出伏安法的灵敏度比相应极谱法的灵敏度 ( 4 )(1)高一倍 (2)相当 (3)低10倍 (4)高10 倍1927 循环伏安法在电极上加电压的方式是 ( 4 )(1)线性变化的直流电压 (2)锯齿形电压 (3)脉冲电压 (4)等腰三角形电压1928 在循环伏安图上,对于一个可逆电极反应,阳极峰电流和阴极峰电流之比为 ( 4 )(1)>1 (2)<1 (3)≥1 (4)=11929 在循环伏安图上,对于一个可逆电极反应,阳极峰和阴极峰电位之差为 ( 4 )(1)≥56/z mV (2)>56/z mV (3)< 56/z mV (4)≈56/z mV1930 阳极溶出伏安法,若使用汞膜电极,其峰电流大小主要决定于 ( 2 )(1)试液浓度 (2)汞膜内金属的总量 (3)溶出的时间(4)试液的浓度,富集的时间和静止时间1931 常规脉冲极谱法,在设定的直流电压上,在滴汞电极的汞滴生长末期施加一个 ( 3 )(1)方波电压 (2)锯齿波电压 (3)矩形脉冲电压,其振幅随时间增加 (4)矩形脉冲电压 1959 下列电极中哪一种不是指示电极? ( 1 )(1)银-氯化银电极 (2)滴汞电极 (3)银离子选择电极 (4)玻璃电极。
LAUREL ELECTRONICS, ureate™ True RMS AC Voltage & Current Meter with 1 Cycle Update at 50/60 HzFeatures•True AC or AC plus DC RMS measurement with crest factor of 3.0 at FS•Fast response, 0-16.7 ms to rated accuracy after each input signal cycle•Measurement range from 0.1% to 100% of full scale•Accurate to 99.97% of full scale, 10 Hz to 10 kHz•0.2, 2, 20, 200 & 600V voltage ranges•2, 20, 200 mA & 5A current ranges•All ranges factory calibrated•Scalable to 5 digits for external current shunts or 5A current transformers•Selectable peak or valley display•85-264 Vac universal AC power supply•1/8 DIN case sealed to NEMA-4X from front panel•Optional serial I/O: Ethernet, USB, RS232, RS485, Ethernet-to-RS485 converter•Optional relay output: dual or quad relays, contact or solid state•Optional isolated analog output: 4-20 mA, 0-20 mA, 0-10V, -10 to +10V•Optional low voltage power: 10-48 Vdc or 12-32 Vac•Priced competitively with less capable AC metersDescriptionThe Laureate™ True RMS meter is a 60,000-count digital panelmeter with exceptional performance at half the price of a benchtop meter. It can measure true RMS voltage or current of ACsignals where there is considerable distortion of the waveform,such as rectifier outputs or waveforms chopped by an SCR,TRIAC or transistor circuit, as illustrated.•True RMS readings in 0-16 ms after completion of one inputsignal cycle allow anomalies to be detected and alarmedbefore they become expensive problems. Fast on/off controland alarm can be achieved with optional dual or quad relays,either contact or solid state. The meter can also capture peakand valley readings that occur at 50/60 Hz.•Accuracy is 0.1% of full scale for signals from DC to 10 kHzand signal amplitudes down to 0.1% of full scale. The crestfactor (Vp / Vrms) is 3.0 at full-scale Vrms of 20,000 countsand a Vp of 60,000 counts. The meter starts to flashoverrange at 132% of full scale Vrms , at which point theavailable crest factor is 60,000 / 26,400 = 2.27. Meaningfulreadings with rated resolution continue to be obtained up to212% of full scale Vrms (42,433 counts) for sinusoidal signals,at which point the available crest factor is 1.414. For safetyreasons, the maximum RMS input signal should never exceed600V or 5A. ETL certification is for a maximum voltage of 300Vrms.AC or DC coupling is jumper selectable on the signal condition-er board. AC coupling accommodates signals from 10 Hz to 10kHz and is suitable for applications such as measuring AC rippleon a DC power supply. DC coupling accommodates signals from0 to 10 kHz. Multiple integral cycles are averaged for signalsabove 50/60 Hz. A single cycle is captured for signals from 3 Hzto 50/60 Hz. Below 3 Hz and at DC, thecapture rate is 3/sec.Use with current Transformers. Highcommon mode rejection allows stablereadings with current shunts located onthe high side of the line. Five amp inputcapability allows the output of 5A currenttransformers to be applied directly to themeter, with no need for a stepdowntransformer. The meter reading can easily be scaled for thecurrent transformer ratio. Digital filtering is selectable for noisysignals.Designed for system use. Optional plug-in boards includeEthernet and other serial communication boards, dual or quadrelay boards, and an isolated analog output board. Laureatesmay be powered from 85-264 Vac or optionally from 12-32 Vacor 10-48 Vdc. The display is available with red or green LEDs.The 1/8 DIN case meets NEMA 4X (IP65) specifications from thefront when panel mounted. Any setup functions and front panelkeys can be locked out for simplified usage and security. A built-in isolated 5, 10, or 24 Vdc excitation supply can power trans-ducers and eliminate the need for an external power supply. Allpower and signal connections are via UL / VDE / CSA ratedscrew clamp plugs.SpecificationsAC VoltageAC Voltage FS RangeAC Voltage toOverrange FlashResolutionInputResistanceError at 25°C200.00 mV 2.0000 V 20.000 V 200.00 V 264.00 mV2.640 V26.400 V264.00 V10 µV100 µV1 mV10 mV22 MΩ1 MΩ1 MΩ1 MΩ0.03% of FS ± 2 cts, 0-100% of FS,10 Hz to 10 kHz (AC coupling)or 0 to 10 kHz (DC coupling)300.0 V 600.0 V * 650 V650 V100 mV100 mV1 MΩ1 MΩ± 0.8 V± 0.8 V* The 600V range is ETL certified to 300V. For purposes of accuracy calculation, the 600.0V range is 2000.0V (20,000 counts), and the 5.000A range is 20.000A (20,000 counts).AC CurrentAC Current FS RangeAC Current toOverrange FlashResolutionInputResistanceError at 25°C2.0000 mA 20.000 mA 200.00 mA 2.6400 mA26.400 mA264.00 mA0.1 µA1.0 µA10 µA100 Ω10 Ω1 Ω0.03% of FS ± 2 cts, 0-100% of FS,10 Hz to 10 kHz (AC coupling)or 0 to 10 kHz (DC coupling)5.000 A 5.4 A 1 mA 0.01 Ω ± 20 mA Both AC Voltage & CurrentDisplayReadoutRangeDisplay Update Rate IndicatorsCrest factor Vp / Vrms 5 LED digits, 7-segment, 14.2 mm (.56"), red or green -99999 to 99999 or -99990 to 99990 (count by 10)3.75/s at 60 Hz power, 3.1/s at 50 Hz power1 LED lamp per relay setpoint3.00 at full scale range,2.27 at 132% of FS range (display flashes),1.414 at 212% of FS range (maximum sinusoidal signal)Output Update RateA-to-D rateSignals > 50/60 Hz Signals 3 to 50/60 Hz Signals DC to 3 Hz 60/s at 60 Hz power, 50/s at 50 Hz power 60/s at 60 Hz power, 50/s at 50 Hz power Signal frequency3 per secondMaximum SignalMax applied voltage Current protection 600 Vac for 2, 20, 200, 600V ranges, 50 Vac for 0.2V range 25x for 2 mA, 8x for 20 mA, 2.5x for 200 mA, 1x for 5APowerVoltage, standard Voltage, optional Power frequency Power consumption (typical, base meter) Power isolation 85-264 Vac or 90-300 Vdc12-32 Vac or 10-48 VdcDC or 47-63 Hz1.2W @ 120 Vac, 1.5W @ 240 Vac, 1.3W @ 10 Vdc, 1.4W @ 20 Vdc, 1.55W @ 30 Vdc, 1.8W @ 40 Vdc,2.15W @ 48 Vdc250V rms working, 2.3 kV rms per 1 min testAnalog Output (optional)Output Levels Current compliance Voltage compliance Scaling Resolution Isolation 4-20 mA, 0-20 mA, 0-10V, -10 to +10V (jumper selectable) 2 mA at 10V ( > 5 kΩ load)12V at 20 mA ( < 600Ω load)Zero and full scale adjustable from -99999 to +9999916 bits (0.0015% of full scale)250V rms working, 2.3 kV rms per 1 min testRelay Outputs(optional) Relay typesCurrent ratingsOutput common Isolation2 Form C contact relays or 4 Form A contact relays (normally open) 2 or 4 Form A, AC/DC solid state relays (normally open) 8A at 250 Vac or 24 Vdc for contact relays120 mA at 140 Vac or 180 Vdc for solid state relaysIsolated commons for dual relays or each pair of quad relays 250V rms working, 2.3 kV rms per 1 min testSerial Data I/O (optional) Board selectionsProtocols Data ratesDigital addresses IsolationEthernet, Ethernet-to-RS485 server, USB, USB-to-RS485 server, RS485 (dual RJ11), RS485 Modbus (dual RJ45), RS232.Modbus RTU, Modbus ASCII, Laurel ASCII protocol 300 to 19200 baud247 (Modbus), 31 (Laurel ASCII),250V rms working, 2.3 kV rms per 1 min testSignal ConnectionsEnvironmental Operating temperature Storage temperature Relative humidity Protection0°C to 55°C -40°C to 85°C95% at 40°C, non-condensingNEMA-4X (IP-65) when panel mountedMechanicalApplicationsUsing Laureate Meters to Synchronize Two Motor GeneratorsSynchronization of two motor generators requires that the voltage outputs of the generators be close toeach other, that the two frequencies be identical, and that the voltage waveshapes be in phase.•The two voltages can be measured by two Laureate AC RMS Voltmeters, which offer 200.00 V and 600.0 V ranges. Or a single meter can be multiplexed by using an external toggle switch.•Two frequencies A & B can be measured to six-figure accuracy by a single Laureate Dual Channel Counter, where each channel monitors a generator. The two AC neutrals must be tied to meterground. Pressing a front-panel key toggles the reading between the channels. The meter can alsodisplay frequency A - frequency B, or frequency A / frequency B without toggling.•Phase angle can be measured using the Laureate Phase Meter.Using Laureate Meters and Counters to Instrument an AC LineWhy Measure AC Power?Many AC loads, such as electrical motors, will only operate reliably if the AC line voltage and frequencyare within specified tolerances; otherwise permanent damage to expensive plant equipment may occur.Drops in line voltage or frequency may indicate an excessive load and the possibility of equipmentdamage. Laureate meters and counters are low-cost means to instrument and alarm AC power lines withgreat accuracy:•AC RMS Voltmeter and Ammeter. True RMS capability allows the display of RMS voltage for non-sinusoidal waveshapes, such as square waves from a UPS. A built-in 5 A range can be used to displaycurrents up to 5.000 A with 1 mA resolution or accept the output of 5 A current transformers. The200.00 mV range can be used with external current shunts. With either transformers or shunts, scalingof the input current is easily accomplished via the meter's front panel pushbutton switches.•Frequency Meter. Inverse period is used to determine AC line frequency to six-figure accuracy(60.0000 or 50.0000) in a few line cycles plus 30 ms.•Phase Angle & Power Factor Meter. Two signals with identical periods are applied to Channels Aand B. A phase angle resolution of 1°, 0.1° or 0.01° is selectable. Accuracy is 0.01% up to 100 Hz,0.1% at 1 kHz, and 1% at 10 kHz.Ordering GuideCreate a model number in this format: L20000RMV1, IPCDPM Type L Laureate Digital Panel MeterMain Board1 Standard Main Board, Green LEDs2 Standard Main Board, Red LEDsPower (isolated) 0 Isolated 85-264 Vac1 Isolated 12-32 Vac or 10-48 VdcRelay Output (isolated) 0 None1 Two 8A Contact Relays2 Two 120 mA Solid State Relays3 Four 8A Contact Relays4 Four120 mA Solid State RelaysAnalog Output (isolated) 0 None1 Isolated 4-20 mA, 0-20 mA, 0-10 V, -10 to +10VDigital Interface (isolated) 0 None1 RS2322 RS485 (dual RJ11 connectors)4 RS485 Modbus (dual RJ45 connectors)5 USB6 USB-to-RS485 device server7 Ethernet8 Ethernet-to-RS485 device serverSignal Input (isolated) True AC RMS VoltsRMV1 200.00 mVRMV2 2.0000 VRMV3 20.000 VRMV4 200.00 VRMV5 600.0 V (range not ETL certified) RMV6 300.0 V (range ETL certified)True AC RMS AmpsRMA1 2.0000 mARMA2 20.000 mARMA3 200.00 mARMA4 5.000 AAdd-on Options CBL01RJ11-to-DB9 cable. RJ11 to DB9. Connects RS232 ports of meter and PC.CBL02USB-to-DB9 adapter cable. Combination of CBL02 and CBL01 connects meter RS232port to PC USB port.CBL03-16-wire data cable, RJ11 to RJ11, 1 ft. Used to daisy chain meters via RS485.CBL03-76-wire data cable, RJ11 to RJ11, 7 ft. Used to daisy chain meters via RS485.CBL05USB cable, A-B. Connects USB ports of meter and PC.CBL06USB to RS485 adapter cable, half duplex, RJ11 to USB. Connects meter RS485 portto PC USB port.CASE1Benchtop laboratory case for one 1/8 DIN meterCASE2Benchtop laboratory case for two 1/8 DIN metersIPC Splash-proof coverBOX1NEMA-4 EnclosureBOX2NEMA-4 enclosure plus IPCBL Blank Lens without button padsNL Meter lens without button pads or Laurel logo。
Mobile Computers F E AT U R E S&B E NE F I T SUltra-lightweight device provides intuitive data entry and comfortable single-handed use ina stylish form factor.Advanced integrated802.11 a/b/g/ntechnology deliversreal-time networkaccess to criticalinformation andsupports advancedwireless securitystandards.Supports both Microsoft®Windows® CE 6.0 andWindows EmbeddedHandheld 6.5 platforms.Adaptus 6.0 imagingtechnology readslinear and 2D barcodesand captures digitalimages and electronicsignatures — enablingworkers to do morewith a single device.Constructedfor use in lightindustrial in-premiseenvironments.The Dolphin 6110 mobile computerprovides advanced data capture andreal-time wireless communication forin-premise applications including pricelookup/audits, inventory management,customer assistance and merchandising.Dolphin 6110Mobile ComputerThe stylish and reliable Honeywell Dolphin™ 6110 mobile computer provides advanced data collection and real-time wireless communication for in-premise applications including price lookup/audits, inventory management, customer assistance and merchandising. Designed with ergonomics in mind, this pocket-sized mobile computer features an angled imager that allows users to view the screen while scanning a barcode.Despite its stylish exterior, the Dolphin 6110 mobile computer wasbuilt to withstand harsh conditions. This IP54-rated device can endure exposure to dust, dirt and splashing water, as well as accidental drops from distances as high as 1.2 meters (4 feet). The high-performing Dolphin 6110 mobile computer can sustain up to 500 tumblesfrom 1 meter (3.3 feet), providing reliability for years to come.Integrated 802.11 a/b/g/n wireless connectivity providesusers with access to critical data throughout the enterprise.A long-lasting battery minimizes the need to change the batteryduring an eight-hour shift, even in wireless, scan-intensive environments. Advanced protocols enhance data security. Userscan also make phone calls using Voice over Internet Protocol (VoIP) technology, eliminating the need to carry additional devices.Powered by Adaptus™ 6.0 imaging technology, the Dolphin 6110mobile computer delivers the broadest suite of advanced datacapture capabilities, including linear and 2D barcode scanning,digital image capture and intelligent signature capture, allowingusers to increase efficiency and improve customer service.Purpose-built for in-premise applications, the Dolphin 6110 mobile computer provides mobile workers with the tools needed to streamline tasks, improve productivity and maximize investment protection.Dolphin 6110 Technical Specifications.Dolphin 6110-DS | Rev D | 08/16© 2016 Honeywell International Inc.For more informationHoneywell Sensing and Productivity Solutions9680 Old Bailes Road Fort Mill, SC 29707800-582-4263For a complete listing of all compliance approvals and certifications, please visit / compliance .For a complete listing of all supported barcode symbologies, please visit / symbologies .Dolphin and Adaptus are registered trademarks or trademarks of Honeywell International Inc. in the U.S. and/or other countries.Microsoft and Windows are either registeredtrademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries.MECHANICALDimensions (L x W x H):With Standard Battery: 175 mm x 69 mm x 39 mm (6.9 in x 2.7 in x 1.5 in)With Extended Battery: 175 mm x 69 mm x 43 mm (6.9 in x 2.7 in x 1.7 in) – includes handstrap At Grip: 58 mm (2.3 in)Weight:Imager: Standard Battery: 247 g (8.7 oz); Extended Battery: 270 g (9.5 oz)Laser: Standard Battery: 252 g (8.9 oz); Extended Battery: 275 g (9.7 oz) – includes handstrapENVIRONMENTALOperating Temperature:Imager: -10°C to 50°C (14°F to 122°F)Laser: -10°C to 40°C (14°F to 104°F)Storage Temperature: -20°C to 70°C (-4°F to 158°F)Humidity: 95% humidity, non-condensing Drop: Withstands multiple 1.2 m (4 ft) drops to concrete, all axis and across operating temperature rangeTumble: 500 1 m (3.3 ft) tumbles (1,000 impacts)ESD: Air: ±15kV; Contact: ±8kVEnvironmental Sealing: Independently certified to meet IP54 standards for moisture and particle resistanceSYSTEM ARCHITECTUREProcessor: Texas Instruments OMAP3715 800 MHzOperating System: Microsoft Windows CE 6.0; Windows Embedded Handheld 6.5.3Memory: 512 MB RAM; 512 MB FlashDisplay: 7.1 cm (2.8 in) transmissive active matrix 65,000-color LCD with backlight, QVGA (240 x 320)Keypad: 28-key shifted alphanumeric with backlit keysAudio: Built-in microphone and speaker, stereo headset jackI/O Ports: High-speed USB v2.0 (480 Mbps)Voice Communication: Voice-over-IP and Push-to-Talk readyApplication Software: Honeywell Power Tools and DemosStorage Expansion: User-accessible Micro SDHC memory card slot. Please check current price guide for available qualified card optionsBattery: Standard: Li-Ion, 3.7V, 2200mAh; Extended: Li-Ion, 3.7V, 3300mAh (includes extended battery door)Expected Hours of Operation: 8+ hours (with scan and continuously transmitting)Expected Charge Time: Standard Battery: 4 hours Extended Battery: 6 hoursImager: Imager: 5603 (Laser Aimer), Standard Range (SR), High Density (HD); Adaptus 6.0imaging technology; Laser: N4313 (only for WEH 6.5 version)Decode Capabilities: Imager: Reads standard 1D and 2D symbologies; Laser: Reads standard 1D symbologiesWarranty: One-year for terminals and peripheralsWIRELESS CONNECTIVITYWLAN: 802.11a/b/g/n, Wi-Fi™ certified WLAN Security:Wi-Fi Alliance Certification, Wireless Security Supplicant (DeviceScape), 802.1x, WPA2, EAP, WEP, LEAP, TKIP, MD5, EAP-TLS, EAP-TTLS, WPA-PSK, PEAP, CCXv4WPAN:Bluetooth® Class II (10 m) v2.1 Enhanced Data Rate(EDR) with on-board antenna. BQB certified。
国外有烧友采用AVR 单片机制作了一款简易的DiSE -qC 四切一开关测试器(图1),它采用直流12V 200mA 的电源适配器,具有四个LED 指示灯显示测试状态。
支持DiS -EqC1.0和DiSEqC1.1协议,对输出的22kHz 脉冲有650mV 、300mV 高低两种测试电平,每秒钟输出一个端口的测试指令,可通过声光显示循环测试结果,当端口短路时,压电喇叭会发出声音提示。
一、简易DiSEqC 四切一测试器的原理简易DiSEqC 四切一开关测试器的电路如图2所示。
测试器核心部分MCU1是一片ATtiny13型八位AVR 单片机,它是ATMEL 公司的低端产品,内置1kB 系统内可编程FLASH 、64B 的系统内可编程E 2PROM 和64B 的片内SRAM ,可以对锁定位进行编程以及实现E 2PROM 数据的加密。
由片内RC 振荡器产生固定的4.8MHz 或9.6MHz 时钟。
具有八个引脚,其功能定义如表1所示。
测试器电路结构比较简单,当电源开关SA1接通时,自制简易DiSEqC 四切一测试器□沈永明图1测试器外观示意图引脚定义功能特点1RESET复位输入引脚,持续时间超过最小门限时间的低电平将引起系统复位2、3、6、7PB3、PB4、PB1、PB2为6位双向I/O 口,具有可编程的内部上拉电阻。
其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。
作为输入使用时,若内部上拉电阻使能,端口PB 被外部电路拉低时将输出电流。
在复位过程中,如系统时钟还未起振,端口PB 将处于高阻状态4GND 地8VCC 电源正极,工作电压为2.7~5.5V表1ATtiny13芯片引脚功能表卫视星空图路电器试测2图由二极管VD1、三端稳压器(IC1)和滤波电解电容C1~C4组成的直流稳压电路,为测试器提供5V 工作电源,其中的VD1为电源极性保护二极管,防止12V 电源适配器的极性反接而损坏测试器。
由电阻R7、稳压二极管VD2、三极管VT1组成的串联稳压电路为被测器件提供测试电压,该测试电压还受ATtiny13(IC2)芯片③脚经电阻R2的开关控制。