光伏电站数据采集系统与远程通讯系统
- 格式:doc
- 大小:5.14 MB
- 文档页数:14
光伏电站数据采集系统与远程通讯系统一、项目简介1、项目名称:巨力新能源10MW太阳能光伏屋顶发电项目2、建设单位:中国巨力集团有限公司3、建设规模:10MWp屋顶光伏发电项目4、项目地址:中国巨力集团5、电站范围:中国巨力集团厂区6、单位屋顶:8处二、监控系统说明如图2.1所示,光伏综合监控系统具备就地和远程监控功能,监控软件由本地监控与远程监控相结合。
本地监控由中央控制器(包括数据采集、控制算法、网关等功能、通讯链路、本地显示组成,主要功能是负责本地发电设备数据采集、控制、数据存储、能量调度、通讯等功能。
远程监控由广域网通讯链路、路由器、数据库服务器、网络服务器、上位机展示平台组成,主要功能是负责将各个电站数据进行收集,电站状况调查,数据存储、处理、分析,发电经济性分析等等。
传统光伏电站监控系统主要由逆变器厂商随设备提供,从本厂逆变器出发,对电站运行的一些参数进行监测,难以或不能直接控制逆变器的运行状态,无法获取电站中的其它设备的信息及控制这些设备,也无法满足电网调度系统对电站的实时监控要求。
而且该项目将采用不同厂商的设备,电源厂商自有的监控系统一般对其他厂家的设备兼容性差,容易造成一个个“孤岛”系统,无法形成统一的监控体系。
大型光伏电站必须配备自动运行、功能完善的监控系统。
这种监控系统不同于传统发电厂监控系统或变电站综合自动化系统,相对来说,大型光伏电站内设备种类不及传统电厂丰富,生产控制流程也不太复杂。
但其典型特点是装机容量大(10MW以上、占地面积广(150亩以上,且地理位置偏僻、维护人员很少,这就要求生产运行、设备监控、环境监测、安保技防等各环节集中统一起来,且能够适应其位置分散、配置灵活的特点。
基于现场总线设计的大型光伏电站监控系统可以满足这些要求。
因此,需要搭建一个统一的本地集中监控中心,该监控中心位于巨力索具园区,能够对不同厂商、不同类别、不同型号的光伏发电电源设备及计量表计、直/交流柜及其它电力设备进行统一监控,实现对该项目所包含的光伏电站完整、统一的实时监测和控制。
光伏电站监控系统结构与布局随着清洁能源的发展和应用,光伏电站已成为一种主要的可再生能源发电方式。
为了保障光伏电站的安全运行和高效发电,监控系统的建设至关重要。
一个完善的光伏电站监控系统不仅能够实时监测电站的运行状态,还可以对电站进行远程监控和管理,提高电站的发电效率和维护效率。
本文将介绍光伏电站监控系统的结构与布局。
一、光伏电站监控系统结构光伏电站监控系统的结构主要包括传感器、数据采集系统、数据传输通道、数据处理与存储系统和监控中心。
其中,传感器用于实时监测光伏电站的各项参数,数据采集系统用于将传感器采集到的数据传输至数据处理系统,数据传输通道用于实现数据的远程传输,数据处理与存储系统用于处理和存储传感器采集到的数据,监控中心用于对电站进行远程监控和管理。
1.传感器:传感器是光伏电站监控系统的基础设备,用于实时监测电站的各项参数,包括光照强度、温度、风速、电压、电流等。
通过传感器采集到的数据,可以实现对电站运行状态的实时监测和分析。
2.数据采集系统:数据采集系统用于将传感器采集到的数据传输至数据处理系统。
数据采集系统通常由数据采集器和数据传输设备组成,数据采集器用于采集传感器数据,数据传输设备用于将采集到的数据传输至数据处理系统。
3.数据传输通道:数据传输通道包括有线通信和无线通信两种方式,用于实现数据的远程传输。
有线通信主要通过光纤和网线进行数据传输,无线通信主要通过无线网络和卫星通信进行数据传输。
4.数据处理与存储系统:数据处理与存储系统用于接收并处理传感器采集到的数据,同时对数据进行存储和备份。
数据处理与存储系统可以实现数据的实时分析、报警和故障诊断,提高电站的运行效率和可靠性。
5.监控中心:监控中心是光伏电站监控系统的核心部分,用于对电站进行远程监控和管理。
监控中心通常配备有监控软件和显示设备,可以实现对电站的实时监测、参数调节、报警处理等功能。
二、光伏电站监控系统布局1.电站内部监控:电站内部监控主要包括对光伏组件、逆变器、变压器等设备的监测。
光伏电站通讯系统原理光伏电站通讯系统是指通过通信设备将光伏电站内的信息传输到中心控制系统中,从而实现对光伏电站的监控、管理和维护。
光伏电站通信系统具有及时性、准确性和高效性等特点,对于确保光伏发电系统稳定运行和提高能源利用效率具有重要作用。
光伏电站通讯系统包括通讯网络、通信应用及通信管理,其中通讯网络是通信系统的基础。
现代光伏电站通信系统主要采用互联网技术,包括局域网、广域网和虚拟专用网等。
通讯网络涵盖了设备之间、设备与控制中心之间、设备与维护人员之间的通讯。
光伏电站内部设备之间的通信通常采用局域网,包括智能逆变器、太阳能电池板、温度传感器等。
设备与控制中心之间的通信采用广域网或虚拟专用网,主要用于数据传输和信息管理。
设备和维护人员之间的通信可以通过无线通信和短信通知等方式实现,方便维护人员及时了解设备运行状态和进行设备维护。
通信应用是光伏电站通信系统的核心。
通信应用包括数据采集、实时监测、故障诊断、数据存储和可视化等。
数据采集是通信应用的第一步,通过采集逆变器、电池板、温度传感器等设备的数据,实现对光伏电站整体运行状态的了解。
实时监测是在数据采集的基础上实现的,通过该应用可以实时监测光伏电站发电量、电网电压、电机电流等数据,以及检测发电系统中的故障。
故障诊断是通信应用的重要环节,通过对数据的分析和对设备运行状况的判断,及时诊断设备故障,并进行维护和修理。
数据存储是为了保证光伏电站数据完整性和安全性而设计的,通过对数据进行存储和备份,保证数据不会丢失或损坏。
可视化是为了方便管理人员对光伏电站信息进行快速、直观地了解,通过数据的可视化处理,管理人员可以直观地看到光伏电站发电量、电机状态、发电质量等各项指标。
通信管理是为了保证通信系统的稳定性和安全性而设计的。
通信管理包括网络安全、数据保密、数据备份等,主要涉及授权认证、数据采集、网络管理等方面。
网络安全负责保证通信系统不受网络攻击和病毒感染,并保证数据传输过程中的安全性和可靠性。
光伏电站数据采集与远程监控摘要:随着越来越多的光伏发电站连接到网格一个接一个,有许多问题需要解决在电网调度,如监控什么信息,如何实现信息收集的太阳能光伏发电、如何实现有源和无功功率控制,以及如何规范和位置太阳能调度技术支持系统。
关键词:光伏电站;数据采集;远程监控;随着光伏发电技术的发展,光伏装机容量在电网中占的比例不断增加,越来越多的独立和并网光伏电站即将或已经投入运行使用。
这些光伏电站大多建设在交通闭塞的边远地区,工作人员无法守在电站现场,通常只能工作在无人值守的条件下。
因此实时地采集光伏电站运行参数,监控光伏电站运行状态,评估电站的运行效益对保证电站安全、稳定地运行具有十分重要的意义。
一、光伏发电系统概述随着光伏技术的不断发展、光伏组件成本的不断降低,光伏发电显现出了越来越显著的经济效益和社会效益,得到了越来越广泛的应用。
常见的光伏发电系统有:独立发电系统、并网发电系统和混合光伏系统。
独立发电系统指的是完全依靠光伏电池板转换的电能供电系统,根据是否带有储能设备分为两种形式:(1)中间不带储能设备的直联系统,光伏电池板发出来的电全部提供给负载使用,典型应用如太阳能水泵系统。
该系统自动日出而做、日落而息,越干旱,光照越强,抽水越多;(2)带储能设备的系统,光伏电池板发出的电能除了供给负载使用外,剩余的能量通过储能设备储存起来,以供需要的时候使用。
若带的是直流负载,则系统由光伏电池板、防反二极管、蓄电池及控制器等组成,典型的应用如太阳能路灯等。
若带的是交流负载,则系统除直流负载系统的组件外,还需要配备将直流电能转换为交流电能的离网逆变器。
该系统主要应用于远离电网的偏远山村、孤岛等地方的供电。
白天系统向负载及蓄电池供电,夜晚蓄电池将电能输出,供负载使用。
并网发电系统是当今光伏发电系统的主要形式,它将太阳能电池板转换过来的直流电逆变成同当地电网电压同频、同相的交流电后馈送到电网中,以供周围电网中的负载使用。
光伏电站智能接入系统方案(35kV单点接入)1. 概述随着可再生能源的快速发展,光伏电站作为清洁能源的重要组成部分,其并网需求日益增长。
为了提高光伏电站的接入效率和可靠性,本文将介绍一种光伏电站智能接入系统方案,该方案以35kV单点接入为基础,通过采用先进的光伏逆变器、智能化监控系统和优化接入方案,实现光伏电站高效、稳定地接入电网。
2. 系统架构2.1 光伏发电系统光伏发电系统主要由光伏组件、光伏逆变器、蓄电池等组成。
其中,光伏组件将太阳光能转化为直流电能,光伏逆变器将直流电能转换为交流电能,蓄电池则用于存储多余的电能。
2.2 智能化监控系统智能化监控系统主要包括数据采集与处理、远程通信、故障诊断等功能。
数据采集与处理模块负责实时监测光伏发电系统的运行状态,包括发电功率、电压、电流等参数;远程通信模块通过有线或无线方式将监测数据传输至远程监控中心;故障诊断模块则可自动检测并诊断系统故障,提醒运维人员进行处理。
2.3 接入电网系统接入电网系统主要包括35kV单点接入、输电线路、变电站等。
35kV单点接入是指将光伏电站的输出电压升高至35kV,然后通过一条或多条输电线路接入电网。
3. 技术方案3.1 光伏逆变器选型为了实现高效、稳定的电能转换,本项目选用高效、高品质的光伏逆变器。
光伏逆变器应具备以下特点:- 高转换效率(≥98%);- 具有较强的抗干扰能力;- 支持多路MPPT,以适应不同倾角和光照条件;- 具备远程监控和故障诊断功能。
3.2 智能化监控系统设计智能化监控系统应包括以下几个部分:- 数据采集与处理:采用高精度传感器实时监测光伏发电系统的运行参数,如发电功率、电压、电流、温度等,并通过数据处理模块进行实时分析与处理。
- 远程通信:利用有线或无线通信技术(如光纤、4G/5G、NB-IoT等)将监测数据传输至远程监控中心,以便进行远程监控与调度。
- 故障诊断:根据实时监测数据,采用人工智能算法进行故障预测与诊断,实现故障的及时发现与处理。
光伏电站信息化管理系统概述信息化管理系统是利用数字化信息化技术,来统一标定和处理光伏电站的信息采集、传输、处理、通讯,整合光伏电站设备监控管理、状态监测管理系统、综合自动保护系统,实现光伏电站数据共享和远程监控。
光伏电站监控系统一般分为两大类:一种是无线网络的分布式监控系统。
一般应用于安装区域比较分散,采用分块发电、低压分散并网的中小型屋顶光伏电站。
由于其采用GPRS无线公共网络传输。
数据的安全性和稳定性无法保证,因此一般不应用于10KV及以上电压等级并网的光伏电站。
另一种是光纤网路的集中式监控系统。
一般应用于大型地面光伏电站或并网电压等级为10KV及以上的屋顶分布式电站。
相关管理制度及标准----信息化系统基础1、明确并网光伏电站相关管理制度及运维手册。
强化安全教育、建立完善电站各项管理制度安全生产是电力生产的生命线。
完善光伏电站《运行规程》、《检修规程》、《安全规程》和《调度规程》。
3、建立光伏电站运维相关国家、地方及行业标准。
电站生产运维管理光伏发电生产管理主要包括:生产运行与维修管理(运维一体化管理)、安全与质量管理、发电计与电力营销管理、大修与快速响应管理、物资仓储管理、生产培训与授权管理和文档与信息管理。
生产图1生产运维体系架构一、生产运行与维修管理1.运行管理(1)工作票管理工作票对设备消缺过程中安全风险控制和检修质量控制具有重要的作用。
工作票编制时需要细化备缺陷消除过程的步骤,识别消缺工作整个过程的安全风险(人员安全和设备安全),做好风险预判工作,主要包含:工作位置(设备功能位置和工作地点)、开工先决条件、工作步骤、QC控制点、工期、工负责人、工作组成员、工作风险及应对措施、备件(换件和可换件)、工具(常用工具和仪器仪表)等;工作票对工作过程中的关键点进行控制,结合质量管理中QC检查员的作用设置W点(见证点)和H点(停工待检点)以保障工作质量;工作票执行时需要严格执行工作过程的要求,严把安全质量关;工作票执行完毕后必须保存工作记录和完工报告。
分布式光伏电站的监控系统及监控方法在全球能源转型的大背景下,分布式光伏电站作为一种清洁、可再生的能源供应方式,正得到越来越广泛的应用。
为了确保分布式光伏电站的稳定运行、提高发电效率和保障安全性,一套完善的监控系统和有效的监控方法至关重要。
一、分布式光伏电站监控系统的组成分布式光伏电站的监控系统通常由以下几个主要部分组成:1、传感器与数据采集单元传感器负责采集光伏电站的各种运行参数,如光伏组件的电压、电流、功率,环境温度、光照强度等。
数据采集单元则将传感器采集到的数据进行汇总和初步处理,然后传输给监控中心。
2、通信网络用于将采集到的数据从现场传输到监控中心。
常见的通信方式包括有线通信(如以太网)和无线通信(如 WiFi、GPRS 等)。
通信网络的稳定性和数据传输速度直接影响监控系统的实时性和可靠性。
3、监控中心监控中心是整个监控系统的核心,负责接收、存储、分析和展示数据。
它通常包括服务器、数据库、监控软件等。
监控人员可以通过监控软件实时查看电站的运行状态,并对异常情况进行报警和处理。
4、远程终端除了监控中心,相关人员还可以通过手机、平板电脑等远程终端随时随地访问监控系统,获取电站的运行信息。
二、分布式光伏电站监控系统的功能1、实时监测能够实时采集和显示光伏电站的各项运行参数,让运维人员及时了解电站的工作状态。
2、数据分析对采集到的数据进行分析,例如计算发电量、功率曲线、设备效率等,为电站的优化运行提供依据。
3、故障报警当电站出现故障或异常情况时,如组件短路、逆变器故障等,监控系统能够及时发出报警信号,并定位故障位置,以便运维人员快速处理。
4、能源管理帮助用户对能源的生产和消耗进行管理,实现节能减排的目标。
5、报表生成能够自动生成各种报表,如日报表、月报表、年报表等,方便用户对电站的运行情况进行总结和评估。
三、分布式光伏电站的监控方法1、基于数据采集与分析的监控通过定期采集电站的运行数据,并对这些数据进行分析,来判断电站的运行状况。
大型光伏电站的通信方案设计与实现大型光伏电站的通信方案设计与实现一、引言随着可再生能源的快速发展,光伏电站作为一种重要的清洁能源发电方式,逐渐得到广泛应用。
而大型光伏电站的通信方案设计与实现,对于确保电站安全稳定运行、提高发电效率以及优化运维管理至关重要。
本文将探讨大型光伏电站通信方案的设计和实施过程,旨在为相关领域提供参考和借鉴。
二、大型光伏电站的通信需求分析1. 实时数据采集与监控在大型光伏电站运行过程中,需要实时监测光伏组件的工作状态、发电效率、电压、电流等参数。
通过建立可靠的通信系统,将各个组件的数据传输到监控中心,可以实现远程监控和及时调整,提高光伏发电的效率。
2. 光伏并网发电控制大型光伏电站需要与电网进行接口,进行光伏发电的注入与断开。
通过通信系统,可以实现光伏电站与电网的实时交互,确保并网发电的安全和稳定。
3. 故障检测与管理光伏电站发电过程中,可能出现组件损坏、线路故障等问题。
通过通信系统,及时收集光伏组件的异常数据,并发出警报,可以及时发现并处理故障,降低停电时间和维修成本。
三、通信方案的设计1. 通信网络的选择大型光伏电站可以选择有线通信网络或者无线通信网络,根据实际需求和现场情况来决定。
有线通信网络可以提供更稳定的连接,适用于远距离传输;而无线通信网络则更加灵活,适合在复杂地形或者无法进行布线的场景中使用。
2. 数据传输协议的选择在通信方案设计中,选择合适的数据传输协议非常重要。
常见的数据传输协议有Modbus、DL/T645等。
根据电站规模和要求,选择适合的协议,并确保协议的稳定性和可靠性。
3. 通信硬件设备的选型根据实际需求,选择合适的通信硬件设备。
常见的设备有数据采集器、通信模块、无线路由器等。
在选型过程中,要考虑设备的性能、兼容性以及后期的维护和升级等因素。
四、通信方案的实施1. 搭建通信基础设施在实施通信方案之前,需要先搭建通信基础设施,并确保其稳定运行。
对于有线通信网络,需要进行布线和安装相关设备;对于无线通信网络,需要部署相应的无线设备和接入点。
光伏电站监控系统基本架构及构成一、光伏电站计算机监控系统架构光伏电站计算机监控系统的主要任务是对电站的运行状态进行监视和控制,向调度机构传送有关数据,并接受、执行其下达的命令。
站控层设备按电站远景规模配置,间隔层设备按工程实际建设规模配置。
各部分设备组成如下:1.站控层设备由主机兼操作员站、远动通信设备、公用接口装置、网络设备、打印机等组成,其中主机兼操作员站、远动通信设备按双套冗余配置,远动通信设备优先采用无硬盘专用装置。
2.间隔层设备包括光伏逆变器、汇流箱、太阳跟踪系统、气象监测系统及辅助系统的通信控制单元,光伏发电单元规约转换器,保护和测控装置等设备。
3.网络层设备包括网络交换机、光/电转换器、接口设备和网络连接线、电缆、光缆及网络安全设备等。
站控层与间隔层通常采用以太网连接,110kV及以上电站采用双重化网络,35kV电站采用单网结构。
站控层、间隔层网络交换机采用具备网络管理能力的交换机,站控层交换机的容量根据电站远景建设规模配置,间隔层交换机的容量根据远景出线规模配置,网络媒介在室内采用五类以上屏蔽双绞线,室外的通信媒介采用光缆。
二、光伏电站计算机监控系统站控层(一)数据采集通信子系统数据采集通信子系统一般由两套前置机及其通信接口装置、网络设备等组成。
其中。
前置机负责与各间隔层设备进行数据通信,完成数据采集与通信功能;通信接口装置负责与直流系统、UPS、电能量采集装置等其他智能设备进行数据通信。
前置机通过站控层网络与主机、工作站。
远动工作站等站控层设备连接,实现站控层内部通信功能。
间隔层设备直接接入站控层网络,站控层网络一般采用快速交换式以太网,以实现站控层与间隔层之间数据的快速交换。
数据采集和通信功能由主机、人机工作站、远动工作站等站控层设备的通信软件模块完成,一般要求站控层和远动工作站直接读取间隔层设备的信息,即信息采集遵循"直采直送"的原则。
光伏电站计算机监控系统一般采用双主机兼操作员站模式,主机是站控层数据收集、处理、存储及发送中心。
光伏电站数据采集与监控系统设计与优化随着能源危机的日益加剧和环境保护的重要性日益彰显,光伏发电作为一种清洁能源的重要形式,逐渐成为人们重视的焦点。
而为了确保光伏电站的高效运行和稳定发电,数据采集与监控系统的设计与优化显得尤为重要。
光伏电站数据采集与监控系统的设计首先需要考虑的是数据采集的相关问题。
光伏电站的数据采集需要对光伏阵列的发电情况、温度、光照强度等关键参数进行实时监测。
为了保证数据的准确性,需要选择高精度、高可靠性的传感器设备,并合理布置在光伏阵列的关键位置。
同时,需要考虑数据传输的方式和通信协议,选择合适的通信设备和网络结构,以保证数据的稳定传输。
此外,为了应对突发情况,还需要考虑灾备备份和数据存储的方案,确保数据的安全和可用性。
在数据采集的基础上,光伏电站监控系统的设计是管理和控制光伏电站运行的核心任务。
光伏电站监控系统应具备实时监测、故障诊断、远程操作和数据分析等功能。
实时监测模块可以对光伏电站的各项参数进行实时监测,并生成实时报警和运行状态预警。
故障诊断模块可以对光伏电站的故障进行自动诊断和报警,并提供故障的定位和处理建议。
远程操作模块可以通过网络远程控制和调整光伏电站的运行状态,对光伏阵列进行远程开关机、升降压等操作。
数据分析模块可以对光伏电站的历史数据进行统计和分析,并输出报表和趋势图形,为电站管理者提供决策参考。
光伏电站监控系统的优化是为了提高系统的可靠性、稳定性和安全性。
在系统设计上,可以采用多级分布式架构,将数据采集、处理和管理分散在不同的环节,以提高系统的并发性和容错性。
在传感器选择上,可以采用多种不同的传感器设备,以备份和互为补充,提高数据的可靠性和准确性。
在通信协议上,可以采用TCP/IP协议以及其他可靠的通信方式,确保数据的稳定传输。
此外,在软件开发上,可以采用模块化设计和灵活可扩展的架构,方便后续功能的升级和扩展。
除了设计与优化光伏电站数据采集与监控系统,还需要将系统与电站的运维管理相结合,形成一个闭环。
光伏电站智能运维方案随着可再生能源的快速发展,光伏电站作为一种重要的可再生能源发电方式,在全球范围内得到了广泛的应用。
然而,光伏电站的运维工作也面临着许多挑战,如设备检修、故障排除等。
为了更高效地管理和运营光伏电站,智能运维方案应运而生。
一、数据采集与监测系统1. 无人机巡检技术为了快速准确地获取电站设备的运行状况,可以利用无人机巡检技术。
无人机可以搭载高清摄像头和红外热像仪,通过飞行巡检电站的各个部位,实时监测设备的运行状态。
无人机巡检不仅能够提高检修效率,还能降低检修人员的安全风险。
2. 历史数据分析通过对光伏电站历史数据的分析,可以预测设备的运行状况,进而及时采取相应的维修措施,以降低设备故障风险。
利用大数据分析技术,对历史数据进行处理和建模,可以提前发现设备的异常情况,并进行预警和预防。
二、智能预警与故障诊断系统1. 智能预警系统针对光伏电站中常见的故障类型,可以利用智能预警系统实现故障的实时监测和预警。
通过对电站运行数据的监测和分析,系统可以自动判断设备是否存在故障,并及时发送预警信息给维护人员,以便他们能够迅速做出应对。
2. 故障诊断系统当光伏电站发生故障时,需要快速定位并解决问题。
故障诊断系统可以通过对设备的实时监测,结合历史数据分析,帮助工作人员快速诊断出故障的原因,并提供相应的解决方案。
三、远程运维系统1. 远程监控与管理通过远程监控系统,运维人员可以实时了解光伏电站的运行情况,包括电站的发电量、设备的工作状态等。
同时,通过远程管理系统,可以对电站的运行参数进行调整,提高发电效率。
2. 远程维修与保养在光伏电站发生故障时,运维人员可以通过远程维修系统对设备进行诊断和维修,避免了大量的人力资源和时间的浪费。
同时,通过远程保养系统,可以对设备进行定期的保养和检修,以延长设备的使用寿命。
四、人工智能与自动化技术1. 人工智能技术通过人工智能技术,可以对光伏电站的运行数据进行快速分析和处理,提高故障诊断的准确性和效率。
光伏电站智能化集中运维系统关键技术简述摘要:随着光伏发电资产规模的扩大,和对集群化管理的需求日益迫切,光伏电站的分散式运维模式,由于信息孤岛、无法远程监督和指导、运维和巡检人员培养成本高、大量数据无法统计和分析等问题,已不能适应发展的变化,信息化、区域化管理成为新能源探索运维新模式的两个发力点。
集中化运维思想变得尤为迫切,通过互联网技术以及智能化技术可以使光伏电站运维变得更加高效。
1.背景国家能源局、国家发改委公布的《能源发展“十三五”规划》指出,2020年光伏发电规模达到110GW以上,其中分布式光伏60GW。
国外光伏电站规模较小,对于集中运维中心建设的研究较少。
因此,研究光伏电站智能化集中运维管理技术,解决光伏电站运营单位由于规模越来越大而骤增的运维难度问题,意义重大,市场前景广阔。
[1]2.系统架构光伏电站往往具备大体量集团化运营、地理位置分散的特点,运营管理人员想要实时的获取光伏电站信息难度大,运维人员成本高且不易管理。
因此需要建立智能化集中化运维系统,提高管理时效性,同时结合智能化运维技术降低运维成本。
光伏电站数据采集点的数量极高,一个30MW的光伏电站,包括:光伏组件信息、升压站信息、天气数据、电量信息等采集点,数据采集器采集到的点位能达到7万余条。
集中运维系统所接入电站的总装机容量大,为应对海量数据,需要采用大数据采集、存储、处理和访问框架。
光伏电站智能化集中运维系统的数据采集、集成、存储、处理和展示流程为:1)光伏电站数据采集系统将应用数据、数据库数据、日志、图片、视频等海量数据,经由数据集成模块进行内存间通信,将海量断面数据存入内存数据库,保证系统具备实时性。
2)采用HDFS(Hadoop Distributed File System)技术将文件存储到内存数据库并完成数据持久化,这些文件和集成后的数据将由大数据处理框架进行指标分析和统计运算等处理,其运算结果将保存在NoSQL等关系数据库中,例如:Hbase、Redis等。
光伏电站数据采集系统与远程通讯系统精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-光伏电站数据采集系统与远程通讯系统一、项目简介1、项目名称:巨力新能源10MW太阳能光伏屋顶发电项目2、建设单位:中国巨力集团有限公司3、建设规模:10MWp屋顶光伏发电项目4、项目地址:中国巨力集团5、电站范围:中国巨力集团厂区6、单位屋顶:8处二、监控系统说明如图所示,光伏综合监控系统具备就地和远程监控功能,监控软件由本地监控与远程监控相结合。
本地监控由中央控制器(包括数据采集、控制算法、网关等功能)、通讯链路、本地显示组成,主要功能是负责本地发电设备数据采集、控制、数据存储、能量调度、通讯等功能。
远程监控由广域网通讯链路、路由器、数据库服务器、网络服务器、上位机展示平台组成,主要功能是负责将各个电站数据进行收集,电站状况调查,数据存储、处理、分析,发电经济性分析等等。
传统光伏电站监控系统主要由逆变器厂商随设备提供,从本厂逆变器出发,对电站运行的一些参数进行监测,难以或不能直接控制逆变器的运行状态,无法获取电站中的其它设备的信息及控制这些设备,也无法满足电网调度系统对电站的实时监控要求。
而且该项目将采用不同厂商的设备,电源厂商自有的监控系统一般对其他厂家的设备兼容性差,容易造成一个个“孤岛”系统,无法形成统一的监控体系。
大型光伏电站必须配备自动运行、功能完善的监控系统。
这种监控系统不同于传统发电厂监控系统或变电站综合自动化系统,相对来说,大型光伏电站内设备种类不及传统电厂丰富,生产控制流程也不太复杂。
但其典型特点是装机容量大(10MW 以上)、占地面积广(150亩以上),且地理位置偏僻、维护人员很少,这就要求生产运行、设备监控、环境监测、安保技防等各环节集中统一起来,且能够适应其位置分散、配置灵活的特点。
基于现场总线设计的大型光伏电站监控系统可以满足这些要求。
光伏电站数据采集系统与远程通讯系统一、项目简介1、项目名称:巨力新能源10MW太阳能光伏屋顶发电项目2、建设单位:中国巨力集团有限公司3、建设规模:10MWp屋顶光伏发电项目4、项目地址:中国巨力集团5、电站范围:中国巨力集团厂区6、单位屋顶:8处二、监控系统说明如图2.1所示,光伏综合监控系统具备就地和远程监控功能,监控软件由本地监控与远程监控相结合。
本地监控由中央控制器(包括数据采集、控制算法、网关等功能)、通讯链路、本地显示组成,主要功能是负责本地发电设备数据采集、控制、数据存储、能量调度、通讯等功能。
远程监控由广域网通讯链路、路由器、数据库服务器、网络服务器、上位机展示平台组成,主要功能是负责将各个电站数据进行收集,电站状况调查,数据存储、处理、分析,发电经济性分析等等。
传统光伏电站监控系统主要由逆变器厂商随设备提供,从本厂逆变器出发,对电站运行的一些参数进行监测,难以或不能直接控制逆变器的运行状态,无法获取电站中的其它设备的信息及控制这些设备,也无法满足电网调度系统对电站的实时监控要求。
而且该项目将采用不同厂商的设备,电源厂商自有的监控系统一般对其他厂家的设备兼容性差,容易造成一个个“孤岛”系统,无法形成统一的监控体系。
大型光伏电站必须配备自动运行、功能完善的监控系统。
这种监控系统不同于传统发电厂监控系统或变电站综合自动化系统,相对来说,大型光伏电站内设备种类不及传统电厂丰富,生产控制流程也不太复杂。
但其典型特点是装机容量大(10MW 以上)、占地面积广(150亩以上),且地理位置偏僻、维护人员很少,这就要求生产运行、设备监控、环境监测、安保技防等各环节集中统一起来,且能够适应其位置分散、配置灵活的特点。
基于现场总线设计的大型光伏电站监控系统可以满足这些要求。
因此,需要搭建一个统一的本地集中监控中心,该监控中心位于巨力索具园区,能够对不同厂商、不同类别、不同型号的光伏发电电源设备及计量表计、直/交流柜及其它电力设备进行统一监控,实现对该项目所包含的光伏电站完整、统一的实时监测和控制。
网线 交换机VGA/网口转换器通讯网关RS485网线 逆变器VGAVGATCP/IP,GPRS传感器数据采集器 本地显示屏 温度传感器 光照传感器 风速传感器 风向传感器 中控大厅大屏幕本地集控中心,电网数据中心,金太阳数据中心 RS485通讯网关RS485无线电能表RS485交直流配电柜RS485网线其他设备交换机网线 监控服务器网线通讯网关无线AP 网线 网线通讯网关 通讯网关网线图2.1屋顶光伏电站监控系统示意图三、监控系统主要功能3.1功能介绍该系统可以实现多个层次的监控:光伏电站监控,远程控制、远程诊断、数据上传。
电站信息监控:本地光伏发电监控系统实时监控光伏发电站发电量、输出功率、逆变器功率。
监控环境温度、风速、光照强度等参数。
监控逆变器、温度传感器、功率质量测量仪等设备状态及设备报警。
提供丰富的VGA、LED显示功能、网络远程监控和自定义报表等高级功能。
支持工业标准RS485接口和MODBUS协议及设备自定义协议。
支持多种逆变器、智能电表、温度、光照、风速等设备。
本地光伏监控系统通过TCP/IP实时上传监控详细数据到在线监控平台。
用户通过浏览器实时了解远程电站运行情况,掌握电站设备详细运行参数,报警信息等。
远程控制、远程诊断:对远程光伏电站监控系统主机的管理,远程登录各采集点本地监控系统网关。
查看工控机实时运行情况,掌握主机和光电站各设备实时通讯情况,报警信息。
数据上传:目前金太阳光伏电站需要将数据上传到鉴衡金太阳数据中心,本光伏监控系统实现通过互联网上传至衡金太阳数据中心功能。
图3.1监控系统功能模块图3.2 监控范围电站主要数据。
包括:逆变器监控参数:PN, SN, PV 输入电压, PV 输入电流,交流输出电压,电流,频率,功率,逆变器温度,当天发电量,当年发电量,总发电量,减排和减煤等。
环境传感器监控参数:光照,环境温度,风速,风向等多种传感器。
智能电表监控参数 :总功率,总无功功率,总有功发电量,总无功发电量,线电压,相电压,电流,频率,有功功率,无功功率,功率因数,谐波电压,谐波电流等。
四、系统结构整个系统分为现场采集系统、数据传输链路、本地集控中心、监控软件平台、异地容灾系统。
4.1 现场采集系统逆变器逆变器环境监测仪. . .485通讯网关智能电表光伏配电室厂房楼顶. . .智能电表工业交换机工业无线AP以太网485厂房N并网配电室防逆流采集箱图4.1现场采集系统通讯示意图每个厂房数据采集层方案如图4.1所示,每个厂房的监控设备主要包括位于厂房屋顶环境监测仪(一般一个项目配置一套环境监测仪),位于光伏配电室的逆变器和智能电表等设备,一般采用485方式通讯,并通过防逆流采集箱采集并网配电室的并网功率等,用于防逆流。
数据采集层使用通讯网关采集设备数据,通讯网关采用嵌入式Linux操作系统,具有功耗低、性能强、长期工作稳定的特点,包括4个485接口,2个以太网口,每个485可以采集31台设备,完全满足当前数据采集及协议解析需要,内部集成看门狗功能,可以有效防止系统崩溃的影响。
通讯网关通过485采集逆变器、智能电表、智能汇流箱及环境监测仪数据,并将采集到的数据根据设备协议进行解析,并保存到实时数据库中,通讯网关通过工业交换机与位于厂房屋顶的无线AP进行通讯,并将数据通过无线WIFI 网络上传到监控中心服务器。
4.2数据传输链路图 4.2数据传输链路示意图注:1)上图中6号、14号、17号厂房的“★”代表三射频工业无线AP EKI-6340-3。
(详细资料见附带产品资料)2)其它厂房上的无线接入点均采用性价比较高的EKI-6331AN产品。
(详见产品资料)4.2.1无线AP通讯方案本项目由8栋厂房组成,厂区之间、厂房之间不能通过厂区局域网进行连接,而厂房之间如果架设光纤成本很高,采用GPRS或者3G每年需要支付大量的流量费用,实时性也不能得到保证。
我们在设计通讯方案时充分考虑了这一点,为了最大程度保证系统可靠性、通讯稳定性及降低成本,我们主干通讯网采用先进的无线工业Mesh网络。
该网络是基于无线iMESH网络技术的无线以太网产品,在多重跳台,高数据吞吐率,快速漫游,自组网自恢复方面都有优越的性能。
该无线网络使用IEEE802.11n进行通讯,理论最大传输带宽为300兆,所使用的产品全部支持MIMO技术(MIMO 技术特点将两条无线通路进行捆绑带宽翻倍),在主干和需要大带宽的传输路径中可增加带宽保障数据传输的稳定和可靠。
因此,采用无线工业Mesh网络完全满足光伏监控需要,并且最大程度降低施工风险。
此方案要将覆盖区域分成“主干Mesh网络”及“AP覆盖”两部分。
分区原则根据厂区及厂房的实地情况而定。
初步拟定通过三台高性能的研华户外工业无线Mesh AP EKI-6340-3产品组成主干Mesh网络(建议组Mesh网络频率使用5.8GHZ),再通过分布在各厂房的接入点的EKI-6331AN进行同主干EKI-6340-3网络进行互联。
(Mesh网络的特点在无线网络有故障点出现时,无线AP会自动选择另一条途径通讯,保证数据传输)。
由于EKI-6340系列AP支持三个射频,实现在两个射频频组建冗余主干Mesh 网络的同时,第一个射频进行无线覆盖。
同时,在实施时采用高增益的扇形天线提高传输距离并保证带宽。
每个现场点通过EKI-6331AN同骨干Mesh网络的EKI-6340-3进行通讯。
4.2.2 无线通讯方案特点1、带宽分析研华无线交换机使用IEEE802.11n进行通讯,最大传输带宽为300Mbps,所使用的产品全部支持MIMO技术(MIMO技术特点将两条无线通路进行捆绑带宽翻倍),在主干和需要大带宽的传输路径中可增加带宽保障数据传输的稳定和可靠。
本带宽不但可以满足当前控制数据的通讯需要,也可以满足未来视频通讯需要,具有一定可扩展性。
带宽需要看视频部分的码流和视频监控点位情况而定,以每栋厂房顶一个视频摄像头,每个摄像头1~2Mbps带宽计算,预计已知区域的视频带宽总和为18Mbps~36Mpbs左右。
通过研华Mesh AP EKI-6340系列产品构建的实际骨干网络带宽可达200Mbps以上,可用于数据传输的有效为100Mbps 以上,因此即便现场具有视频监控的传输需求,研华工业无线通讯设备仍然可满足通讯需求。
2、解决的问题此方案可以解决以下问题:1、现场覆盖面积广,需要远距离传输问题2、视频数据传输中需要高带宽的问题3、户外应用,需要安装方便,并支持宽温和高防护等级等工业特点。
4、稳定可靠的无线产品,保障系统的安全5、避免传统AP桥接带宽损耗过多问题6、光纤布线复杂、成本高的问题3、方案优势1)Mesh网络:通过主干组成的Mesh网络,进行主干信息的通讯。
研华率先在工业无线网络中使用先进的工业Mesh技术。
在网络中出现故障点时,网络可以通过Mesh网络进行自恢复,研华的工业Mesh网络自恢复时间为20ms。
保证数据通讯的正常稳定。
使用Mesh网络的特点为方便安装配置,通过Mesh网络可以进行跳接传输(非视距传输),大大提高网络的稳定性(网络可以自愈合),网络架构简单灵活,带宽高。
2)MIMO技术:即多路输入多路输出(MIMO)技术,是指在发射端和接收端分别使用两个或多个发射天线和接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的通讯品质,提高抗干扰能力。
4、方案实施说明如上图所示,根据厂区的位置,将无线通讯部分分成“骨干Mesh网络”及“AP覆盖节点”两大部分。
骨干基站按4台预估,但为了尽可能的节约成本,实施时可先按3个骨干基站安装并实测,如果实测效果不理想时,再增加第4台骨干基站的架设即可。
实施规划:1)骨干基站的架设与实施如图4.3所示的6号、14号及17号厂房均采用骨干基站,骨干基站为研华IP67高防护等级宽温型三射频Mesh AP,型号为EKI-6340-3。
图4.3骨干基站及天线安装示意图骨干基站、天线及配件见下表:设备名称说明数量EKI-6340-3 三射频基站 15.8GHz 23dBi骨干定向天线用于骨干基站间通讯 25.8GHz 14dBi扇形天线用于所有厂房间无线节点的覆盖通讯2“1分2”功分器将覆盖所用的1个射频接两组天线,增大覆盖角度22米馈线用于基站与天线连接8 馈线防雷模块用于馈线的避雷 6网线防雷模块用于网线的避雷 12)监控节点基站的架设与实施如图4.3所示的1~5,7~13,15~16及18号厂房均采用节点基站,节点基站为研华IP55防护等级的高性价比无线AP产品,型号为EKI-6331AN。